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Abstract

White matter hyperintensities (WMHs) are emblematic of cerebral small vessel dis-

ease, yet effects on the brain have not been well characterized at midlife. Here, we

investigated whether WMH volume is associated with brain network alterations in

midlife adults. Two hundred and fifty-four participants from the Coronary Artery Risk

Development in Young Adults study were selected and stratified by WMH burden

into Lo-WMH (mean age = 50 ± 3.5 years) and Hi-WMH (mean age = 51

± 3.7 years) groups of equal size. We constructed group-level covariance networks

based on cerebral blood flow (CBF) and gray matter volume (GMV) maps across

74 gray matter regions. Through consensus clustering, we found that both CBF and

GMV covariance networks partitioned into modules that were largely consistent

between groups. Next, CBF and GMV covariance network topologies were compared

between Lo- and Hi-WMH groups at global (clustering coefficient, characteristic path

length, global efficiency) and regional (degree, betweenness centrality, local effi-

ciency) levels. At the global level, there were no between-group differences in either

CBF or GMV covariance networks. In contrast, we found between-group differences

in the regional degree, betweenness centrality, and local efficiency of several brain

regions in both CBF and GMV covariance networks. Overall, CBF and GMV covari-

ance analyses provide evidence that WMH-related network alterations are present

at midlife.
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1 | INTRODUCTION

White matter hyperintensities (WMHs) of presumed vascular origin

are one of the most widely studied markers of cerebral small vessel

disease (SVD) (Wardlaw et al., 2019) and are associated with vascular

risk factors (De Leeuw et al., 1999), cognitive decline (De Groot

et al., 2001), gait abnormalities (Baezner et al., 2008; De Laat

et al., 2011), depression (Rabins et al., 1991), and brain atrophy in

late-life individuals (Appelman et al., 2009; Godin et al., 2009; Rossi

et al., 2006; Schmidt et al., 2005). Whereas WMHs have been well

studied in late-life, comparatively less is known regarding their effects

on brain function in earlier adult decades of life (Cannistraro

et al., 2019). Notably, WMHs are present in midlife (i.e., forties, fifties)

(Bryan et al., 1999; Launer et al., 2015; Medley, 1980; Wen

et al., 2009) and are associated with an increased risk of late-life

dementia and early cognitive impairment (d'Arbeloff et al., 2019;

Smith et al., 2015).

The mechanisms by which WMHs affect the brain are not fully

established, however one potential consequence is the alteration of

brain networks (Lawrence et al., 2014). As articulated in a recent

review, focal WMHs can impact remote brain regions and structural

and functional network connections (Ter Telgte et al., 2018). Multivar-

iate methods that integrate information across brain regions may help

elucidate the widespread consequences of WMHs beyond conven-

tional neuroimaging biomarker research (Wee et al., 2013). SVD has

been viewed predominantly as affecting subcortical anatomy proximal

to focal lesions, including white matter as well as thalamic and basal

ganglia regions (Wardlaw et al., 2013). However, these regions may

represent only a fraction of SVD-related consequences across the

brain. Covariance analysis of neuroimaging data is one such multivari-

ate approach that can be used to infer network-like associations

between brain regions. This technique exploits the phenomenon of

inter-regional covariation between properties of select brain regions

across a population sample (Alexander-Bloch, Giedd, &

Bullmore, 2013; Melie-García et al., 2013). Typically, covariance analy-

sis involves the construction of group-level networks based upon the

pairwise correlation of regional measures of structure, such as gray

matter volume (GMV) or cortical thickness. These structural covari-

ance networks are thought to arise from various intrinsic factors, such

as coordinated morphological change throughout development or

synchronized maturation due to mutually trophic influences, as well as

extrinsic factors such as common effects of risk factors and other

pathology (Alexander-Bloch, Giedd, & Bullmore, 2013; Alexander-

Bloch, Raznahan, et al., 2013). Structural covariance networks only

partially resemble networks derived from white matter tractography

or functional connectivity and therefore seem to probe unique organi-

zational aspects of the brain (Gong et al., 2012; Kelly et al., 2012).

There is a need for multimodal structural and functional neuroim-

aging studies to elucidate the mechanisms by which SVD might lead

to clinical deficits, especially in earlier adult decades of life (Ter Telgte

et al., 2018). Cerebral blood flow (CBF) is an important and dynamic

measure of brain health and metabolism that is subject to regional and

global physiological fluctuations at varying timescales. At the group-

level, CBF covariance captures stable relationships of inter-regional

CBF across participants. Several biological factors are thought to

affect CBF covariance, including synchronized neuronal activity via

neurovascular coupling, structural connectivity, and shared vascular

supply (Luciw et al., 2021; Melie-García et al., 2013). Importantly,

structural covariance networks and covariance networks derived from

CBF (as well as other physiological neuroimaging contrasts, such as

glucose metabolism) exhibit significant yet modest correspondence,

suggesting that they provide complementary but distinct information

(Di et al., 2017; Luciw et al., 2021). Therefore, given that CBF covari-

ance can provide metabolic and vascular information, it is important

to consider this imaging contrast alongside structural covariance

(Luciw et al., 2021; Melie-García et al., 2013).

Graph theory is a mathematical framework that can be used to

characterize covariance networks and has played a crucial role in esta-

blishing the brain as an efficient and sparsely connected “small-world”
network (Alexander-Bloch, Giedd, & Bullmore, 2013). Considering the

brain as a set of nodes (i.e., brain regions) and edges (i.e., connections

between nodes, such as pairwise correlations), graph theory produces

a number of properties that describe the global and regional topolo-

gies of brain networks (Box 1; Rubinov & Sporns, 2010). In healthy

adults, both CBF and GMV covariance networks have been found to

exhibit small-world properties when compared to simulated networks

in which edges are drawn at random between nodes (Alexander-

Bloch, Raznahan, et al., 2013; Melie-García et al., 2013). Therefore,

network properties derived from graph theory may provide insight

into disease-related changes of such covariance networks (Alexander-

Bloch, Giedd, & Bullmore, 2013). Indeed, within the larger context of

SVD, the application of graph theory has pointed to anomalous struc-

tural (Frey et al., 2020; Lawrence et al., 2014; Reijmer et al., 2016;

Tuladhar et al., 2016, 2017), functional (Chen et al., 2019; Sang

et al., 2018; Schaefer et al., 2014), and structural covariance network

efficiency (Nestor et al., 2017; Tuladhar et al., 2015), albeit typically in

older populations. For instance, one study found that higher WMH

volume was linked to a higher clustering coefficient (a measure of
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network segregation) in structural covariance networks derived from

cortical thickness; the authors of this study posit that this may be due

to coordinated thinning of the cortex rather than increase in local con-

nectivity (Tuladhar et al., 2015). Moreover, by considering several

global and regional network properties, a fuller understanding of the

network can be surmised.

This study investigates CBF and GMV covariance networks in

midlife adults from the Coronary Artery Risk Development in Young

Adults (CARDIA) study. A subset of participants from the 25-year

CARDIA brain MRI study were stratified by WMH burden into two

groups. CBF and GMV covariance networks were generated for each

group and compared using graph theoretical properties of global and

regional network topology. We hypothesize that it will be possible to

identify differences in CBF and GMV covariance network topology

among midlife adults with higher WMH volume when compared

against a control group with lower WMH volume. SVD is thought to

lead to disruption of brain networks; this disruption may arise from

combined topological changes of the network at global and regional

scales. Therefore, this study was exploratory with respect to the direc-

tionality of effects on the considered graph theoretical properties.

2 | METHODS

2.1 | Participants

The CARDIA study is a longitudinal multi-site prospective study

aiming to investigate the evolution of cardiovascular disease over

adulthood. Participants were initially recruited in 1985 and between

18 and 30 years of age and provided written informed consent at

each exam. Institutional review boards from each CARDIA center and

the coordinating center (University of Minnesota Institutional Review

Board, Kaiser-Permanente Northern California Institutional Review

Board) approved this study annually. The present study uses brain

MRI data from the 25-year follow-up exam (at which point partici-

pants were between 43 and 55 years of age) collected at two of four

CARDIA centers in the United States (Minneapolis, MN and Oak-

land, CA).

Clinical measures obtained at the 25-year follow-up exam

included: body mass index (BMI, from height and weight); diastolic

and systolic blood pressure assessed using a digital blood pressure

monitor (OmROn HEM-907XL; Online Fitness, CA); smoking status;

diabetes diagnosis (American Diabetes Association, 2011); and blood

samples provided estimates of concentrations of high- and low-

density lipoprotein cholesterol and triglycerides.

