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The study aimed to assess the human health risk of PM2.5-bound heavy metals from anthropogenic sources 
in Khon Kaen Province, Thailand between December 2020 and February 2021. According to the findings, 
the geometric mean concentration of PM2.5 in the university area, residential area, industrial zone, and the 
agricultural zone was 32.78 μg/m3, 50.25 μg/m3, 44.48 μg/m3, and 29.53 μg/m3, respectively. The results 
showed that the estimated human health risk assessment, in terms of non-carcinogenic risks among children 
and adults in an urban area (residential and university), industrial zone, and the agricultural area, was of 
hazard index (HI) value of >1.0 indicating a greater chance of chronic effects occurring. This study showed 
that exposure to PM2.5-bound heavy metal may increase the likelihood that lasting effects will result in a very 
high carcinogenic risk (CR) in children in residential areas, and an industrial zone with total carcinogenic risk 
(TCR) values of 0.23 ×101, and 0.12 ×101, respectively while resulting in a high TCR of 3.34 ×10−2 and 4.11 ×10−2
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within the university areas and agricultural zone, respectively. In addition, health risk assessments among adults 
demonstrate high TCR values of 4.40 × 10−1 (residential area), 2.28 × 10−1 (industrial zone), and 7.70 × 10−3
(agricultural zone), thus indicating a potential health risk to adults living in these areas while the university 
area was very low effects on carcinogenic risk (CR ≤ 10−8) for adults. Therefore, lowering the risk of exposure 
to PM2.5 via the respiratory tract, for example, wearing a mask outside is a very effective self-defense strategy 
for people within and around the study site. This data study strongly supports the implementation of the air 
pollutant emission source reduction measures control and health surveillance.
1. Introduction

Air pollution is one of the most serious environmental problems to 
be addressed locally, regionally, and globally. It is endangering human 
health and life, as well as having a variety of indirect effects on soci-

ety and the economy, such as weakening a country’s economic growth 
potential by reducing people’s working hours and lowering agricultural 
production (Narita et al., 2019). In 2017, Exposure to PM2.5 resulted in 
4.58 million deaths and 142.52 million years of disability worldwide, 
with ambient PM2.5 accounting for 64.2 percent of fatalities and 58.3 
percent of disability-adjusted life years (Bu et al., 2021). Chronic ex-

posure to PM2.5 has been linked to respiratory diseases, heart disease, 
stroke, brain, and lung cancer (Cao et al., 2011; Du et al., 2015; Fold et 
al., 2020; Sakunkoo et al., 2022; Pope Iii et al., 2002). PM10 and PM2.5
majority include road traffic, biomass and waste open burning and in-

dustrial area (Fang et al., 2013; Li et al., 2021a; Tobler et al., 2020; 
Wang et al., 2020), construction of buildings and demolition (Yan et al., 
2019), crop residue burning (Yang et al., 2008), and informal electric-

waste recycling site (Zheng et al., 2016). PM contains a mixture of a 
chemical component, which can be produced from primary sources or 
formed by complex atmospheric reactions. (Wang et al., 2020; Zhang et 
al., 2015). PM2.5 during 2016-2019 in Bangkok, 24-h Thailand Ambient 
Air Quality Standards (TNAAQs) a dose of 50 μg/m3 was exceeded for 
about 50 days/years and a maximum daily concentration of more than 
100 μg/m3 was observed during the dry season. (November to April) 
(Fold et al., 2020). Previous conducted study PM episode, Ji County in 
Tianjin, China by Zhou et al. (2015) has reported health impact with a 
relative risk (RR) were 1.013 (CI 1.0074–1.019) for all-cause mortality 
per 10 μg/m3 increase in PM2.5. Therefore, chronic exposure to PM2.5
is known to produce excessive exposure to the alveolar angiotensin-

converting enzyme 2 (ACE-2) receptor, which may promote infection 
or toxicity in those exposed to air pollution (Domingo et al., 2020), es-

pecially, as long-term exposure to ambient PM2.5 is linked to increased 
morbidity and premature death in epidemiological studies (Pope and 
Dockery, 2006; Tobler et al., 2020; Zhu et al., 2019). Dockery and Pope 
(1994) reported that the increase in mortality and morbidity in urban 
areas may be associated with exposure to particulate matter (PM). The 
potential for adverse health effects from PM varies in particle size, com-

position, toxicity, and degree of exposure. In addition, the hospitaliza-

tion rate for chronic obstructive pulmonary disease (COPD) increased 
by 6.88%, and the total number of hospital, patient, and asthma emer-

gency rooms increased by 0.67%, 0.65%, and 0.49%, respectively of 
10 μg/m3 for PM2.5 concentration (Duan et al., 2020; Xie et al., 2019).

Furthermore, the chemical compositions of PM2.5 include organic 
matter, trace elements, water-soluble inorganic ions, inorganic sub-

stance, sulfate, nitrate, and polycyclic aromatic hydrocarbons (PAHs) 
and others (Chen et al., 2021; Cheng et al., 2015; Fan et al., 2021; 
Jiang et al., 2018; Sajjadi et al., 2018; Zhang et al., 2021). In particu-

lar, a small fraction of particulate matter with aerodynamic equivalent 
diameter ≤2.5 μm constitutes heavy metals, and is highly toxic even 
at low concentrations, levels such as Cr, Cd, As, Pb, and Ni (Baensch-

