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Islet gene expression has been widely studied to better
understand the transcriptional features that define
a healthy b-cell. Transcriptomes of FACS-purified a-,
b-, and d-cells using bulk RNA-sequencing have facili-
tated our understanding of the complex network of cross
talk between islet cells and its effects on b-cell function.
However, these approaches were by design not intended
to resolve heterogeneity between individual cells. Sev-
eral recent studies used single-cell RNA sequencing
(scRNA-Seq) to report considerable heterogeneity within
mouse and humanb-cells. In this Perspective, we assess
how this newfound ability to assess gene expression at
single-cell resolution has enhanced our understanding of
b-cell heterogeneity. We conduct a comprehensive as-
sessment of several single human b-cell transcriptome
data sets and ask if the heterogeneity reported by these
studies showed overlap and concurred with previously
known examples of b-cell heterogeneity. We also illus-
trate the impact of the inevitable limitations of working
at or below the limit of detection of gene expression at
single cell resolution and their consequences for the
quality of single–islet cell transcriptome data. Finally,
we offer some guidance on when to opt for scRNA-
Seq and when bulk sequencing approaches may be
better suited.

Type 1 diabetes (T1D) and type 2 diabetes (T2D) affect
roughly 14% of the population and are the seventh leading
causes of death in the U.S. (1). T1D is characterized by
autoimmune-mediated b-cell destruction within the pan-
creas. T2D is characterized by increased peripheral insulin
resistance, which eventually unmasks and/or precipitates
b-cell dysfunction (2). Consequently, the field has mostly
focused on b-cells, despite the fact that pancreatic islets of

Langerhans contain at least five different hormone-
secreting endocrine cell types, supported by a constellation
of auxiliary cells, whose clustering supports coordinated
secretion of insulin and glucagon to maintain nutrient
homeostasis (3–5). The spatial distribution of these cells
within islets varies between human and mouse models, but
b-cells are the most abundant endocrine cell type in both
species, followed by a-cells, d-cells, and a lower number of
g-/pancreatic polypeptide cells and e-cells (6,7).

While islet isolation is a routine procedure, the close
association of all of these endocrine and auxiliary cell types
within the islet has long complicated the isolation and
purification of homogeneous populations of each islet cell
type. Consequently, changes in gene and protein expres-
sion within intact isolated islets were often attributed
to b-cells, as they are numerically the most abundant islet
cell type within the islet. Clearly, this ignores the fact that
multiple additional endocrine cells, as well as endothelial
cells, macrophages, glia, fibroblasts, and pericytes collec-
tively make up the pancreatic islet (8–11). b-Cell dysre-
gulation and dysfunction are a prominent factor in
disrupted insulin secretion and blood glucose control,
but major functional and transcriptional changes also
occur in a-cells (12,13), as well as vasculature (14), that
are difficult to detect or distinguish from changes to b-cells
at the level of the intact islet.

RESOLVING DIFFERENCES BETWEEN ISLET
ENDOCRINE CELLS

Purification of b-cells had initially been achieved on the
basis of autofluorescence (15), an approach that works
reasonably well. Subsequent strategies have improved this
approach by generating transgenic reporter lines that
express fluorescent markers such as GFP or mCherry
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specifically in b-cells (16,17). However, neither strategy
can copurify pure a- or d-cells. Several groups have re-
cently resolved this limitation by generating combinations
of transgenic reporter mice that made it possible to isolate
pure populations of a-, b-, and d-cells from the same islet
by FACS. This has enabled the generation of comprehen-
sive transcriptomes of FACS-purified pools of mouse a-,
b-, and d-cells with .99% purity (17–19). For human
islets, the problem of purifying a- and b-cells was resolved
independently by the generation of a panel of antibodies
that enabled the purification of human a- and b-cells with
approximately 90% purity (20–22). The ability to purify
human islet cell types has allowed for further exploration
in human islet transcriptomics and the subsequent iden-
tification of genes that encode proteins exclusively
expressed in b-cells (23,24). However, cell-surface markers
are currently unable to isolate human d-cells or other,
more rare islet endocrine cells with reasonable purity by
flow cytometry.