2.2 | MRI acquisition

The MRI sequences for the current study were previously described

(Launer et al., 2015), and consisted of T1-weighted, T2-weighted fluid-

attenuated inversion recovery (FLAIR), and pseudo-continuous arterial

spin labeling (ASL) imaging acquired on Siemens 3 Tesla Tim Trio MRI

scanners. Isotropic T1-weighted images were acquired using a sagittal

magnetization-prepared rapid gradient-echo sequence (TR/TE/

TI = 1900/2.9/900 ms, spatial resolution = 1 mm3, FOV = 250 mm,

slices = 176, flip angle = 90�, GRAPPA = 2, bandwidth = 170 Hz/

pixel). Isotropic T2-weighted images were acquired using a sagittal

FLAIR sequence (TR/TE/TI = 6000/285/2200 ms, spatial

resolution = 1 mm3, FOV = 258 mm, slices = 160). CBF maps were

calculated from ASL imaging acquired using pseudo-continuous labeling

and a two-dimensional multi-slice gradient-echo planar imaging readout

(TR/TE = 4000/11 ms, spatial resolution = 3.4 � 3.4 � 5 mm3,

FOV = 220 mm, flip angle = 90, bandwidth = 3004 Hz/pixel, echo

spacing = 0.44 ms, EPI factor = 64, label duration = 1.48 s,

offset = 90 mm, radio-frequency pulse gap = 0.36 ms, pulse

duration = 0.5 ms, mean z-direction gradient = 0.6 mT/m, post-label

delay of 1500 ms [range of 1500 to 2170 ms from most inferior to

superior slices], no background suppression, 40 control-label pairs).

2.3 | MRI processing

MRI data were processed using SPM8 (www.fil.ion.ucl.ac.uk/spm/

software/spm8) and programs developed in MATLAB (MathWorks

Inc.) and has been described previously (Launer et al., 2015). Struc-

tural images were processed using a previously described multimodal

segmentation algorithm to classify tissue into gray matter (GM), white

matter (WM), and cerebrospinal fluid (CSF) (Goldszal et al., 1998;

Shen & Davatzikos, 2002). GM and WM were then assigned to

98 regions as defined by the Jakob atlas (Kabani et al., 1998). Of

these, we chose the 74 regions classified as GM (see Table S1).

WMHs were segmented from structural images using a previously

reported deep-learning classification model, built on the U-Net

BOX 1 Graph theoretical properties of global and

regional network topology investigated in this

study

Global network properties, such as the clustering coefficient

(average of the fraction of a node's neighbors that are

neighbors of each other across all nodes), characteristic path

length (average shortest path length in the network), and

global efficiency (average inverse shortest path length in the

network) reflect network-wide attributes. Regional network

properties, such as the degree (number of edges on a node),

betweenness centrality (measure of the number of shortest

paths that travel through a given node), and local efficiency

(measure of efficiency in a node's set of neighbors upon its

removal) describe the contribution of individual brain

regions that enable efficient communication throughout the

network.
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architecture and internal convolutional network Inception ResNet

layers (Nasrallah, Pajewski, et al., 2019). The model was trained using

a large and heterogeneous training set with human-validated WMH

segmentations.

ASL time series data were first motion corrected, followed by

regression of residual motion artifacts (Wang, 2012). A Gaussian

smoothing kernel with full-width-half-maximum of 5 mm was used to

spatially smooth images. A CBF time series was then obtained by

pairwise control-label subtraction. CBF image intensities were

converted to absolute units after averaging difference images and per-

forming voxel-wise calibration using the ASL control image as the esti-

mate of the equilibrium magnetization (Dolui et al., 2016). CBF maps

were then linearly registered to T1-weighted images and mean

regional CBF measures were obtained using the same 74 GM regions.

2.4 | Group stratification

Participants were selected from an available total sample of 421 for

which processed data was fully available. Participants were stratified

by WMH burden to create two groups for subsequent analyses

(Figure 1). A nominal WMH volume was measured in all but a small

number of participants; as such, we were not powered to stratify

groups on the presence of WMH volume alone. Instead, WMH vol-

umes were normalized by intracranial volume and log-transformed to

normalize the skewed distribution. Participants in the 7th to 10th dec-

iles of log-transformed WMH volume were denoted as the “Hi-

WMH” group (n = 127). For comparison, participants in the 1st to 3rd

deciles of log-transformed WMH volume were taken to be the “Lo-
WMH” group (n = 127). Although others have stratified groups based

on a median split of WMH volume (Mahinrad et al., 2020), our sample

was large enough to omit the 4th to 6th deciles and thereby ensure a

clear delineation between the two groups.

2.5 | Network analysis

Network analysis was performed in Python 3.7.6 (www.python.org/

downloads/release/python-376/) using the Brain Connectivity Tool-

box package (www.pypi.org/project/bctpy/) (Rubinov &

Sporns, 2010). CBF and GMV measures were first intensity normal-

ized (i.e., divided by global CBF or GMV) on a per participant basis.

Across all participants in both Lo- and Hi-WMH groups, normalized

CBF and GMV measures were then adjusted on a per region basis

using a linear regression model by removing the variance attributed to

the following variables: age, sex, race, BMI, and MRI site. Note that

we purposefully chose to exclude global CBF and GMV as covariates

to maintain consistency between CBF and GMV analyses. The

adjusted measures were then used to calculate Pearson's correlation

coefficients between all brain region pairs, resulting in 74 � 74 covari-

ance matrices. This procedure was performed for both Lo- and Hi-

WMH groups, resulting in a total of four covariance matrices (i.e., two

matrices � two groups). Diagonal matrix elements, representing self-

connections, were excluded.

TABLE 1 Demographic and clinical
characteristics

Lo-WMH (n = 127) Hi-WMH (n = 127) Test statistic p

Age (years) 50 ± 3.5 51 ± 3.7 U = 6708.5 .01*

Female (%) 51 (40.0) 80 (63.0) χ2 = 12.36 <.001*

Caucasian, n (%) 70 (55.1) 82 (64.6) χ2 = 1.98 .16

Smoking (%) 67 (52.8) 68 (53.5) χ2 = 0.00 -

Diabetes (%) 3 (2.4) 1 (0.1) χ2 = 0.25 .61

MRI site (1/2) 63/64 68/59 χ2 = 0.25 .62

BMI (kg/m2) 29.1 ± 5.0 28.2 ± 5.3 U = 7052.5 .04*

DBP (mmHg) 74.1 ± 10.5 73.4 ± 11.1 U = 7768.0 .31

SBP (mmHg) 118.3 ± 12.7 117.8 ± 15.8 U = 7633.5 .23

HDL (mg/dl) 56.4 ± 17.0 60.7 ± 16.3 U = 6649.5 .008*

LDL (mg/dl) 116.7 ± 36.1 117.6 ± 30.2 U = 7579.0 .20

Triglycerides (mg/dl) 110.2 ± 60.9 102.7 ± 58.9 U = 7472.0 .16

Global CBF (ml/100 g/min) 56.1 ± 12.3 56.6 ± 11.2 U = 7818.0 .34

Global GMV (ml) 516.3 ± 55.3 521.5 ± 45.2 U = 7610.5 .44

ICV (ml) 1203.5 ± 138.4 1215.9 ± 114.2 U = 7671.0 .25

WMH (ml) 0.52 ± 0.22 2.87 ± 1.83 U = 0.0 <.001*

Note: Data are presented as mean ± standard deviation, or count (%). p-Values were calculated Mann–
Whitney U tests for continuous variables and chi-squared tests for categorial variables.*p < .05.

Abbreviations: BMI, body mass index; CBF, cerebral blood flow; DBP, diastolic blood pressure; GMV,

gray matter volume; HDL, high-density lipoprotein; ICV, intracranial volume; LDL, low-density

lipoprotein; MRI, magnetic resonance imaging; SBP, systolic blood pressure; WMH, white matter

hyperintensity.
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We deployed a community detection analysis on the covariance

matrices to partition the 74 brain regions into modules (i.e., clusters)

with high internal covariance. Briefly, covariance matrices underwent

100 iterations of the Louvain community detection algorithm at

selected resolution parameter values of 1.25 for CBF covariance

matrices and 0.75 for GMV covariance matrices (see Supporting

Information S1; Blondel et al., 2008). Across all iterations, we calcu-

lated the probability that a brain region pair was consistently assigned

to the same module, yielding a 74 � 74 agreement matrix, which was

then thresholded at 0.5 (Cohen & D'Esposito, 2016). Finally, we per-

formed consensus clustering on the agreement matrix using the Lou-

vain algorithm with 100 iterations, yielding a single consensus

modular partition (Lancichinetti & Fortunato, 2012). Unlike conven-

tional clustering approaches, this analytic framework defines the num-

ber of modules from the data. To quantify the similarity of partitions

between Lo- and Hi-WMH groups, we calculated the Hamming dis-

tance between their modular partitions.

To characterize network topology, covariance matrices were

thresholded and binarized across a range of network densities (0.16

to 0.50, increments of 0.01). The density of a matrix is defined as

the number of non-zero edges divided by the total possible number

of edges (i.e., [74 � 73]/2). The minimum network density was cho-

sen such that all brain regions had at least one non-zero edge

(i.e., connected to at least one other region within the network). At

each of these network densities, we calculated global (clustering

coefficient, characteristic path length, and global efficiency) and

regional (degree, betweenness centrality, and local efficiency) graph

theoretical properties to characterize network topology (Box 1).

Across the range of network densities, global and regional network

properties were summarized by the area-under-the-curve

(Figure 1).

Finally, we computed the small-world coefficient across the range

of network densities, defined as the ratio between normalized cluster-

ing coefficient and normalized characteristic path length

(i.e., normalized by 100 random networks that preserve the number of

nodes and edges as well as the degree of individual nodes). Networks

with a small-world coefficient greater than 1 are thought to maximize

efficiency of information transfer while minimizing “wiring costs,” thus
providing a balance between functional segregation and integration

(Watts & Strogatz, 1998).

2.6 | Statistical analysis

Demographic and clinical characteristics were compared between

groups using Mann–Whitney U tests for continuous variables and chi-

squared tests for categorical variables.