Baltruschat et al., 2020; Nirmalkar et al., 2021). A recent study has 
exhibited that heavy metals attached in PM2.5, such as Pb, Cu, Ni, 
and Fe collected from high-traffic regions, have been shown in recent 
study to be capable of triggering a variety of respiratory and cardio-

vascular illnesses, even a low concentration level of metals in PM2.5
2

can be harmful to human health (Kastury et al., 2018; Moryani et al., 
2020). Metal elements from natural sources such as soils/crustaceans 
are usually found in coarse particles, while fine particles are associated 
with anthropogenic sources (Ny and Lee, 2011; Shaltout et al., 2019). 
Heavy metals can distribute and accumulated in the environmental cy-

cle, for example, surface soil (Han et al., 2021), groundwater (Varol and 
Tokatlı, 2022) and atmosphere (Li et al., 2021b; Moryani et al., 2020; 
Pongpiachan et al., 2017; Wu et al., 2019; Xu et al., 2020; Zheng et 
al., 2016; Zhi et al., 2021). Previous studies shown a linkage between 
PM2.5 exposure and toxic heavy metal components having negative ad-

verse health effects (Liu et al., 2018; Zhang et al., 2015). Currently, 
several toxicological studies have pointed out that excessive exposure 
to heavy metals in PM2.5 could threaten on human health, causing respi-

ratory and inflammation of lung, cardiovascular disease, heart disease, 
and cancer (Xie et al., 2020; Xu et al., 2020; Zhang et al., 2021), spe-

cially, the heavy metals and organic pollutants adsorbed by PM2.5 were 
risk factors for lung cancer (Duan et al., 2020). Oral ingestion, inhala-

tion, and dermal contact are the main routes of exposure to airborne 
heavy metals in PM2.5 (Hu et al., 2012; MohseniBandpi et al., 2018; 
Wang et al., 2020; Zhang et al., 2021), and are they are easily absorbed 
by the human body’s alveolar, blood, cutaneous, and gastrointestinal 
systems (Cao et al., 2012; Imani, 2021). Undoubtedly, the study re-

sults show the possibility that adverse health effects are associated with 
particulate matter exposure bound to toxic heavy metals. To date, the 
chemical characterization, human health risk assessment, and source 
apportionment of PM2.5-bound heavy metals have been widely studied 
(Chen et al., 2021; Li et al., 2021b; Zhang et al., 2021).

Data from the Pollution Control Department (PCD) air quality mon-

itoring system showed that the provinces with the most frequent de-

tections of air quality exceeding the standard more than 70 days per 
year such as Saraburi, Lampang, Khon Kaen, Phrae, Phayao, Nan, Chi-

ang Mai, Chiang Rai, Tak and Mae Hong Son (PCD, 2020). Khon Kaen 
Province is one of the agriculture, urban and industrial areas that have 
been rapidly growing in Northeast Thailand due to urban develop-

ment; rapid industrial economy expansion has resulted in the continued 
increase of many transport systems to meet human needs. This infor-

mation, is therefore, an important highlight the researcher to choose 
to study in such areas. While studies on heavy metal concentrations 
in PM2.5 in Thailand have been conducted in the past, they have been 
limited due to scarce data, especially on the country’s regional aspect. 
Understanding the levels of particulate matter in the air have impor-

tant public health consequences considering the increasing trend of air 
pollution. Hence, this study aims to examine the human health risk 
assessment of PM2.5-bound heavy metal of anthropogenic sources in 
Khon Kaen Province of Northeast Thailand. The data of this study will 
help support policies and future control measures in reducing pollu-

tant emission from anthropogenic activities while also communicating 
health risks and surveillance to develop a further plan in the short and 
long-term to minimize adverse effects on human health.

2. Materials and methods

2.1. Study area

Due to the topography of Khon Kaen Province (KKP), most of the 
plateaus and low mountains; the weather is quite hot in the summer and 
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Fig. 1. Map of location of sampling site; the boundary line of this study area is Khon Kaen Province of Northeast Thailand.
the weather is quite cold in winter. The average temperature through-

out the year is about 26.9 ◦C and the average annual rainfall 1,246.8 
mm. The KKP covers an area of approximately 10,885.9 km2 and is 
approximately 449 km from Bangkok. Therefore, sampling site is in 
Khon Kaen Province, one of the largest urban development, agricultural 
activities, and industries in the north-eastern part. In this study, the fol-

lowing locations for ambient air samples were collected: The study site 
in Muang Khon Kaen is 16◦26′ north latitude and 102◦50′ east lon-

gitude (166 m above of mean sea level) is represented by urban area 
(includes university, and residential), and industrial zone and covering 
an area of 953.4 km2 and agricultural areas in Ban Haet District (BHD) 
and covering an area of 205.2 km2. The location of BHD is 16◦12′ north 
latitude and 102◦45′ east longitude at 189 m above of mean sea level 
(Fig. 1). The pattern of land use in KKP has shifted drastically over the 
past few decades. The Thai Meteorological Department (TMD, 2015, 
2020) has divided the climate into three seasons: local summer (mid–

February to mid–May), the rainy season (mid–May to mid–October), 
and the winter season (mid–October to mid–February). The KKP is 
the country’s largest urban development region and the industry has 
accelerated environmental concerns. This is because the region is fac-

ing air pollution issue for nowadays; in particular, Khon Kaen is one 
of the provinces in north-eastern, Thailand faces a high level of sea-

sonal air pollution every year. The community dwellers are exposed 
to outdoor air pollutants 24 h a day during seasonal smog periods 
because of their open-air housing style, and agricultural occupational 
hazards.
3