PREVIOUSLY ESTABLISHED HETEROGENEITY

In addition to the heterogeneity that results from the
clustering of many different cell types within a functional
islet, it has long been evident that considerable heteroge-
neity exists within the b-cell population (21,25–29), and
likely within non-b populations of islet cells as well.
Functional heterogeneity among b-cells occurs with regard
to the glucose threshold and insulin secretory response of
individual b-cells (25,26,30). Heterogeneity in the expres-
sion of a number of markers, such as the peptide hormone
neuropeptide Y (NPY), tyrosine hydroxylase (TH), and
Dickkopf-3, by individual b-cells has also been reported
(31–34).

More recently, a series of articles have rekindled in-
terest in b-cell heterogeneity, with the description of
Flattop (Fltp)-expressingb-cells (27), ST8SIA1/CD9-positive
b-cells (21), Ucn3/Glut2-negative “virgin” b-cells (35,36),
“bottom” b-cells (named for the bottom of two FACS gates
used to isolate them [37]), and senescent b-cells (38). This
paints a landscape of b-cell heterogeneity that features
changes in marker expression over the life span of the
b-cell and/or in relation to the functional state of the b-cell
in health and disease. Understanding of this heterogeneity
would benefit greatly from transcriptional read-outs at
single-cell resolution. Indeed, a number of recent articles
have reported on single-cell transcriptomes of mouse and
human primary islet cells (39–49).

The great promise of sequencing at single-cell resolu-
tion is that this should resolve the considerable hetero-
geneity that exists among the individual b-cells that come
together in the islet. Here, we take stock of what these
recent single-cell studies have added to our understanding
of islet cell biology. We do so by asking two basic questions:
1) Have individual single-cell sequencing studies that are
similar in design resulted in comparable outcomes? 2) Did
single-cell approaches recapitulate well-known and vali-
dated examples of b-cell heterogeneity? In addressing

these two straightforward questions, we discuss areas
where single-cell approaches have made clear and tangible
contributions to our field. However, we also document
examples where single-cell sequencing approaches may
fall short of the unrealistically high expectations that exist
for this approach. We review and clarify some of the
underlying reasons that may have contributed to this
disconnect. Finally, we offer some guidance on when a single-
cell approach is preferred and what question may be better
resolved using a bulk RNA sequencing (RNA-Seq) ap-
proach.

VALIDATION OF NOVEL b-CELL HETEROGENEITY
IDENTIFIED IN SINGLE-CELL RNA-Seq STUDIES

As a first step in assessing the reported heterogeneity by
recent single-cell (sc)RNA-Seq studies of islets, we com-
pared b-cell heterogeneity that was highlighted by the
authors of several recent scRNA-Seq studies of human
pancreatic islets (43,44,46–48). The overall design for each
of these studies was to sequence dissociated islet cells of
human subjects at single-cell resolution, even though each
of these studies inevitably differed in the technical details
and the sequencing methodologies that were used (Sup-
plementary Table 1). Nevertheless, given the agreement in
the overall design, we reasoned that true heterogeneity
should emerge despite the inevitable variations in meth-
odologies and should be reproducible across individual
human donors in each of these studies. After all, if this
were not true, all observations that have emerged from
scRNA-Seq studies of human islets to date would be limited
only to the deceased islet donors who were the subject
of these studies and would not extend to the general
population.

To our surprise, not a single gene was highlighted after
manual annotation by the authors as heterogeneously
expressed across all five studies, and only a few genes
were highlighted independently by up to three scRNA-Seq
studies of human b-cells (Supplementary Fig. 1A and
Supplementary Table 2). This observation can be inter-
preted in two possible ways. It may be that the extent of
b-cell heterogeneity is so great that the human b-cell
scRNA-Seq studies to date have effectively undersampled
this heterogeneity. The alternative explanation is that the
detection of variation in gene expression across single
b-cells is dominated by noise resulting from operating
at or below the limit of detection of gene expression in
single-cell expression, causing false negatives to dominate
the list of heterogeneously detected b-cell genes. Moreover,
the short list of heterogeneously detected genes in b-cells
was notably lacking genes encoding proteins known to
demonstrate heterogeneous expression patterns among
b-cells (e.g., NPY, TH, UCN3, DKK3). This raises the
question whether scRNA-Seq approaches were able to ac-
curately detect expression of established markers of het-
erogeneity among b-cells. While many of these studies have
taken their analyses beyond single-gene transcriptomes,
i.e., gene set enrichment and multiparametric pathway
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analyses, our primarily focus was to evaluate whether
heterogeneity could accurately be recapitulated.