To compare network properties between Lo- and Hi-WMH

groups, we used a nonparametric permutation approach with 10,000

permutations. With each permutation, participants were shuffled into

two randomized groups of equal size (n = 127, each). CBF and GMV

covariance matrices were re-constructed, modular partitions were re-

F IGURE 1 Illustration of analytic workflow. (a) Participants were stratified by white matter hyperintensities (WMH) volume into two groups.
(b) Group covariance matrices were constructed from cerebral blood flow (CBF) and gray matter volume (GMV) data by Pearson's correlation
coefficient between all brain region pairs, adjusted for age, sex, body mass index, race, and magnetic resonance imaging site. (c) Consensus
clustering was performed to detect modules from CBF and GMV covariance matrices. (d) Network properties were calculated from CBF and GMV

covariance matrices across a range of network densities and area-under-the-curve was integrated to summarize network properties. (e) CBF and
GMV covariance networks were compared between Lo- and Hi-WMH groups at global (clustering coefficient, characteristic path length, global
efficiency) and regional (degree, betweenness centrality, local efficiency) levels using a nonparametric procedure
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generated, network properties were re-calculated across the range of

network densities, and area-under-the-curve was re-integrated. Dif-

ferences in network modular partitions and network properties

between the two randomized groups were used to create null distri-

butions. The observed differences between Lo- and Hi-WMH groups

was then compared against the corresponding null distributions,

resulting in nonparametric p-values derived as the relative position of

the observed difference compared to the null distribution. A signifi-

cance level of 0.05 was chosen for comparison of modular partitions

and global network properties.

Regional network properties were normalized by dividing by the

mean of the corresponding regional network property across all

regions before group comparisons (Bernhardt et al., 2011; Griffiths

et al., 2016; Singh et al., 2013). Given the multiple analyses performed

at the regional level, we corrected for multiple comparisons using a

false-positive correction, p < 1/(3 � N), where N corresponds to the

74 GM regions. This procedure is equivalent to expecting less than

one false positive across all tests per imaging contrast tested. We note

that this procedure does not strongly control for type I error (Lynall

et al., 2010). To provide further insight into this correction, we also

calculated the proportion of permutations that yielded at least the

same number of observed regional findings.

We next performed two sensitivity analyses. First, to more

robustly remove global CBF and GMV effects from covariance matri-

ces, we replaced our intensity-normalization step with the addition of

global CBF or GMV as a covariate (alongside age, sex, BMI, race, and

MRI site) prior to network construction. The second sensitivity analy-

sis addressed the reliability of smaller regions in the atlas. To this end,

we omitted 14 subcortical regions (bilateral amygdala, caudate, hippo-

campus, nucleus accumbens, putamen, thalamus, and uncus), thereby

restricting our scope to the 60 cortical regions.

To assess the effect size of the observed differences between Lo-

and Hi-WMH groups, we generated within-group distributions of all

global and regional network properties with 10,000 bootstraps. Distri-

butions of global and regional network properties were then used to

calculate the standardized mean difference.

Post-hoc analyses investigated regional measures of CBF and

GMV between Lo- and Hi-WMH groups in regions with significant

findings. Independent samples t-tests were used at a significance level

of 0.05. We also performed a direct element-by-element comparison

of CBF and GMV covariance matrices between Lo- and Hi-WMH

groups (see Supporting Information S1).

3 | RESULTS

3.1 | Demographic & clinical characteristics

The Lo- and Hi-WMH groups were matched for most demographic

and clinical characteristics, presented in Table 1. Together, the mean

age of the Lo- and Hi-WMH groups was 50 ± 3.6 years and 52% were

female. Global CBF (Lo-WMH, 56.1 ± 12.3 ml/100 g/min; Hi-WMH,

56.6 ± 11.2 ml/100 g/min; U = 7818.0, p = .34) and GMV (Lo-WMH,

516.3 ± 55.3 ml; Hi-WMH, 521.5 ± 45.2 ml; U = 7610.5, p = .44) did

not differ between groups (Figure S1). There were, however, signifi-

cant between-group differences in age (Lo-WMH, 50 ± 3.5 years of

age; Hi-WMH, 51 ± 3.7 years of age; U = 6708.5, p = .01), sex (Lo-

WMH, 40.0% female; Hi-WMH, 63.0% female; χ2 = 12.36, p < .001),

BMI (Lo-WMH, 29.1 ± 5.0 kg/m2; Hi-WMH, 28.3 ± 5.3 kg/m2;

U = 7052.5, p = .04), and high-density lipoprotein cholesterol (Lo-

WMH, 56.4 ± 17.0 mg/dl; Hi-WMH, 60.7 ± 16.3 mg/dl; U = 6649.5,

p = .008). As expected, WMH volume was significantly different

between groups (Lo-WMH, 0.52 ± 0.22 ml; Hi-WMH, 2.87 ± 1.83 ml;

U = 0.0, p < .001).

3.2 | Network modules

Consensus clustering derived three modules from CBF covariance

networks that were not significantly different between Lo- and Hi-

WMH groups (82.8% similar, p = .559) (Figure 2; Table S2). In the Lo-

WMH group, Module 1 was the largest and encompassed inferior

frontal, temporal, limbic, and subcortical brain regions. Module 2 was

comprised of superior and medial frontal, parietal, and occipital brain

regions. Module 3 included temporal, occipital, and limbic brain

regions as well as the thalami. The Hi-WMH group modules were sim-

ilar with exception of some discrepancies with the Lo-WMH group

that were observed in occipital and temporal regions within Module 3.

From GMV covariance networks, we observed four and five mod-

ules from Lo- and Hi-WMH groups, that were not significantly differ-

ent from each other (75.1% similar, p = .395). In the Lo-WMH group,

Module 1 consisted of inferior frontal, limbic, parietal, and subcortical

brain regions including the thalami. Module 2 consisted of occipital,

temporal, and parietal brain regions. Module 3 included limbic,

occipital, and temporal brain regions. Module 4 comprised temporal,

superior and medial frontal, occipital, and parietal brain regions. In the

Hi-WMH group, Module 1 retained subcortical, limbic, and parietal

brain regions. Module 3 gained additional frontal and parietal brain

regions. Finally, Module 5 consisted of limbic, inferior frontal, parietal,

and temporal brain regions.

3.3 | Small-world properties

Across the range of network densities, both CBF and GMV covariance

networks in both Lo- and Hi-WMH groups exhibited small-world

properties, as quantified by a small-world coefficient greater than

1 (Figure 3). In other words, the ratio between the normalized cluster-

ing coefficient and the normalized characteristic path length was

greater than 1 at all network densities.

3.4 | Global network properties

We found no significant between-group differences in clustering

coefficient, characteristic path length, or global efficiency between

CBF covariance networks (clustering coefficient, standardized mean

difference = 0.04, p = .97; characteristic path length, standardized
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mean difference = 0.04, p = .92; global efficiency, standardized mean

difference = 0.30, p = .91).

Similarly, there were no between-group differences between

GMV covariance networks (clustering coefficient, standardized mean

difference = 0.11, p = .07; characteristic path length, standardized

mean difference= 0.17, p= .30; standardized mean difference= 0.17,

global efficiency, p = .29) (Figure 4).

In our two sensitivity analyses (i.e., [1] regression of global

CBF/GMV and [2] omission of subcortical regions), we similarly found

no between-group differences in global network properties of CBF or

GMV covariance networks (see Supporting Information S1).

3.5 | Regional network properties

Table 2 and Figure 5 present brain regions from CBF and GMV covari-

ance networks with significant between-group differences in degree,

betweenness centrality, and local efficiency. Within CBF covariance

networks, the Hi-WMH group had lower degree in the right putamen

(standardized mean difference = 3.08, p = .003) relative to the Lo-

WMH group. In contrast, the Hi-WMH group had higher degree (stan-

dardized mean difference = 3.85, p = .002) and betweenness central-

ity (standardized mean difference = 2.73, p = .002) in the left nucleus

accumbens. We observed no between-group differences in local effi-

ciency within CBF covariance networks.

Within GMV covariance networks, the Hi-WMH group had lower

degree (standardized mean difference = 1.83, p = .003) and between-

ness centrality (standardized mean difference = 1.60, p = .004) in the

left lingual gyrus and lower local efficiency (standardized mean differ-

ence = 0.76, p = .003) in the left superior occipital gyrus. In contrast,

the Hi-WMH group had higher local efficiency (standardized mean dif-

ference = 1.69, p = .003) in the right superior parietal lobule.

Of the 10,000 permutations performed, we found that 297 of

them resulted in at least seven regional findings at a significance level

of p < 1/(3 � N). Post-hoc analyses investigating regional measures of

CBF and GMV in the above regions of interest revealed no significant

TABLE 2 Brain regions with
significant group differences in regional
network properties

Contrast Region Network property Direction p

CBF R Putamen Degree Lo-WMH > Hi-WMH .003

L Nucleus Accumbens Degree Hi-WMH > Lo-WMH .002

L Nucleus Accumbens Betweenness centrality Hi-WMH > Lo-WMH .002

GMV L Lingual Gyrus Degree Lo-WMH > Hi-WMH .003

L Lingual Gyrus Betweenness centrality Lo-WMH > Hi-WMH .004

L Superior Occipital Gyrus Local efficiency Lo-WMH > Hi-WMH .003

R Superior Parietal Lobule Local efficiency Hi-WMH > Lo-WMH .003

Note: The threshold for statistical significance was set at p < .0045, in order to correct for multiple

comparisons.