2.2. Sampling collection and analysis

The PM2.5 samples were collected from ambient 24 h air sample col-

lection during December 2020 and February 2021 period (dry season) 
using a high-volume air sampler (model ECO-HVS3000, Ecotech, Aus-

tralia) was used with a flow rate of 67.8 m3/h, at 1.50 m above ground 
level. After sampling, each glass fiber (GF) filter was used to adjust the 
filter paper before and after collecting samples by putting it in a des-

iccator not less than 24 h. Inside the desiccator, silica gel was placed 
at the bottom. These samples are then stored in the refrigerator at a 
temperature of −30 ◦C. During the previous treatment procedures, each 
load filter was cut and placed in a Teflon vessel, and 5 mL of HNO3, 2 
mL of HF, and 1 mL of H2O2 were added; later, the collected PM2.5 was 
wet and digested by ultrasonic-assisted digested (model TRANSSONIC 
700/H). After cooling, these solutions were diluted to 5 mL with 5% 
HNO3 for use in subsequent metal analysis. In this study, seven trace el-

ements (Pb, Cu, Cd, Fe, Mn, Al, and Zn) were measured by Graphite fur-

nace atomic absorption spectroscopy (GFAAS) (model PinAAcle900Z, 
Perkin Elmer). PM2.5 sampling and analysis methods, as well as qual-

ity assurance and quality control measures, were in line with the PM2.5
component manual established by Chow et al. (1998) and Sugita et al. 
(2019).

2.3. Statistical analysis and model calculation

2.3.1. Enrichment factor (EF)

Enrichment factor (EF) was used to assess the level of heavy metal 
contamination in atmospheric particles and method facilitated the sep-



P. Sakunkoo, T. Thonglua, S. Sangkham et al. Heliyon 8 (2022) e09572
aration of heavy metal contribution between natural and anthropogenic 
origin. The EF by Zhang et al. (2021) where calculation is expressed as 
follows:

EF =

(𝐶𝑖
sample

𝐶
ref
sample

)

(𝐶𝑖
crust

𝐶
ref
crust

) (1)

where (𝐶𝑖∕𝐶ref )sample and (𝐶𝑖∕𝐶ref )crust denote the concentration levels 
of 𝑖 metal and the iron metal in the sample and crust. Fe was selected 
as the most common reference in this study (Pongpiachan et al., 2017) 
and the abundance of the elements’ concentration of seven metals in 
the continental crust (in mg/kg) were obtained from (Lide, 2004). EF 
values are classified into five levels based on the influence of human 
activities (Yongming et al., 2006), were not influenced by human ac-

tivities (EF < 2), moderately influenced (EF 2–5), highly influenced (EF 
5–20), highly influenced (EF 20–40), and were severely influenced (EF 
> 40), respectively.

2.3.2. Geo-accumulation index (𝐼geo)

The geo-accumulation index (𝐼geo) was used to assess the level of 
heavy metal contamination by comparing the current concentration 
with rear levels. The calculation of 𝐼geo index was done by Zhang et 
al. (2021) using Eq. (2)

𝐼geo = log2
𝐶𝑖

sample

1.5 ×𝐶𝑖
crust

(2)

where 𝐶𝑖
sample and 𝐶𝑖

crust represent the concentrated level of the 𝑖 metal 
in the sample and background, respectively. The factor of 1.5 was 
applied as a background adjustment matrix for evolutionary and an-

thropogenic effects (Li et al., 2015). In this study the geological heavy 
metal deposition index. The geo-accumulation index; Igeo was classi-

fied into six levels of contamination according to the study guideline of 
Murari et al. (2020): Level 1: ≤ 0 (Uncontaminated), Level 2: 0–1 (Un-

contaminated to Moderately contaminated), Level 3: 1–2 (Moderately 
contaminated), Level 3: 2–3 (Moderately to strongly contaminated), 
Level 4: 3–4 (Strongly contaminated), Level 5: 4–5 (Strongly to ex-

tremely contaminated), and Level 6: > 5 (Extremely contaminated), 
respectively.

2.3.3. Human health risk assessment (HHRAs)

The subjects were divided into two groups viz., Children and Adults 
based on the differences in their respiratory systems and behaviors. 
(Dahmardeh Behrooz et al., 2021; Hu et al., 2012). Exposure assess-

ment is a measurement process and refers to the time when people are 
exposed to substances in the environment or future exposure forecast. 
The values used for all the parameters in health risk assessment (HRA) 
as illustrated in Table 1.

Thus, the daily intake of the chemical through oral ingestion (CDIing
𝑖𝑗

, 
mg/kg/day, exposure concentration through inhalation (ECinh

𝑖𝑗
, μg/m3), 

and skin absorption dose through dermal contact (DADder
𝑖𝑗

, mg/kg/day) 
by Zhang et al., 2021 and USEPA, 2014 were calculated using the 
Eqs. (3)–(5) below:

CDIing
𝑖𝑗

=
𝐶𝑖𝑗 × IRing × EF × ED × CF

BW × AT
(3)

ECinh
𝑖𝑗

=
𝐶𝑖𝑗 × IRinh × ET × EF × ED

BW × AT𝑛

(4)

DADder
𝑖𝑗

=
𝐶𝑖𝑗 × SA × AF × ABS × EF × ED × CF

BW × AT
(5)

The corresponding hazard quotient (HQ) was calculated as shown in 
Eqs. (6)–(9) and the carcinogenic risk (CR) of toxic metals through the 
three ways were further evaluated based on Eqs. (10)–(13).