VALIDATION OF NOVEL HETEROGENEITY IN
b-CELLS

To determine the degree with which different scRNA-Seq
studies detect overlap in b-cell heterogeneity, we con-
ducted a meta-analysis of the five human scRNA-Seq
studies. Given that the overall design of each of these
studies was essentially the same and that differences
between these studies were limited to the inevitable
variation across human donors and variations in the
sequencing methods and analyses pipelines, we expected
to observe considerable overlap between each data set
(Supplementary Table 1). To further reduce any differ-
ences, we downloaded and reanalyzed the raw data
from each of the studies, generating an integrated
analysis that resolved each of the major pancreas popula-
tions (Fig. 1A–L and Approach & Tools in Supplementary
Data). We also verified that clustering was not driven by
the platform used or by donor (Supplementary Fig. 2A
and B).

We identified two subclusters within the b-cell pop-
ulation (Fig. 1A). By differential testing we identified
52 genes that drove variation between the two subpopu-
lations (P # 0.05; Supplementary Table 3). Notably,
G6PC2, MAFA, and NPY were detected within this list,
as were several non-b endocrine and acinar cell markers,
such as GCG, SST, PPY, PRSS, SOD2, and PDK4. Among the
52 genes were three genes—retinol-binding protein
4 (RBP4) (46–48), delta-like noncanonical Notch ligand
1 (DLK1) (43,44,46), and homocysteine-responsive
endoplasmic reticulum-resident ubiquitin-like domain
member 1 (HERPUD1) (44)—that had previously been
self-reported as heterogeneously expressed by one of
the original human scRNA-Seq studies. While multiparam-
eter signature analyses, such as gene set pathway testing,
can be a powerful tool to make meaning out of subtle
changes across varying genes, our small list of 52 did not
suffice for further downstream analysis.

Surprised by the fact that only a limited number of
genes drive variation between these two b-cell subpopu-
lations, and the fact that non-b markers featured prom-
inently in this list, we limited our analysis on only the
b-cells from healthy donors (Supplementary Fig. 3A).
Because these b-cells are more closely related to each
other than, for example, to a- and d-cells, clustering is
confounded significantly by study-related confounders
such as sequencing platform, genetic variation among
donors, and variations in islet collection and culture
parameters, suggesting that these contributions out-
weighed the contributions of true biological heterogeneity
to clustering of b-cells (Supplementary Fig. 3B and C).
Indeed, in a Venn diagram of the 2,000 genes that drove
clustering of b-cell subpopulations from healthy donors
for each individual study, only a distinct minority of 24
genes (1.2%) emerged as common drivers of heterogeneous

expression among b-cells across all five human b-cell
scRNA-Seq studies (Supplementary Table 4 and Supple-
mentary Fig. 3D–F). Moreover, approximately half of the
genes that drove clustering of b-cells were unique to that
particular data set and did not contribute to b-cell sub-
population clustering in each of the other human b-cell
scRNA-Seq data sets (Supplementary Fig. 3D). NPY was
the only gene encoding a known b-cell heterogeneity
marker on this list.