Abbreviations: CBF, cerebral blood flow; GMV, gray matter volume; L, left; R, right; WMH, white matter

hyperintensity.

F IGURE 2 A depiction of the
cerebral blood flow (CBF) and
gray matter volume (GMV)
covariance network modules are
shown, as derived from
consensus clustering. Parameter
resolution values of 1.25 and 0.75
were chosen to generate modules
from CBF and GMV covariance

matrices using the Louvain
community detection algorithm.
Consensus clustering derived
three modules from CBF
covariance networks that were
similar between Lo- and Hi-WMH
groups. From GMV covariance
networks, we observed four and
five modules from Lo- and Hi-
WMH groups respectively.
WMH, white matter
hyperintensities
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between-group differences (Table 3). Finally, a direct element-by-

element comparison of CBF and GMV covariance matrices revealed no

significant between-group differences (see Supporting Information S1).

The findings from our two sensitivity analyses (i.e., [1] regression

of global CBF/GMV and [2] omission of subcortical regions) were con-

sistent with these results (see Supporting Information S1).

F IGURE 3 Small-world properties of cerebral blood flow (left) and gray matter volume (right) covariance matrices as a function of network
density for Lo- (blue) and Hi-WMH (orange) groups. The small-world coefficient is defined as the ratio between normalized clustering coefficient
(solid lines) and normalized characteristic path length (dashed lines). Both Lo- and Hi-WMH groups exhibited small-world topologies (i.e., the ratio
between normalized clustering coefficient and normalized characteristic path length is greater than 1). Networks were normalized by 100 random
networks that preserved the number of nodes and edges as well as the degree of individual nodes. Note that the y-axis is normalized and unitless.
WMH, white matter hyperintensities

F IGURE 4 Differences in global network properties in cerebral blood flow (CBF) (top row) and gray matter volume (GMV) (bottom row)
covariance networks. Vertical dashed lines indicate observed differences between Lo- and Hi-WMH groups (Hi-WMH � Lo-WMH). Histograms
illustrate null distributions and red dotted lines indicate 95% confidence intervals as derived from the nonparametric permutation procedure.
There were no significant between-group differences in any of the global network properties for either CBF or GMV covariance networks at
p < .05. WMH, white matter hyperintensities
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4 | DISCUSSION

In this study, we used graph theory to compare CBF and GMV covari-

ance networks among midlife adults with lower and higher levels of

WMH volume. First, we performed a community detection analysis

on CBF and GMV covariance networks, resulting in modules of brain

regions that were largely consistent between groups. Next, we found

that both CBF and GMV covariance networks exhibited small-world

topologies across a range of network densities. Finally, we compared

CBF and GMV covariance network topologies between groups and

found that higher WMH volume was not accompanied by alterations

to global network properties. In contrast, higher WMH volume was

related to altered degree, betweenness centrality, and local efficiency

in several brain regions within both CBF and GMV covariance net-

works. Altogether, these findings provide a picture of physiological

and structural patterns across the brain and point to WMH-related

network changes in midlife adults.

We first performed community detection analyses to detect mod-

ules of brain regions that tend to covary with each other in CBF and

GMV covariance networks. CBF covariance matrices were partitioned

into three modules that were consistent between Lo- and Hi-WMH

groups. Using ASL, Luciw et al. found that communities derived from

CBF covariance patterns in adolescents are spatially similar to the

brain's vascular territories (Luciw et al., 2021). Using single-photon

emission computed tomography (SPECT), Melie-García et al. observed

that the strongest CBF covariance patterns occurred between bilat-

eral brain regions in healthy adults (Melie-García et al., 2013). The pre-

sent study's findings are similar in both respects, with CBF covariance

modules encompassing bilateral brain regions and partially demarcat-

ing the brain's vascular territories. Meanwhile, GMV covariance

matrices were partitioned into four and five modules from Lo- and Hi-

WMH groups, respectively. While modules were not significantly

different between groups, there were subtle differences between par-

titions. For instance, Module 1 (frontal and subcortical) in the Lo-

WMH group was divided into Modules 1 (subcortical) and 5 (frontal)

in the Hi-WMH group. These changes to modular organization could

therefore be reflective of early alterations to normal covariance pat-

terns as a consequence of higher WMH volume in midlife.

F IGURE 5 Brain regions that exhibited significant between-group differences in regional network properties are shown as blue or orange
spheres. Blue corresponds to Lo-WMH > Hi-WMH, while orange corresponds to Hi-WMH > Lo-WMH. Sphere size corresponds to the
magnitude of the group difference. The threshold for statistical significance was set at p < .0045, in order to correct for multiple comparisons.
WMH, white matter hyperintensities

TABLE 3 Post-hoc analyses investigating absolute measures of CBF and GMV in regions-of-interest

Contrast Region Lo-WMH Hi-WMH Test statistic p

CBF (ml/100 g/min) R Putamen 48.04 ± 10.27 47.42 ± 10.34 t = 0.48 .63

L Nucleus Accumbens 51.08 ± 13.31 50.82 ± 14.21 t = 0.15 .88

GMV (ml) L Lingual Gyrus 4.05 ± 0.94 4.18 ± 0.88 t = 1.15 .25

L Superior Occipital Gyrus 4.94 ± 1.07 4.91 ± 1.03 t = 0.25 .81

R Superior Parietal Lobule 15.09 ± 2.30 14.94 ± 2.21 t = 0.53 .60

Note: Independent samples t-tests were used to compare regional measures of CBF and GMV between Lo- and Hi-WMH groups. No significant

differences were observed at a threshold of p < .05.

Abbreviations: CBF, cerebral blood flow; GMV, gray matter volume; L, left; R, right; WMH, white matter hyperintensity.
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Next, we found that both CBF and GMV covariance networks

exhibited small-world topologies, indicating a balance between func-

tional segregation and functional integration (Watts &

Strogatz, 1998). Small-world networks are thought to be effectively

configured so as to combine clusters of specialized nodes with strate-

gically positioned intermediary edges that minimize overall path

lengths, thus improving communication efficiency. These nonrandom

properties have been recapitulated across a wide range of neuroimag-

ing techniques, providing evidence that the brain exhibits a complex

yet efficient topology to augment information processing (Bullmore &

Sporns, 2009). The current study's findings support this hypothesis by

demonstrating that networks derived from CBF and GMV covariance

analysis similarly obey this organizational structure.

In comparing Lo- and Hi-WMH groups, we observed no global

between-group differences in the clustering coefficient, characteristic

path length, or global efficiency of either CBF or GMV covariance net-

works. These findings imply that in this sample of midlife adults, the

functional integration and segregation of CBF and GMV covariance

networks were not affected by higher WMH volume. It is worth not-

ing that in the CARDIA study, WMH volume may be sufficiently high

to alter physiological and structural aspects of brain health, but is still

low compared to other prospective studies of SVD (Nasrallah, Hsieh,

et al., 2019). For instance, other studies reporting on older individuals

with comparatively higher WMH volume have found more wide-

spread disruption of structural covariance networks to be associated

with higher WMH volume (Nestor et al., 2017). Another factor may

be the presence of compensatory mechanisms that resist global net-

work changes brought upon by higher WMH volume. For instance,

others have posited that regions of increased CBF may counteract

WMH-related deficiencies elsewhere, which may therefore suppress

CBF covariance changes (Stewart et al., 2021). Altogether, while no

global between-group differences were observed in this cross-

sectional study, it may be an accumulation of SVD lesions beginning

in midlife that leads to progressively worsening network deficits

(Tuladhar et al., 2015).

While the absence of between-group differences in global net-

work properties is at least partially attributable to the relatively low

WMH volume seen in this sample of midlife adults, it may also be a

consequence of the choice of imaging modalities and subsequent net-

work analyses performed in this study. Indeed, studies of SVD

through the lens of more traditional network imaging modalities, such

as DTI or fMRI, have observed diverging results. For instance, Law-

rence et al. found that in an older sample of individuals with severe

SVD (mean age = 65.9 ± 11.7 years, mean WMH volume = 33

± 34 ml), DTI-based analyses of structural connectivity demonstrated

widespread topological deficits, while fMRI-based analyses in the

same sample resulted in no such changes (Lawrence et al., 2018).

Meanwhile, Frey et al. observed DTI-based global network distur-

bances even in adults with mild SVD (median age = 64 years, median

WMH volume = 0.6 ml) (Frey et al., 2020). It is important, therefore,

to highlight methodological effects on results arising from such net-

work analytic studies; although no global between-group differences

were observed here through CBF and GMV covariance, it may be that

DTI- or fMRI-based analyses observe divergent findings. Future work

is needed to study CBF and GMV covariance in relation to DTI or

fMRI, with an emphasis on SVD.