HQing =
CDIing

𝑖𝑗

RfDing (6)
𝑗

4

HQinh =
ECinh

𝑖𝑗

RfCinh
𝑗

× 1000
(7)

HQder =
DADder

𝑖𝑗

RfDder
𝑗

× ABS
(8)

Hazard index (HI𝑖) =
∑

(HQ𝑖𝑗 ) (9)

CRing = LCDIing
𝑖𝑗

× SF (10)

CRinh = LECinh
𝑖𝑗

× IUR (11)

CRder =
LDADder

𝑖𝑗
× RfDder

𝑗

ABS
(12)

Carcinogen risk (CR𝑖) =
∑

(CR𝑖𝑗 ) (13)

RfD𝑜, (the oral reference doses (mg/kg/day)), RfC𝑖, (inhalation refer-

ence concentration (mg/m3)), ABSGI, (gastrointestinal absorption fac-

tor), SF𝑜, (oral slope factor (mg/kg/day)) and IUR (inhalation unit risk 
(μg/m3). A hazard index (HI), i.e., HQ all added up, is used for assess-

ing the chronic effects of non-carcinogenic risks. When both HQs ≤ 1.0 
and HI ≤ 1.0, there is no significant risk of chronic effects. By contrast, 
HQs > 1 or HI > 1 indicate a possibility of the occurrence of chronic ef-

fects (Murari et al., 2020; Zheng et al., 2010). The carcinogen risk (CR) 
value shows the chance of developing any type of cancer by an individ-

ual due to a lifetime exposure to carcinogenic metals, divided into five 
categories: as very low (CR ≤ 10−6), low (10−6 ≤ CR < 10−4), moder-

ate (10−4 ≤ CR < 10−3), high (10−3 ≤ CR < 10−1), and very high (CR ≥
10−1) (Roy et al., 2019; Zhang et al., 2021).

3. Results and discussion

3.1. Mass concentration of PM2.5 in the typical anthropogenic sources

In this study, PM2.5 sampling was done during the dry season to 
analyze the heavy metal composition of PM2.5 in four human activities 
areas: University area, residential area, industrial zone, and agricultural 
zone found that in all sampling areas, the concentration of PM2.5 in the 
atmosphere exceeds the standards set by the World Health Organization 
(WHO) (WHO, 2006), which must not exceed 25 μg/m3 and Pollu-

tion Control Department (PCD) of Thailand 50 μg/m3 for 24 h (PCD, 
2020), respectively. The areas with the geometric mean concentration 
(μg/m3, 95% CI) of PM2.5 were residential area at 50.25 μg/m3 (95%CI 
38.97–64.78), followed by industrial zone, university area, and agricul-

ture zone at 44.48 μg/m3 (95%CI 35.06–56.42), 32.78 μg/m3 (95%CI 
26.56–40.46), and 29.53 μg/m3 (95%CI 23.62–36.91), respectively, as 
shown in Table 2. A majority of emissions were from automobiles at 
traffic sights with 32% and burning of biomass with 26% (Chuersuwan 
et al., 2008). Biomass burning emerged as the primary source of PM2.5
mass concentrations at residential sites, for example, an issue of cross-

border smog due to sampling periods (Chuersuwan et al., 2008). It is in 
the dry season and is influenced by the northeast monsoon that blows 
dust from neighboring areas and neighboring countries and meteorolog-

ical factors. The mean concentration of PM2.5 of all sampling sites that 
exceeded the WHO (2006), which must not exceed 25 μg/m3. While 
three of the four sampling sites that mean concentration were below 
the Pollution Control Department (PCD) of Thailand 50 μg/m3 for 24 
h, while PM2.5 concentrations in a residential area are above the PCD 
standard setting of Thailand.

The majority of PM2.5 sources in Southeast Asia come from ve-

hicular emissions, industrial pollution, and secondary aerosols as the 
dominating sources (Singh et al., 2017). Vehicular activities, indus-

trial by-products, and re-suspension of crustal soil are the major factors 
contributed by anthropogenic activities of the emission of particulate 
pollutants within the environment (Hazarika and Srivastava, 2017a; 
Hazarika et al., 2017b; Tian et al., 2010). Additionally, Northeast Thai-

land is an important region for sugarcane and rice production. Due to 
insufficient mechanical support, approximately 60% of the crops have 
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Table 1. The values used for all the parameters in health risk assessment (HRA).

Factors Notation Unit Value Reference

Children Adults

Ingestion rate IRing mg/day 200 100 (Zhang et al., 2021)

Exposure frequency EF days/years 365 365 (Asante-Duah, 2017)

Exposure duration ED year 6 24 (Han et al., 2021; 
Zhang et al., 2021)

Unit conversion factor CF kg/mg 1.0 × 10−6 1.0 × 10−6

Inhalation rate IRinh m3/day 5 20 (Du et al., 2013)

Body weight BW kg 29 70 (Han et al., 2021; 
Zhang et al., 2021)

Average lifetime AT days ED×365 
(non-carcinogens)

ED×365 
(non-carcinogens)

70×365 
(Carcinogens)

70×365 
(Carcinogens)

Exposure time ET h/day 24 24 (Zhang et al., 2021)

Average lifetime(n) At𝑛 hours ED×365×24 
(non-carcinogens)

ED×365×24 
(non-carcinogens)

70×365×24 
(Carcinogens)

70×365×24 
(Carcinogens)

Skin surface area SA cm2 2800 5700 (Zhang et al., 2021)

Skin adherence factor AF mg/cm2 0.2 0.07 (Zhang et al., 2021)

Dermal absorption factor DAF (Zhang et al., 2021)

DAF(Pb) 0.1 0.1

DAF(Cd) 0.001 0.001

DAF(Cu) 0.01 0.01

DAF(Mn) 0.01 0.01

DAF(Zn) 0.01 0.01

DAF(Al) 0.01 0.01

DAF(Other metals) 0.01 0.01

Parameter Pb Cd Cu Mn Zn Al

T𝑟 5 5 1 (Zhang et al., 2021)

RfDoral 0.003500 0.000500 0.004000 0.140000 0.300000 1.000000 (Asante-Duah, 2017; 
Han et al., 2021; 
Zhang et al., 2021)

RfCinh 0.003520 0.000010 0.004020 0.000050 0.301000 0.005000 (Asante-Duah, 2017; 
Han et al., 2021; 
Zhang et al., 2021)

GIABS 1 1 1 (Zhang et al., 2021)

SForal 0.008500 – – (Zhang et al., 2021)

Inhalation UR (IUR) 0.000012 0.001800 (Asante-Duah, 2017; 
Zhang et al., 2021)

Table 2. Detailed of meteorological parameter and mass concentration of PM2.5 .