To confirm these results, we selected 10 of these
24 genes that had a low to high range of abundance to
evaluate how the expression of these genes compared
across the same five studies. We observed varying fractions
of b-cells with detectable expression (counts per million
[CPM] .1) (Supplementary Fig. 3E) and comparable dis-
tribution of gene expression in violin plots (Supplementary
Fig. 3F) for the majority of these 10 genes. Overrepresen-
tation of INS (Supplementary Fig. 4A) may have caused
poor library complexity by reducing the detection of other,
less abundant genes below the detection limit. This is
a general drawback of scRNA-Seq and explains in part
why the number of detectable genes in each single cell is
several-fold lower than the number of detectable genes in
the same sample processed for bulk RNA-Seq (50,51). Two
of the studies in our meta-analysis had the foresight to
include in their experimental design the parallel processing
of bulk samples from the same donors that were used to
generate scRNA-Seq libraries, although cold-ischemic and
postisolation culture times, as well as processing and
dissociation methods, varied between them (43,47). This
revealed that the average number of genes detectably
expressed in whole-islet bulk islet samples (CPM .1)
approximates 15,000, while the number of genes that
are detectably expressed in each single b-cell ranges
from 2,000 to 6,000 (Supplementary Table 1 and Supple-
mentary Fig. 4B and C), with the subset of genes that is
detected in each single b-cell in large part determined by
chance (52). To illustrate this heterogeneous detection, we
plotted the fraction of single human b-cells with detectable
expression for all genes ranked in descending order of
abundance (Fig. 2 and Supplementary Fig. 5A–E). This
revealed a clear correlation between the average level of
gene expression and the rate of detection in single human
b-cells across all five studies, with more abundant genes
detected in a larger fraction of b-cells. However, only an
exceedingly small number of 86 genes (0.46% of all de-
tectable genes; range 1 [0.005%]–153 [0.83%]) on average
was detectable across all single b-cells in any given study.
This is an obvious concern, as even the most conservative
estimates place the number of housekeeping genes—genes
required at all times in each cell—at several hundred (53).
Stated differently, for the large majority of genes
(.99.5%) heterogeneous detection in single b-cells is
the norm (Fig. 2 and Supplementary Fig. 5A–E). It is highly
unlikely that all of these genes are truly heterogeneously
expressed in b-cells. Instead, this observation indicates
that heterogeneous detection of expression in single cells
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may be a poor predictor of actual single b-cell expression.
Collectively, these observations suggest that heterogeneity
of detection that is observed across single human b-cells
may largely reflect the low fidelity of detection that is
a consequence of operating at or below the limit of detection

for a majority of transcripts. This may also have driven the
limited overlap among the shared set of genes that emerged
as common contributors to b-cell clustering across the five
human scRNA-Seq studies we assessed in our analysis.
Nevertheless, accumulated across all cells in a pool of single

Figure 1—Integrated analysis of five human pancreatic islet scRNA-Seq studies across healthy donors. A: Dimensional reduction through
uniform manifold approximation and projection across the five human studies identified clear clusters based on cell identity (see
Supplementary Data, Approach & Tools for details). Two subpopulation clusters emerged from this analysis within the b-cell group,
prompting for differential expression testing that identified 52 genes as significantly driving heterogeneity between the two (Supplementary
Fig. 3A) (P# 0.05). B–D: Dimensional reduction of our clustered population to confirm b-, a-, and d-cell clusters based on hallmark hormone
expression. E–L: Exploring gene presence across selected, established markers identified in b-cell heterogeneity. PP, pancreatic poly-
peptide. Data from 43,44,46–48.
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b-cell libraries, single b-cells correlate reasonably well with
their companion bulk samples and recapitulate the total
number of genes detectable in bulk (Supplementary Fig. 4D).

QUALITY OF DETECTION AND COVERAGE OF
SCRNA-Seq DATA

Prompted by the lack of congruence between scRNA-Seq
studies and the fact that partial detection of gene expres-
sion across only a subset of b-cells is the norm for the large
majority of genes, we further evaluated the quality of the
scRNA-Seq data in comparison with conventional bulk
RNA-Seq. All library preparation protocols can introduce
bias based on mRNA stability, guanine-cytosine (GC) con-
tent, and mRNA abundance. Time of islet culturing and
processing differ between studies as well, which may also
add to these biases. Moreover, some library preparation
protocols are 39 based, while others attempt to cover the
entire length of the transcript. In addition to this, most
scRNA-Seq approaches include two rounds of PCR ampli-
fication to exponentially amplify the extremely small
amount of input material present in a single cell but
that simultaneously amplify noise. We therefore evaluated
the coverage of reads across these genes using the Uni-
versity of California, Santa Cruz (UCSC) Genome Browser,