In contrast, we report significant regional between-group differ-

ences in the degree, betweenness centrality, and local efficiency of

several distributed brain regions within both CBF and GMV covari-

ance networks. Namely, we observed CBF covariance alterations in

brain regions of the basal ganglia (putamen, nucleus accumbens) while

GMV covariance revealed alterations in brain regions of the visual (lin-

gual gyri, superior occipital gyrus) and dorsal attention (superior parie-

tal lobule) networks. The chosen regional network properties are

reflective of the importance and influence of individual nodes within a

network; in the context of CBF and GMV covariance, these network

properties describe the nature of and extent to which individual brain

regions connect (i.e., covary) with others as well as the impact of these

connections on the overall network. The regional and widespread

nature of these network alterations, therefore, could reflect subtle

WMH-related physiological and structural changes beginning in early

stages of disease, and may precede larger network-wide breakdown

as reported in more severe stages of SVD (Frey et al., 2020; Lawrence

et al., 2014; Petersen et al., 2020; Reginold et al., 2019; Tuladhar

et al., 2016; Xu et al., 2018). Similarly, deficits in regional brain physi-

ology and structure are known to be associated with SVD severity as

indexed by increasing WMH volume (Crane et al., 2015; Habes

et al., 2016; C. M. Kim et al., 2020; Tuladhar et al., 2015; Tullberg

et al., 2004). Multivariate covariance may therefore supplement such

univariate analyses in detecting earlier or distinct disease-related

alterations and in pursuing novel biomarker or hypothesis-generating

findings (Wee et al., 2013). Notably, our post-hoc analyses examining

absolute measures of CBF and GMV in brain regions with significant

topological differences revealed no significant between-group

differences.

This study has several limitations. First, by virtue of our study

design, we sought to establish group-level covariance networks, which

limits our ability to comment on individual participants. While individ-

ualized covariance networks are feasible, it has been shown that indi-

vidual variability in regional measures may impact subsequent graph

theory analyses (H. J. Kim et al., 2016). Second, our group stratifica-

tion procedure resulted in a decreased sample size. While our analyses

retained only a proportion of the original cohort, this procedure

resulted in two groups clearly delineated by WMH burden. Third, our

false-positive correction does not strongly correct for Type I error.

Given the number of regional comparisons made, we chose to avoid

an overly conservative correction at the risk of an increased number

of false positives. Therefore, although this study benefitted from a

large sample size and a permutation-based analysis, caution is

warranted in interpreting the regional findings. Fourth, the choice of

parcellation scheme has been shown to affect brain network esti-

mates (Messé, 2020). It is, however, important to note that this choice

has been evaluated mainly in the context of more traditional forms of

brain network analysis (i.e., functional connectivity via fMRI, structural

connectivity via DTI), and not covariance analysis (Arslan et al., 2018;

Zalesky et al., 2010). Indeed, other covariance studies that do report
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on several atlases show little to no effect on downstream results

(Alexander-Bloch, Raznahan, et al., 2013; Liu et al., 2016; Luciw

et al., 2021). Validation studies using external cohort data and alterna-

tive parcellation schemes would be desirable to corroborate the find-

ings of the current study. Fifth, the ASL data was acquired at a low

spatial resolution and may therefore be susceptible to partial volume

effects, particularly in smaller brain regions. While correction for such

effects is desirable, such procedures often rely on many subsidiary

steps in the processing pipeline (i.e., registration, segmentation, data

smoothing, accuracy of WMH segmentation) that are difficult to accu-

rately implement. Finally, the current study was agnostic to WMH

location, instead choosing to study generalizable WMH-related

effects on covariance networks. Furthermore, while our focus was

limited to WMHs, it is important to note that other markers of SVD

(e.g., lacunar infarcts, enlarged perivascular spaces) were not

accounted for in thus study. Therefore, future work is needed to con-

sider the effects of other markers of SVD on covariance networks and

how lesion location may mediate this relationship.

In conclusion, we used CBF and GMV covariance analysis to

detect WMH-related network changes in midlife adults. We observed

modular organization in both CBF and GMV covariance networks that

was consistent between Lo- and Hi-WMH groups. We furthermore

found that both CBF and GMV covariance networks exhibited small-

world properties in both Lo- and Hi-WMH groups, implying an effec-

tive balance between functional integration and segregation. We

observed no significant between-group differences when considering

global network properties, suggesting no detectable expression of

widespread WMH-related disruptions to functional integration and

segregation in this sample of midlife adults. We did, however, detect

alterations to regional network properties of CBF and GMV covari-

ance networks in the Hi-WMH group, which may imply the start of a

separation that progresses with age and SVD severity. These findings

identify potential WMH-related network alterations in midlife and

provide possible avenues for further research of structural and func-

tional brain changes in SVD.

ACKNOWLEDGMENTS

The CARDIA study is conducted and supported by the National Heart,

Lung, and Blood Institute (NHLBI) in collaboration with the University

of Alabama at Birmingham (HHSN268201800005I & HHSN268

201800007I), Northwestern University (HHSN268201800003I), Uni-

versity of Minnesota (HHSN268201800006I), and Kaiser Foundation

Research Institute (HHSN268201800004I). CARDIA was also partially

supported by the Intramural Research Program of the National Insti-

tute on Aging (NIA) and an intra-agency agreement between NIA and

NHLBI (AG0005). This manuscript has been reviewed by CARDIA for

scientific content. William S. H. Kim received funding from a CIHR

CGS-M award. Bradley J. MacIntosh received funding from a

NARSAD Independent Investigator Grant from the Brain and Behav-

iour Research Foundation and a CIHR Project Grant (165981). Bradley

J. MacIntosh also acknowledges the Dr. Sandra Black Centre for Brain

Resilience & Recovery.

CONFLICT OF INTEREST

The authors declare no competing interests.

DATA AVAILABILITY STATEMENT

Data in this study are from a subset of men and women who partici-

pated in the community-based Coronary Artery Risk Development in

Young Adults (CARDIA) brain MRI substudy, examined at the 25-year

follow-up exam. Data access is available through the CARDIA Coordi-

nating Center following approval by the CARDIA Publications and

Presentations Committee.

ORCID

William S. H. Kim https://orcid.org/0000-0003-1257-1348

Nicholas J. Luciw https://orcid.org/0000-0003-4043-990X

Sarah Atwi https://orcid.org/0000-0003-2312-2281

Zahra Shirzadi https://orcid.org/0000-0001-6854-9356

Sudipto Dolui https://orcid.org/0000-0002-9035-3795

John A. Detre https://orcid.org/0000-0002-8115-6343

Ilya M. Nasrallah https://orcid.org/0000-0003-2346-7562

Walter Swardfager https://orcid.org/0000-0002-0030-8908

Robert Nick Bryan https://orcid.org/0000-0002-2327-4579

Lenore J. Launer https://orcid.org/0000-0002-3238-7612

Bradley J. MacIntosh https://orcid.org/0000-0001-7300-2355

REFERENCES

Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013). Imaging structural

co-variance between human brain regions. Nature Reviews Neurosci-

ence, 14, 322–336. https://doi.org/10.1038/nrn3465
Alexander-Bloch, A., Raznahan, A., Bullmore, E., & Giedd, J. (2013). The

convergence of maturational change and structural covariance in

human cortical networks. Journal of Neuroscience, 33, 2889–2899.
https://doi.org/10.1523/JNEUROSCI.3554-12.2013

American Diabetes Association. (2011). Diagnosis and classification of dia-

betes mellitus. Diabetes Care, 34, S62–S69. https://doi.org/10.2337/
dc11-S062

Appelman, A. P. A., Exalto, L. G., Van Der Graaf, Y., Biessels, G. J.,

Mali, W. P. T. M., & Geerlings, M. I. (2009). White matter lesions and

brain atrophy: More than shared risk factors? A systematic review.

Cerebrovascular Diseases, 28, 227–242. https://doi.org/10.1159/

000226774

Arslan, S., Ktena, S. I., Makropoulos, A., Robinson, E. C., Rueckert, D., &

Parisot, S. (2018). Human brain mapping: A systematic comparison of

parcellation methods for the human cerebral cortex. In NeuroImage

(Vol. 170, pp. 5–30). Neuroimage. https://doi.org/10.1016/j.

neuroimage.2017.04.014

Baezner, H., Blahak, C., Poggesi, A., Pantoni, L., Inzitari, D., Chabriat, H.,

Erkinjuntti, T., Fazekas, F., Ferro, J. M., Langhorne, P., O'Brien, J.,

Scheltens, P., Visser, M. C., Wahlund, L. O., Waldemar, G., Wallin, A., &

Hennerici, M. G. (2008). Association of gait and balance disorders with

age-related white matter changes: The LADIS study. Neurology, 70,

935–942. https://doi.org/10.1212/01.wnl.0000305959.46197.e6

Bernhardt, B. C., Chen, Z., He, Y., Evans, A. C., & Bernasconi, N. (2011).

Graph-theoretical analysis reveals disrupted small-world organization

of cortical thickness correlation networks in temporal lobe epilepsy.