Sampling site
Meteorological parameter Concentration of PM2.5

Aver. Temperature (◦C) Aver. Relative humidity (%) Aver. Wind speed (m/s) Aver. Pressure (hPa) Geometric mean (μg/m3, 95% CI)

University area 22.40 40 2.02 1008.8 32.78 (26.56–40.46)

Residential area 24.34 50 2.73 1015.4 50.25 (38.97–64.78)

Industrial zone 26.50 90 4.28 1006.1 44.48 (35.06–56.42)

Agricultural zone 25.32 75 3.07 1020.3 29.53 (23.62–36.91)
to be burned before harvesting (Dejchanchaiwong et al., 2020). Yune-

sian et al. (2019) conducted a study in PM2.5 and PM10 in the metropolis 
of Tehran during 2016-2017, which was reportedly exposed to high 
levels and the associated health risks. Similarly, a study conducted in 
Chiang Mai, Northern Thailand has reported that the rate of chronic 
obstructive pulmonary disease increased by 7.2–8.9%, coronary artery 
disease by 8.6%, and sepsis specific causes of death were increased by 
5.7–6.1%, for 10 μg/m3 increment of PM2.5 (Pothirat et al., 2021).

3.2. Heavy metals concentration in PM2.5

As shown in Table 3, sorted from the areas with the highest con-

centration of PM2.5 found that an industrial zone with heavy metal 
5

concentrations in PM2.5 in descending proportion are as follows: man-

ganese (Mn) < aluminum (Al) < lead (Pb) < copper (Cu) < cadmium 
(Cd) < iron (Fe) < Zinc (Zn), residential area (Al < Mn < Pb < Cu < Cd 
< Fe < Zn), university area (Mn < Al < Pb < Cu < Cd < Fe < Zn), and 
agricultural area (Mn < Al < Cu < Pb < Fe < (Cd = Zn), as shown in
Table 3.

Pb, Cd, Mn, and Cu were found to be the most relevant trace metals 
in the period study and it has been sufficiently recognized that they are 
traced in traffic emissions (Rodríguez et al., 2020; Zhang et al., 2009); 
Mn is identified as tracers of dust or soil. The proportion of heavy met-

als in PM2.5 each human activities as shown in Fig. 2. Rodríguez et al. 
(2020) described the origin of the measured metals as practical, from 
human-caused sources such as traffic emissions, fuel oil combustion, or 
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Table 3. Geometric mean concentration (GMC) of trace element in PM2.5 during December 2020 to February 2021 in Khon Kaen Province.

Sampling site
GMC of trace element (μg/m3, 95% CI)

Pb Cd Cu Mn Zn Al Fe

0.0754 0.0111 0.0338 0.2847 0.0012 0.1668 0.0047

University area (0.0228–0.2498) (0.0043–0.0284) (0.0262–0.0436) (0.2317–0.3500) (0.0004–0.0036) (0.1414–0.1967) (0.0025–0.0085)

0.2099 0.0195 0.0573 0.4279 0.0006 0.3381 0.0059

Residential area (0.1345–0.3277) (0.0150–0.0253) (0.0220–0.1491) (0.3497–0.5235) (0.0004–0.0011) (0.2107–0.5425) (0.0038–0.0093)

0.2729 0.1011 0.1857 2.2960 0.0044 1.7482 0.0045

Industrial zone (0.2190–0.3410) (0.0793–0.1290) (0.1674–0.2061) (1.9728–2.6721) (0.0020–0.0095) (1.4448–2.1154) (0.0034–0.0060)

0.0239 0.0035 0.1036 0.2477 0.0105 0.1760 0.0040

Agricultural zone (0.0089–0.0639) (0.0020–0.0060) (0.0357–0.3009) (0.2149–0.2854) (0.0029–0.0372) (0.1387–0.2234) (0.0022–0.0072)
Fig. 2. The proportion of PM2.5-bound metal in the human activities’ sources 
during dry season in Khon Kaen Provice, Thailand.

even re-suspended particulate matter and dust storms events (Amarloei 
et al., 2020). For instance, some major elements connected with PM2.5
measured in this study (Pb, Cd, Cu, or Mn), are found to be emissions 
from debris of wearing of tyres and old’s automobile combustion sys-

tems (Adachi and Tainosho, 2004). Additionally, Kayee et al. (2020) 
has showed that an important source of Pb and other trace metals in 
the Chiang Rai aerosol in Northern Thailand were metals that were re-

leased from burning of biomass and the crustal dust formed from raging 
fire. Based on these comparisons, it may be decided that the PM2.5 con-

centrations of metals primarily depend on the topology, meteorological 
factors such as wind speed, pressure, and the sampling site, which, con-

secutively, relies on the effects of sources of metal emissions nearby 
power plant, traffic transportation, and biomass and waste open burn-

ing. This study would help improve our understanding of anthropogenic 
activities over Khon Kaen and the significance of linking such atmo-

spheric studies with meteorological parameters.