Cerebral Cortex, 21(9), 2147–2157. https://doi.org/10.1093/cercor/

bhq291

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast

unfolding of communities in large networks. Journal of Statistical

3690 KIM ET AL.

https://orcid.org/0000-0003-1257-1348
https://orcid.org/0000-0003-1257-1348
https://orcid.org/0000-0003-4043-990X
https://orcid.org/0000-0003-4043-990X
https://orcid.org/0000-0003-2312-2281
https://orcid.org/0000-0003-2312-2281
https://orcid.org/0000-0001-6854-9356
https://orcid.org/0000-0001-6854-9356
https://orcid.org/0000-0002-9035-3795
https://orcid.org/0000-0002-9035-3795
https://orcid.org/0000-0002-8115-6343
https://orcid.org/0000-0002-8115-6343
https://orcid.org/0000-0003-2346-7562
https://orcid.org/0000-0003-2346-7562
https://orcid.org/0000-0002-0030-8908
https://orcid.org/0000-0002-0030-8908
https://orcid.org/0000-0002-2327-4579
https://orcid.org/0000-0002-2327-4579
https://orcid.org/0000-0002-3238-7612
https://orcid.org/0000-0002-3238-7612
https://orcid.org/0000-0001-7300-2355
https://orcid.org/0000-0001-7300-2355
https://doi.org/10.1038/nrn3465
https://doi.org/10.1523/JNEUROSCI.3554-12.2013
https://doi.org/10.2337/dc11-S062
https://doi.org/10.2337/dc11-S062
https://doi.org/10.1159/000226774
https://doi.org/10.1159/000226774
https://doi.org/10.1016/j.neuroimage.2017.04.014
https://doi.org/10.1016/j.neuroimage.2017.04.014
https://doi.org/10.1212/01.wnl.0000305959.46197.e6
https://doi.org/10.1093/cercor/bhq291
https://doi.org/10.1093/cercor/bhq291


Mechanics: Theory and Experiment, 2008(10), 10008. https://doi.org/

10.1088/1742-5468/2008/10/P10008

Bryan, R. N., Cai, J., Burke, G., Hutchinson, R. G., Liao, D., Toole, J. F.,

Dagher, A. P., & Cooper, L. (1999). Prevalence and anatomic character-

istics of infarct-like lesions on MR images of middle-aged adults: The

atherosclerosis risk in communities study. American Journal of Neurora-

diology, 20, 1273–1280.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoret-

ical analysis of structural and functional systems. Nature Reviews Neu-

roscience, 10, 186–198. https://doi.org/10.1038/nrn2575
Cannistraro, R. J., Badi, M., Eidelman, B. H., Dickson, D. W.,

Middlebrooks, E. H., & Meschia, J. F. (2019). CNS small vessel disease:

A clinical review. Neurology, 92, 1146–1156. https://doi.org/10.1212/
WNL.0000000000007654

Chen, H., Huang, L., Yang, D., Ye, Q., Guo, M., Qin, R., Luo, C., Li, M., Ye, L.,

Zhang, B., & Xu, Y. (2019). Nodal global efficiency in front-parietal lobe

mediated periventricular white matter hyperintensity (PWMH)-related

cognitive impairment. Frontiers in Aging Neuroscience, 11, 347. https://

doi.org/10.3389/fnagi.2019.00347

Cohen, J. R., & D'Esposito, M. (2016). The segregation and integration of

distinct brain networks and their relationship to cognition. Journal of

Neuroscience, 36(48), 12083–12094. https://doi.org/10.1523/

JNEUROSCI.2965-15.2016

Crane, D. E., Black, S. E., Ganda, A., Mikulis, D. J., Nestor, S. M.,

Donahue, M. J., & MacIntosh, B. J. (2015). Grey matter blood flow and

volume are reduced in association with white matter hyperintensity

lesion burden: A cross-sectional MRI study. Frontiers in Aging Neurosci-

ence, 7, 131. https://doi.org/10.3389/fnagi.2015.00131

d'Arbeloff, T., Elliott, M. L., Knodt, A. R., Melzer, T. R., Keenan, R., Ireland, D.,

Ramrakha, S., Poulton, R., Anderson, T., Caspi, A., Moffitt, T. E., &

Hariri, A. R. (2019). White matter hyperintensities are common in mid-

life and already associated with cognitive decline. Brain Communications,

1, fcz041. https://doi.org/10.1093/braincomms/fcz041

De Groot, J. C., De Leeuw, F. E., Oudkerk, M., Hofman, A., Jolles, J., &

Breteler, M. M. B. (2001). Cerebral white matter lesions and subjective

cognitive dysfunction: The Rotterdam scan study. Neurology, 56,

1539–1545. https://doi.org/10.1212/WNL.56.11.1539

De Laat, K. F., Tuladhar, A. M., Van Norden, A. G. W., Norris, D. G.,

Zwiers, M. P., & De Leeuw, F. E. (2011). Loss of white matter integrity

is associated with gait disorders in cerebral small vessel disease. Brain,

134, 73–83. https://doi.org/10.1093/brain/awq343

De Leeuw, F. E., De Groot, J. C., Oudkerk, M., Witteman, J. C. M.,

Hofman, A., Van Gijn, J., & Breteler, M. M. B. (1999). A follow-up study

of blood pressure and cerebral white matter lesions. Annals of Neurol-

ogy, 46(6), 827.

Di, X., Gohel, S., Thielcke, A., Wehrl, H. F., & Biswal, B. B. (2017). Do all

roads lead to Rome? A comparison of brain networks derived from

inter-subject volumetric and metabolic covariance and moment-to-

moment hemodynamic correlations in old individuals. Brain Structure

and Function, 222(8), 3833–3845. https://doi.org/10.1007/s00429-

017-1438-7

Dolui, S., Wang, Z., Wang, D. J. J., Mattay, R., Finkel, M., Elliott, M.,

Desiderio, L., Inglis, B., Mueller, B., Stafford, R. B., Launer, L. J.,

Jacobs, D. R., Bryan, R. N., & Detre, J. A. (2016). Comparison of non-

invasive MRI measurements of cerebral blood flow in a large multisite

cohort. Journal of Cerebral Blood Flow and Metabolism, 36, 1244–1256.
https://doi.org/10.1177/0271678X16646124

Frey, B. M., Petersen, M., Schlemm, E., Mayer, C., Hanning, U., Engelke, K.,

Fiehler, J., Borof, K., Jagodzinski, A., Gerloff, C., Thomalla, G., &

Cheng, B. (2020). White matter integrity and structural brain network

topology in cerebral small vessel disease: The Hamburg city health

study. Human Brain Mapping, 42(5), 1406–1415. https://doi.org/10.
1002/hbm.25301

Godin, O., Maillard, P., Crivello, F., Alpérovitch, A., Mazoyer, B.,

Tzourio, C., & Dufouil, C. (2009). Association of white-matter lesions

with brain atrophy markers: The three-city Dijon MRI study. Cerebro-

vascular Diseases, 28, 177–184. https://doi.org/10.1159/000226117
Goldszal, A. F., Davatzikos, C., Pham, D. L., Yan, M. X. H., Bryan, R. N., &

Resnick, S. M. (1998). An image-processing system for qualitative and

quantitative volumetric analysis of brain images. Journal of Computer

Assisted Tomography, 22, 827–837. https://doi.org/10.1097/

00004728-199809000-00030

Gong, G., He, Y., Chen, Z. J., & Evans, A. C. (2012). Convergence and diver-

gence of thickness correlations with diffusion connections across the

human cerebral cortex. NeuroImage, 59, 1239–1248. https://doi.org/
10.1016/j.neuroimage.2011.08.017

Griffiths, K. R., Grieve, S. M., Kohn, M. R., Clarke, S., Williams, L. M., &

Korgaonkar, M. S. (2016). Altered gray matter organization in children

and adolescents with ADHD: A structural covariance connectome

study. Translational Psychiatry, 6, e947. https://doi.org/10.1038/tp.

2016.219

Habes, M., Erus, G., Toledo, J. B., Zhang, T., Bryan, N., Launer, L. J.,

Rosseel, Y., Janowitz, D., Doshi, J., Van Der Auwera, S., Von

Sarnowski, B., Hegenscheid, K., Hosten, N., Homuth, G., Völzke, H.,

Schminke, U., Hoffmann, W., Grabe, H. J., & Davatzikos, C. (2016).

White matter hyperintensities and imaging patterns of brain ageing in

the general population. Brain, 139(4), 1164–1179. https://doi.org/10.
1093/brain/aww008

Kabani, N. J., Collins, D. L., & Evans, A. C. (1998). A 3D neuroanatomical

atlas. Fourth International Conference on Functional Mapping of the

Human Brain, 7, 12.

Kelly, C., Toro, R., Di Martino, A., Cox, C. L., Bellec, P., Castellanos, F. X., &

Milham, M. P. (2012). A convergent functional architecture of the

insula emerges across imaging modalities. NeuroImage, 61, 1129–
1142. https://doi.org/10.1016/j.neuroimage.2012.03.021

Kim, C. M., Alvarado, R. L., Stephens, K., Wey, H. Y., Wang, D. J. J.,

Leritz, E. C., & Salat, D. H. (2020). Associations between cerebral blood

flow and structural and functional brain imaging measures in individ-

uals with neuropsychologically defined mild cognitive impairment.

Neurobiology of Aging, 86, 64–74. https://doi.org/10.1016/j.

neurobiolaging.2019.10.023

Kim, H. J., Shin, J. H., Han, C. E., Kim, H. J., Na, D. L., Seo, S. W., &

Seong, J. K. (2016). Using individualized brain network for analyzing

structural covariance of the cerebral cortex in Alzheimer's patients.

Frontiers in Neuroscience, 10, 394. https://doi.org/10.3389/fnins.2016.

00394

Lancichinetti, A., & Fortunato, S. (2012). Consensus clustering in complex

networks. Scientific Reports, 2(1), 1–7. https://doi.org/10.1038/

srep00336

Launer, L. J., Lewis, C. E., Schreiner, P. J., Sidney, S., Battapady, H.,

Jacobs, D. R., Lim, K. O., D'Esposito, M., Zhang, Q., Reis, J.,

Davatzikos, C., & Bryan, R. N. (2015). Vascular factors and multiple

measures of early brain health: CARDIA brain MRI study. PLoS ONE,

10, e0122138. https://doi.org/10.1371/journal.pone.0122138

Lawrence, A. J., Chung, A. W., Morris, R. G., Markus, H. S., & Barrick, T. R.

(2014). Structural network efficiency is associated with cognitive

impairment in small-vessel disease. Neurology, 83, 304–311. https://
doi.org/10.1212/WNL.0000000000000612

Lawrence, A. J., Tozer, D. J., Stamatakis, E. A., & Markus, H. S. (2018). A

comparison of functional and tractography based networks in cerebral

small vessel disease. NeuroImage: Clinical, 18, 425–432. https://doi.
org/10.1016/j.nicl.2018.02.013

Liu, F., Zhuo, C., & Yu, C. (2016). Altered cerebral blood flow covariance

network in schizophrenia. Frontiers in Neuroscience, 10, 308. https://

doi.org/10.3389/fnins.2016.00308

Luciw, N. J., Toma, S., Goldstein, B. I., & MacIntosh, B. J. (2021). Corre-

spondence between patterns of cerebral blood flow and structure in

adolescents with and without bipolar disorder. Journal of Cerebral

Blood Flow & Metabolism, 41, 1988–1999. https://doi.org/10.1177/
0271678X21989246

KIM ET AL. 3691

https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1038/nrn2575
https://doi.org/10.1212/WNL.0000000000007654
https://doi.org/10.1212/WNL.0000000000007654
https://doi.org/10.3389/fnagi.2019.00347
https://doi.org/10.3389/fnagi.2019.00347
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.3389/fnagi.2015.00131
https://doi.org/10.1093/braincomms/fcz041
https://doi.org/10.1212/WNL.56.11.1539
https://doi.org/10.1093/brain/awq343
https://doi.org/10.1007/s00429-017-1438-7
https://doi.org/10.1007/s00429-017-1438-7
https://doi.org/10.1177/0271678X16646124
https://doi.org/10.1002/hbm.25301
https://doi.org/10.1002/hbm.25301
https://doi.org/10.1159/000226117
https://doi.org/10.1097/00004728-199809000-00030
https://doi.org/10.1097/00004728-199809000-00030
https://doi.org/10.1016/j.neuroimage.2011.08.017
https://doi.org/10.1016/j.neuroimage.2011.08.017
https://doi.org/10.1038/tp.2016.219
https://doi.org/10.1038/tp.2016.219
https://doi.org/10.1093/brain/aww008
https://doi.org/10.1093/brain/aww008
https://doi.org/10.1016/j.neuroimage.2012.03.021
https://doi.org/10.1016/j.neurobiolaging.2019.10.023
https://doi.org/10.1016/j.neurobiolaging.2019.10.023
https://doi.org/10.3389/fnins.2016.00394
https://doi.org/10.3389/fnins.2016.00394
https://doi.org/10.1038/srep00336
https://doi.org/10.1038/srep00336
https://doi.org/10.1371/journal.pone.0122138
https://doi.org/10.1212/WNL.0000000000000612
https://doi.org/10.1212/WNL.0000000000000612
https://doi.org/10.1016/j.nicl.2018.02.013
https://doi.org/10.1016/j.nicl.2018.02.013
https://doi.org/10.3389/fnins.2016.00308
https://doi.org/10.3389/fnins.2016.00308
https://doi.org/10.1177/0271678X21989246
https://doi.org/10.1177/0271678X21989246


Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M.,

Muller, U., & Bullmore, E. (2010). Functional connectivity and brain

networks in schizophrenia. Journal of Neuroscience, 30, 9477–9487.
https://doi.org/10.1523/JNEUROSCI.0333-10.2010

Mahinrad, S., Kurian, S., Garner, C. R., Sedaghat, S., Nemeth, A. J.,

Moscufo, N., Higgins, J. P., Jacobs, D. R., Hausdorff, J. M., Lloyd-

Jones, D. M., & Sorond, F. A. (2020). Cumulative blood pressure expo-

sure during young adulthood and mobility and cognitive function in

midlife. Circulation, 141(9), 712–724. https://doi.org/10.1161/

CIRCULATIONAHA.119.042502

Medley, M. L. (1980). Life satisfaction across four stages of adult life. Inter-

national Journal of Aging and Human Development, 11(3), 193–209.
Melie-García, L., Sanabria-Diaz, G., & Sánchez-Catasús, C. (2013). Studying

the topological organization of the cerebral blood flow fluctuations in

resting state. NeuroImage, 64, 173–184. https://doi.org/10.1016/j.

neuroimage.2012.08.082

Messé, A. (2020). Parcellation influence on the connectivity-based

structure–function relationship in the human brain. Human Brain Map-

ping, 41, 1167–1180. https://doi.org/10.1002/hbm.24866

Nasrallah, I. M., Hsieh, M. K., Erus, G., Battapady, H., Dolui, S., Detre, J. A.,

Launer, L. J., Jacobs, D. R., Davatzikos, C., & Bryan, R. N. (2019). White

matter lesion penumbra shows abnormalities on structural and physio-

logic MRIs in the coronary artery risk development in young adults

cohort. American Journal of Neuroradiology, 40, 1291–1298. https://
doi.org/10.3174/ajnr.A6119

Nasrallah, I. M., Pajewski, N. M., Auchus, A. P., Chelune, G., Cheung, A. K.,

Cleveland, M. L., Coker, L. H., Crowe, M. G., Cushman, W. C.,

Cutler, J. A., Davatzikos, C., Desiderio, L., Doshi, J., Erus, G., Fine, L. J.,

Gaussoin, S. A., Harris, D., Johnson, K. C., Kimmel, P. L., … Bryan, R. N.

(2019). Association of intensive vs standard blood pressure control

with cerebral white matter lesions. JAMA, 322, 524–534. https://doi.
org/10.1001/jama.2019.10551

Nestor, S. M., Miši�c, B., Ramirez, J., Zhao, J., Graham, S. J., Verhoeff, N. P.

L. G., Stuss, D. T., Masellis, M., & Black, S. E. (2017). Small vessel dis-

ease is linked to disrupted structural network covariance in

Alzheimer's disease. Alzheimer's and Dementia, 13, 749–760. https://
doi.org/10.1016/j.jalz.2016.12.007

Petersen, M., Frey, B. M., Schlemm, E., Mayer, C., Hanning, U., Engelke, K.,

Fiehler, J., Borof, K., Jagodzinski, A., Gerloff, C., Thomalla, G., &

Cheng, B. (2020). Network localisation of white matter damage in

cerebral small vessel disease. Scientific Reports, 10(1), 9210. https://

doi.org/10.1038/s41598-020-66013-w

Rabins, P. V., Pearlson, G. D., Aylward, E., Kumar, A. J., & Dowell, K.

(1991). Cortical magnetic resonance imaging changes in elderly inpa-

tients with major depression. American Journal of Psychiatry, 148, 617–
620. https://doi.org/10.1176/ajp.148.5.617

Reginold, W., Sam, K., Poublanc, J., Fisher, J., Crawley, A., & Mikulis, D. J.

(2019). The efficiency of the brain connectome is associated with

cerebrovascular reactivity in persons with white matter hyper-

intensities. Human Brain Mapping, 40(12), 3647–3656. https://doi.org/
10.1002/hbm.24622

Reijmer, Y. D., Fotiadis, P., Piantoni, G., Boulouis, G., Kelly, K. E.,

Gurol, M. E., Leemans, A., O'Sullivan, M. J., Greenberg, S. M., &

Viswanathan, A. (2016). Small vessel disease and cognitive impairment:

The relevance of central network connections. Human Brain Mapping,

37, 2446–2454. https://doi.org/10.1002/hbm.23186

Rossi, R., Boccardi, M., Sabattoli, F., Galluzzi, S., Alaimo, G., Testa, C., &

Frisoni, G. B. (2006). Topographic correspondence between white

matter hyperintensities and brain atrophy. Journal of Neurology, 253,

919–927. https://doi.org/10.1007/s00415-006-0133-z
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain

connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.
https://doi.org/10.1016/j.neuroimage.2009.10.003

Sang, L., Chen, L., Wang, L., Zhang, J., Zhang, Y., Li, P., Li, C., & Qiu, M.

(2018). Progressively disrupted brain functional connectivity

network in subcortical ischemic vascular cognitive impairment

patients. Frontiers in Neurology, 9, 94. https://doi.org/10.3389/fneur.

2018.00094

Schaefer, A., Quinque, E. M., Kipping, J. A., Arélin, K., Roggenhofer, E.,

Frisch, S., Villringer, A., Mueller, K., & Schroeter, M. L. (2014). Early

small vessel disease affects frontoparietal and cerebellar hubs in close

correlation with clinical symptoms -a resting-state fMRI study. Journal

of Cerebral Blood Flow and Metabolism, 34, 1091–1095. https://doi.
org/10.1038/jcbfm.2014.70

Schmidt, R., Ropele, S., Enzinger, C., Petrovic, K., Smith, S., Schmidt, H.,

Matthews, P. M., & Fazekas, F. (2005). White matter lesion progres-

sion, brain atrophy, and cognitive decline: The Austrian stroke preven-

tion study. Annals of Neurology, 58, 610–616. https://doi.org/10.