3.3. Environmental risk

Comprehensive anthropogenic metal risk assessments can provide 
valuable information for risk management at sampling sites, which are 
less valuable for natural-sourced metals. Fig. 3 shows a Pb, Cd, Cu, and 
Mn being identified as human-caused metals with an EF greater than 
10 (Fig. 3a), while an Igeo greater than 0 was found only with Cd as 
shown in Fig. 3(b) as shown in Fig. 3.

A study conducted by Wu et al. (2019) found that augmented fac-

tors of heavy metals (Cd and Pb) in PM2.5 were mainly from anthro-

pogenic sources. Therefore, the variation of EF source contributions 
should be influenced by meteorological factors and environmental con-

ditions (Chen et al., 2021). Furthermore, agricultural emissions of Cd 
and Pb in the ago-ecosystem have been shown to have a source harm-

ful impact and can cause various long-term health issues (Pongpiachan 
et al., 2017). Thus, the following analysis of the human health risk as-
6

sessment focuses mainly on the four metals. The findings of this study 
are based on the comparison of emissions from sources of human ac-

tivities. However, the most important control measures must be taken 
into consideration, especially the air quality in which people live in the 
sampling area or nearby.

3.4. Human health risk assessment of heavy metal’s exposure in PM2.5

Heavy metals are considered pollutants to humans as well as the 
environment. Therefore, this study also focuses on two heavy metals 
(Cd and Pb) has been proven to be hazardous to human health (Briffa et 
al., 2020; Tchounwou et al., 2012). Considering that Cd is classified as a 
Group 1 (carcinogenic), while Pb is classified as a Group 2A (probably 
carcinogenic). The health risk values are overestimated as the health 
risk assessment was conducted using total heavy metal concentration. 
The appropriate heavy metal form to be used is the bioavailability form 
to be applied in HRA (Praveena et al., 2015; Zheng et al., 2020). Hence, 
these heavy metal data were used for the carcinogenic risk assessments 
among humans as shown in detail below

3.4.1. Non-carcinogenic risks

The risk to human health in the urban area (residential and uni-

versity), industrial zone, and agricultural zone of Khon Kaen Province, 
Northeast Thailand through various ways of exposure merits investi-

gations and surveillance. Furthermore, Table 4 illustrates the six an-

thropogenic metals that cause health risks in children and adults. The 
following order was used: Pb, Cd, Cu, Mn, Zn, and Al, to study contri-

butions in urban areas (university, and residential), and industrial zone 
and agricultural zone with the total HI value of >1.0 for these four 
sampling sites which demonstrated the total non-carcinogenic risk ex-

ceeded the safe level revealed, the potential health risk is quite high 
for Cd and Pb that the integrated effects of multi-metal exposure in the 
urban area (university, and residential), industrial, and agricultural of 
sampling sites, might result in severe non-carcinogenic risk. The results 
of this study found that HI was at a level that was at risk for chronic 
health effects. In line with the findings of Pongpiachan et al. (2017), 
metal studies in PM2.5 in Bangkok from 17 November to 30 April 2011 
found that the HI values of Cu, Zn, Cd, and Pb were at safe levels. Cor-

responding to the study, PM2.5-bound heavy metal in the urban area 
of Kitayushu, Japan reported the total of heavy metals with a corre-

sponding HI of 7.8 and mainly comprising ingestion exposure pathways 
followed by dermal contact, and inhalation for adults and among chil-

dren, the route of entry into the body is through ingestion, inhalation, 
and dermal contact (Zhang et al., 2021). As per this study, HIing, HIinh, 
and HIder, indicated that the primary source of exposure was inhalation, 
followed by ingestion and contact through skin. In addition, researchers 
discovered that exposure to urban traffic-related air pollution had geno-

toxic effects on children in Malaysia’s Klang Valley (Hisamuddin et al., 
2020). Therefore, it is important to put in place a long-term plan to re-

duce the levels of Cd and Pb in urban dust, by promoting the use of 
electric vehicles, cycles and encouraging citizens to use public trans-

portation (Pongpiachan et al., 2017), and conducting further research 
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Fig. 3. Enrichment factors (a) and Geo-accumulation indexes (b) of seven metals in PM2.5.

Table 4. Summary of estimation human health risk for children and adults due to exposure of heavy metals for non-carcinogenic risk.

Sampling site Group
Non-carcinogenic risk*

CDIing ECinh DADder HQing HQinh HQder HI

University area Children 3.9 × 10−6 2.2 × 10−1 2.4 × 10−7 0.00 2.61 0.00 2.61

Adults 8.2 × 10−7 1.6 × 10−1 7.1 × 10−8 0.00 1.95 0.05 2.00

Residential area Children 8.5 × 10−6 4.7 × 10−1 5.7 × 10−7 0.00 10.73 0.00 10.73

Adults 1.7 × 10−6 3.5 × 10−1 1.7 × 10−7 0.00 8.02 0.00 8.02

Industrial zone Children 3.2 × 10−5 0.17 × 101 1.3 × 10−6 0.00 21.51 0.00 21.51

Adults 6.6 × 10−6 0.13 × 101 1.6 × 10−6 0.00 2.92 0.00 2.92

Agricultural zone Children 2.7 × 10−6 2.1 × 10−1 1.1 × 10−6 0.00 1.90 0.00 1.90

Adults 8.1 × 10−7 1.6 × 10−1 3.2 × 10−7 0.00 1.53 0.00 1.53

* Total of metal includes Pb, Cd, Cu, Mn, Zn, and Al for exposure and health risk assessment.
on the sources of air pollution and steps to control air pollution, such 
as open burning and waste incineration facilities.