1002/ana.20630

Shen, D., & Davatzikos, C. (2002). HAMMER: Hierarchical attribute

matching mechanism for elastic registration. IEEE Transactions on Medi-

cal Imaging, 21(11), 1421–1439. https://doi.org/10.1109/TMI.2002.

803111

Singh, M. K., Kesler, S. R., Hadi Hosseini, S. M., Kelley, R. G., Amatya, D.,

Hamilton, J. P., Chen, M. C., & Gotlib, I. H. (2013). Anomalous gray

matter structural networks in major depressive disorder. Biological Psy-

chiatry, 74(10), 777–785. https://doi.org/10.1016/j.biopsych.2013.

03.005

Smith, E. E., O'Donnell, M., Dagenais, G., Lear, S. A., Wielgosz, A.,

Sharma, M., Poirier, P., Stotts, G., Black, S. E., Strother, S.,

Noseworthy, M. D., Benavente, O., Modi, J., Goyal, M., Batool, S.,

Sanchez, K., Hill, V., McCreary, C. R., Frayne, R., … Yusuf, S. (2015).

Early cerebral small vessel disease and brain volume, cognition, and

gait. Annals of Neurology, 77, 251–261. https://doi.org/10.1002/ana.
24320

Stewart, C. R., Stringer, M. S., Shi, Y., Thrippleton, M. J., & Wardlaw, J. M.

(2021). Associations between white matter hyperintensity burden,

cerebral blood flow and transit time in small vessel disease: An

updated meta-analysis. Frontiers in Neurology, 12, 647848. https://doi.

org/10.3389/fneur.2021.647848

Ter Telgte, A., Van Leijsen, E. M. C., Wiegertjes, K., Klijn, C. J. M.,

Tuladhar, A. M., & De Leeuw, F. E. (2018). Cerebral small vessel dis-

ease: From a focal to a global perspective. Nature Reviews Neurology,

14, 387–398. https://doi.org/10.1038/s41582-018-0014-y
Tuladhar, A. M., Lawrence, A., Norris, D. G., Barrick, T. R., Markus, H. S., &

de Leeuw, F. E. (2017). Disruption of rich club organisation in cerebral

small vessel disease. Human Brain Mapping, 38, 1751–1766. https://
doi.org/10.1002/hbm.23479

Tuladhar, A. M., Reid, A. T., Shumskaya, E., De Laat, K. F., Van

Norden, A. G. W., Van Dijk, E. J., Norris, D. G., & De Leeuw, F. E.

(2015). Relationship between white matter hyperintensities, cortical

thickness, and cognition. Stroke, 46, 425–432. https://doi.org/10.

1161/STROKEAHA.114.007146

Tuladhar, A. M., van Dijk, E., Zwiers, M. P., van Norden, A. G. W., de

Laat, K. F., Shumskaya, E., Norris, D. G., & de Leeuw, F. E. (2016).

Structural network connectivity and cognition in cerebral small vessel

disease. Human Brain Mapping, 37, 300–310. https://doi.org/10.

1002/hbm.23032

Tullberg, M., Fletcher, E., DeCarli, C., Mungas, D., Reed, B. R.,

Harvey, D. J., Weiner, M. W., Chui, H. C., & Jagust, W. J. (2004). White

matter lesions impair frontal lobe function regardless of their location.

Neurology, 63, 246–253. https://doi.org/10.1212/01.WNL.

0000130530.55104.B5

Wang, Z. (2012). Improving cerebral blood flow quantification for arterial

spin labeled perfusion MRI by removing residual motion artifacts and

global signal fluctuations. Magnetic Resonance Imaging, 30, 1409–
1415. https://doi.org/10.1016/j.mri.2012.05.004

Wardlaw, J. M., Smith, C., & Dichgans, M. (2019). Small vessel disease:

Mechanisms and clinical implications. The Lancet Neurology, 18,

684–696.

3692 KIM ET AL.

https://doi.org/10.1523/JNEUROSCI.0333-10.2010
https://doi.org/10.1161/CIRCULATIONAHA.119.042502
https://doi.org/10.1161/CIRCULATIONAHA.119.042502
https://doi.org/10.1016/j.neuroimage.2012.08.082
https://doi.org/10.1016/j.neuroimage.2012.08.082
https://doi.org/10.1002/hbm.24866
https://doi.org/10.3174/ajnr.A6119
https://doi.org/10.3174/ajnr.A6119
https://doi.org/10.1001/jama.2019.10551
https://doi.org/10.1001/jama.2019.10551
https://doi.org/10.1016/j.jalz.2016.12.007
https://doi.org/10.1016/j.jalz.2016.12.007
https://doi.org/10.1038/s41598-020-66013-w
https://doi.org/10.1038/s41598-020-66013-w
https://doi.org/10.1176/ajp.148.5.617
https://doi.org/10.1002/hbm.24622
https://doi.org/10.1002/hbm.24622
https://doi.org/10.1002/hbm.23186
https://doi.org/10.1007/s00415-006-0133-z
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.3389/fneur.2018.00094
https://doi.org/10.3389/fneur.2018.00094
https://doi.org/10.1038/jcbfm.2014.70
https://doi.org/10.1038/jcbfm.2014.70
https://doi.org/10.1002/ana.20630
https://doi.org/10.1002/ana.20630
https://doi.org/10.1109/TMI.2002.803111
https://doi.org/10.1109/TMI.2002.803111
https://doi.org/10.1016/j.biopsych.2013.03.005
https://doi.org/10.1016/j.biopsych.2013.03.005
https://doi.org/10.1002/ana.24320
https://doi.org/10.1002/ana.24320
https://doi.org/10.3389/fneur.2021.647848
https://doi.org/10.3389/fneur.2021.647848
https://doi.org/10.1038/s41582-018-0014-y
https://doi.org/10.1002/hbm.23479
https://doi.org/10.1002/hbm.23479
https://doi.org/10.1161/STROKEAHA.114.007146
https://doi.org/10.1161/STROKEAHA.114.007146
https://doi.org/10.1002/hbm.23032
https://doi.org/10.1002/hbm.23032
https://doi.org/10.1212/01.WNL.0000130530.55104.B5
https://doi.org/10.1212/01.WNL.0000130530.55104.B5
https://doi.org/10.1016/j.mri.2012.05.004


Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F.,

Frayne, R., Lindley, R. I., O'Brien, J. T., Barkhof, F., Benavente, O. R.,

Black, S. E., Brayne, C., Breteler, M., Chabriat, H., DeCarli, C., de

Leeuw, F. E., Doubal, F., Duering, M., Fox, N. C., … Dichgans, M.

(2013). Neuroimaging standards for research into small vessel disease

and its contribution to ageing and neurodegeneration. The Lancet Neu-

rology, 12, 822–838.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-

world” networks. Nature, 393, 440–442. https://doi.org/10.1038/

30918

Wee, C. Y., Yap, P. T., & Shen, D. (2013). Prediction of Alzheimer's disease

and mild cognitive impairment using cortical morphological patterns.

Human Brain Mapping, 34(12), 3411–3425. https://doi.org/10.1002/
hbm.22156

Wen, W., Sachdev, P. S., Li, J. J., Chen, X., & Anstey, K. J. (2009). White

matter hyperintensities in the forties: Their prevalence and topogra-

phy in an epidemiological sample aged 44–48. Human Brain Mapping,

30, 1155–1167. https://doi.org/10.1002/hbm.20586

Xu, X., Lau, K. K., Wong, Y. K., Mak, H. K. F., & Hui, E. S. (2018). The effect

of the total small vessel disease burden on the structural brain net-

work. Scientific Reports, 8(1), 7442. https://doi.org/10.1038/s41598-

018-25917-4

Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., &

Bullmore, E. T. (2010). Whole-brain anatomical networks: Does the

choice of nodes matter? NeuroImage, 50(3), 970–983. https://doi.org/
10.1016/j.neuroimage.2009.12.027

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Kim, W. S. H., Luciw, N. J., Atwi, S.,

Shirzadi, Z., Dolui, S., Detre, J. A., Nasrallah, I. M., Swardfager,

W., Bryan, R. N., Launer, L. J., & MacIntosh, B. J. (2022).

Associations of white matter hyperintensities with networks

of gray matter blood flow and volume in midlife adults: A

coronary artery risk development in young adults magnetic

resonance imaging substudy. Human Brain Mapping, 43(12),

3680–3693. https://doi.org/10.1002/hbm.25876

KIM ET AL. 3693

https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1002/hbm.22156
https://doi.org/10.1002/hbm.22156
https://doi.org/10.1002/hbm.20586
https://doi.org/10.1038/s41598-018-25917-4
https://doi.org/10.1038/s41598-018-25917-4
https://doi.org/10.1016/j.neuroimage.2009.12.027
https://doi.org/10.1016/j.neuroimage.2009.12.027
https://doi.org/10.1002/hbm.25876

	Associations of white matter hyperintensities with networks of gray matter blood flow and volume in midlife adults: A coron...
	1  INTRODUCTION
	2  METHODS
	2.1  Participants
	2.2  MRI acquisition
	2.3  MRI processing
	2.4  Group stratification
	2.5  Network analysis
	2.6  Statistical analysis

	3  RESULTS
	3.1  Demographic & clinical characteristics
	3.2  Network modules
	3.3  Small-world properties
	3.4  Global network properties
	3.5  Regional network properties

	4  DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