3.4.2. Carcinogenic risks

In addition, Pb and Cd were carcinogens among two heavy metals. 
The CR values of Pb among children in university, residential, indus-

trial, and agricultural were 1.00 × 10−8, 1.71 × 10−8, 2.22 × 10−6, 
and 1.95 × 10−7, respectively, and Cd where the CR values were 3.34 
× 10−2, 0.23 × 101, 0.12 × 101, and 4.11 × 10−2, respectively. In this 
study, the risk of above the safe level i.e. ≥ 10−1, revealed a high level of 
carcinogenic risk for children living in the urban area (residential) and 
industrial zone while the results that high carcinogenic risk (10−3 ≤ CR 
< 10−1) (Roy et al., 2019; Zhang et al., 2021) for the urban area (uni-

versity) and agricultural area. As compared with adults, the CR values 
of Pb among children in university, residential, industrial, and agricul-

tural were 4.00 × 10−9, 5.00 × 10−7, 6.48 × 10−7, and 5.70 × 10−8, 
respectively, and Cd where the CR values were 8.10 × 10−8, 4.40 ×
10−1, 2.28 × 10−1, and 7.70 × 10−3, respectively. However, the risk 
level in this study above the safe level 10−3 ≤ CR < 10−1, revealed 
a higher risk of carcinogenic for adults living in urban areas (residen-

tial and industrial), and agricultural zone exempt in university area the 
results that very low carcinogenic risk (CR ≤ 10−6) (Roy et al., 2019; 
Zhang et al., 2021). In total, the combined carcinogenic risk for children 
and adults’ (university, residential, industrial, and agricultural) was also 
above the acceptable limits, it was found that the Cd of carcinogenic 
risk obtained was high than the ceiling value of 10−6, which is signifi-

cant based on the USEPA standards; it becomes evident to conclude that 
Cd increases the lifetime cancer risk; except for adults living in univer-

sity areas, the levels were very low for carcinogenic risk. In addition, 
they comprise the majority of exposure dose assessments among chil-

dren and adults were CRing, CRder, and CRing (Table 5). Based on the 
results of the health risk assessment, it is evident that in the urban area 
7

(such as university, residential), industrial zone, and rural agricultural 
of Khon Kaen Province, Thailand, exposure to PM2.5 could significantly 
influence the environmental risks. Furthermore, children’s health is at 
higher non-carcinogenic and carcinogenic risk than adults. Addition-

ally, Pb, Cd, Cu, Mn, Zn, and Al were found to be in abundance. As a 
result, when PM2.5-bound heavy metals are introduced into the body, 
particularly through the respiratory system, they encourage and induce 
health problems.

4. Conclusions

In this study ambient air was collected between December 2020 and 
February 2021 (dry season) at a sampling site in the urban area (uni-

versity and residential), industrial zone, and agricultural zone of Khon 
Kaen Province, Northeast Thailand. The heavy metals loaded in PM2.5
of 70% found the highest concentration in industrial areas, followed 
by residential, university, and agricultural areas at 15%, 9%, and 6%, 
respectively. In all the study areas, the EF values of heavy metals in-

fluenced by human activities in PM2.5 were Cd, Pb, Cu, Mn, Zn, Al, 
and Fe, respectively, while only one 𝐼geo of Cd was found in industrial 
zones (biomass or waste incinerated plant) of four human activity sites 
at the level of uncontaminated to moderately contaminated. The results 
of this study found that only six heavy metals in PM2.5 showed severe 
non-carcinogenic risk; giving the probability of chronic effects among 
the children and adults. The contributions of the studied metals are in 
the following order: Pb, Cd, Cu, Mn, Zn, and Al in the university area, 
residential area and industrial zone, agricultural zone with the total HI 
value of >1.0. In addition, exposure to a total of heavy metals could 
cause high to very high carcinogenic risk for children among residen-

tial areas, and industrial zones with TCR values of 0.23 × 101, and 0.12 
× 101, respectively, which resulted in a high carcinogenic risk in the 
3.34 × 10−2, and 4.11 × 10−2 of the university and agricultural zone. 
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Table 5. Summary of estimation human health risk for children and adults due to exposure of heavy metals for carcinogenic risk.

Sampling site Group Metal Carcinogenic risk

CDIing ECinh DADder CRing CRinh CRder CR

University area Children Pb 7.43 × 10−9 4.10 × 10−4 2.08 × 10−9 0.00 5.00 × 10−9 2.00 × 10−9 1.00 × 10−8

Cd 1.09 × 10−9 6.02 × 10−5 3.05 × 10−12 3.34 × 10−2 3.34 × 10−2

Cu 3.33 × 10−9 1.84 × 10−4 9.33 × 10−11

Mn 2.80 × 10−8 1.55 × 10−3 7.85 × 10−10

Zn 8.62 × 10−11 4.76 × 10−6 2.41 × 10−12

Al 1.64 × 10−8 9.07 × 10−4 4.60 × 10−10

SUM 1.00 × 10−7 3.11 × 10−3 3.42 × 10−9 0.00 3.34 × 10−2 2.00 × 10−9 3.34 × 10-2

Adults Pb 1.54 × 10−9 3.06 × 10−4 6.14 × 10−10 0.00 4.00 × 10−9 1.00 × 10−9 4.00 × 10−9

Cd 2.26 × 10−10 4.50 × 10−5 9.01 × 10−13 8.10 × 10−8 8.10 × 10−8

Cu 6.90 × 10−10 1.37 × 10−4 2.75 × 10−11

Mn 5.81 × 10−9 1.16 × 10−3 2.32 × 10−10

Zn 1.78 × 10−11 3.56 × 10−6 7.12 × 10−13

Al 3.40 × 10−9 6.78 × 10−4 1.36 × 10−10

SUM 1.17 × 10−8 2.32 × 10−3 1.01 × 10−9 0.00 8.50 × 10−8 1.00 × 10−9 8.5 × 10-8

Residential area Children Pb 9.99 × 10−8 4.57 × 10−3 5.79 × 10−9 1.00 × 10−9 5.50 × 10−8 1.65 × 10−6 1.71 × 10−8

Cd 9.27 × 10−8 4.23 × 10−3 5.37 × 10−11 0.23 × 101 0.23 × 101

Cu 2.73 × 10−8 1.25 × 10−3 1.58 × 10−10

Mn 2.04 × 10−7 9.31 × 10−3 1.18 × 10−9

Zn 3.02 × 10−10 1.38 × 10−5 1.75 × 10−12

Al 1.61 × 10−7 7.35 × 10−3 9.32 × 10−10

SUM 5.85 × 10−7 2.67 × 10−2 8.12 × 10−9 1.00 × 10−9 0.23 × 101 1.65 × 10−6 0.23 × 101

Adults Pb 1.71 × 10−8 8.53 × 10−4 1.71 × 10−9 0.00 1.00 × 10−8 4.88 × 10−7 5.00 × 10−7

Cd 1.59 × 10−8 7.92 × 10−4 1.59 × 10−11 4.40 × 10−1 4.40 × 10−1

Cu 4.68 × 10−9 2.33 × 10−4 4.67 × 10−11

Mn 3.50 × 10−8 1.74 × 10−3 3.48 × 10−10

Zn 5.17 × 10−11 2.57 × 10−6 5.16 × 10−13

Al 2.76 × 10−8 1.37 × 10−3 2.75 × 10−10

SUM 1.00 × 10−7 5.00 × 10−3 2.40 × 10−9 0.00 4.40 × 10−1 4.88 × 10−7 4.40 × 10-1

Industrial zone Children Pb 2.69 × 10−8 5.94 × 10−3 7.53 × 10−9 0.00 7.10 × 10−8 2.15 × 10−6 2.22 × 10−6

Cd 9.96 × 10−9 2.20 × 10−3 2.79 × 10−11 0.12 × 101 0.12 × 101

Cu 1.83 × 10−8 4.04 × 10−3 5.12 × 10−11

Mn 2.26 × 10−7 5.00 × 10−2 6.33 × 10−9

Zn 4.32 × 10−10 9.55 × 10−5 1.21 × 10−11

Al 1.72 × 10−7 3.80 × 10−2 4.82 × 10−9

SUM 4.54 × 10−7 1.00 × 10−1 1.88 × 10−8 0.00 0.12 × 101 2.15 × 10−6 0.12 × 101

Adults Pb 2.23 × 10−8 1.11 × 10−3 2.22 × 10−9 0.00 1.30 × 10−8 6.35 × 10−7 6.48 × 10−7

Cd 8.25 × 10−9 4.11 × 10−3 8.23 × 10−12 2.28 × 10−1 2.28 × 10−1

Cu 1.52 × 10−8 7.55 × 10−4 1.51 × 10−10

Mn 1.87 × 10−7 9.33 × 10−3 1.87 × 10−9

Zn 3.58 × 10−10 1.78 × 10−5 3.57 × 10−12

Al 1.43 × 10−7 7.11 × 10−3 1.42 × 10−9

SUM 3.76 × 10−7 1.87 × 10−2 5.68 × 10−9 0.00 2.28 × 10−1 6.35 × 10−7 2.28 × 10-1

Agricultural zone Children Pb 2.35 × 10−9 5.20 × 10−4 6.59 × 10−10 0.00 6.00 × 10−9 1.88 × 10−7 1.95 × 10−7

Cd 3.36 × 10−10 7.41 × 10−5 9.40 × 10−13 4.11 × 10−2 4.11 × 10−2

Cu 1.02 × 10−8 2.25 × 10−3 2.86 × 10−10

Mn 2.44 × 10−8 5.39 × 10−3 6.83 × 10−10

Zn 1.03 × 10−9 2.28 × 10−4 2.89 × 10−11

Al 1.73 × 10−8 3.83 × 10−3 4.86 × 10−10

SUM 5.57 × 10−8 1.23 × 10−2 2.14 × 10−9 0.00 4.11 × 10−2 1.88 × 10−7 4.11 × 10-2

Adults Pb 1.95 × 10−9 9.71 × 10−5 1.94 × 10−10 0.00 1.00 × 10−9 5.60 × 10−8 5.70 × 10−8

Cd 2.78 × 10−10 1.38 × 10−5 2.77 × 10−11 7.70 × 10−3 7.70 × 10−3

Cu 8.46 × 10−9 4.21 × 10−4 8.43 × 10−10

Mn 2.02 × 10−8 1.01 × 10−3 2.02 × 10−9

Zn 8.54 × 10−10 4.25 × 10−5 8.52 × 10−11

Al 1.44 × 10−8 7.16 × 10−4 1.43 × 10−9

SUM 4.61 × 10−8 2.30 × 10−3 4.60 × 10−9 0.00 7.70 × 10−3 5.60 × 10−8 7.70 × 10-3
8



P. Sakunkoo, T. Thonglua, S. Sangkham et al. Heliyon 8 (2022) e09572
Adults were found to be exposed to risks that were beyond the safe level 
10−3 ≤ CR < 10−1, showing a high carcinogenic risk for adults living in 
the urban area (residential) and industrial zone, and agricultural zone 
exempt in university area the results that very low carcinogenic risk 
(CR ≤ 10−8). The most effective strategy to reduce the exposure risk to 
the PM2.5 seems to be through the inhalation route in children around 
and self-protection (considerations mask-wearing outdoors), especially 
in urban areas, industrial zones, and biomass and waste open burning. 
Further investigation of appropriate process and long-term monitoring 
for source identification is much needed.
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