which is an excellent tool to visualize gene expression data
(54). We chose to use the data from Segerstolpe et al. (47)
for this exercise, as theirs was one of the studies that
included parallel single-cell and bulk sequencing from the
same human islet samples. Other islet scRNA-Seq data
perform similarly (see below). The sequence read coverage
of INS (insulin), the most abundantly expressed b-cell
gene, was homogeneous across the length of the gene
model from 39 to 59 and the reads faithfully captured
the known intron/exon structure of the coding strands in
each of the 161 individual b-cells in this study (47) (Fig. 3A
and Fig. 4C–G). In sharp contrast, coverage of the well-
known b-cell transcription factor MAFA that was uni-
formly covered in bulk RNA-Seq companion data was
marred by serious 39 bias in single–b-cell transcriptomes
(Fig. 3B), a consequence of the oligo-dT priming step used
to preferentially amplify mRNA from its poly-A tail
over contaminating ribosomal RNA species (Fig. 3B).
Moreover, no MAFA was detected (CPM .1) in 36 out
of 161 (22%) b-cells (Fig. 3B), which is hard to reconcile
with the general view of MAFA as an important b-cell
transcription factor necessary for b-cell maturity that is
detectable by immunohistochemistry in the nucleus of
88% of human b-cells (55). In parallel, when evaluating

Figure 2—Abacus-style plot for detection of variance across all detectable genes within single-cell libraries. Transcriptome-wide
representation of the fraction of single human b-cells where each gene is detected. Genes are ranked in descending order of average
expression level; CPM .0 was used as the detection threshold. Key b-cell genes are highlighted across the plot to identify rank order of
abundance (see Fig. 4A). The large majority of genes are heterogeneously detected; between 0.005% and 0.83% of all genes are detected in
all b-cells in any given study. See Supplementary Fig. 5A–E for expanded view. Data from 43,44,46–48.
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MAFA capture across all five studies, less than 50% of
cells in the b-cell cluster had detectable expression as
determined through Seurat (56) (Fig. 1G). Using the
same approach across the study’s 443 single a-cell
libraries revealed uniform coverage of the abundant
GCG transcript in each single a-cell library (Fig. 3C).
However, the transcription factor ARX, which is required
for a-cell identity (57,58), was not detected at all in 18%
of a-cells with evidence of significant 39 bias in incomplete
coverage in the a-cells with detectable ARX expression
(Fig. 3D).

REPRODUCING KNOWN b-CELL GENE
EXPRESSION
These observations raise the question of whether the
heterogeneous detection of mRNA expression in single
b-cells reflects true biological heterogeneity in gene ex-
pression or instead is a product of the inherent limitations
of scRNA-Seq. Therefore, we queried if single b-cell tran-
scriptomes accurately detected genes encoding for proteins
that are required by every single b-cell, as well as genes that
encode for proteins with well-documented and validated
heterogeneous expression across the b-cell population

Figure 3—Visualizing the detection across the gene model between single and bulk sequencing. A: UCSC Genome Browser comparing the
read coverage of insulin (INS) between the Segerstolpe et al. (47) healthy single b-cell population (n = 161) and their companion bulk islet
libraries. B: MafA is an established b-cell marker that is poorly detected in single human b-cells. C: The highly abundant expression of GCG
uniformly covered in single human a-cells (n = 443).D: The important a-cell transcription factor ARX, in contrast, is captured poorly in healthy
single a-cells.
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Figure 4—Comparison of detection of established b-cell markers in single b-cells comparing RNA-Seq and immunohistochemistry and
coverage across the gene body of established b-cell markers detected by scRNA-Seq. A: Fraction of single human b-cells with detectable
expression (CPM .1) across five human b-cell scRNA-Seq studies, compared with the fraction of human b-cells reported to express the
corresponding protein (Supplementary Table 5A). The majority of genes are underdetected in human scRNA-Seq compared with the fraction
of human b-cells that express the corresponding protein. B: The approach used in Fig. 4A, applied to established b-cell markers comparing
two mouse scRNA-Seq studies and expression of the proteins encoded by these genes (Supplementary Table 5B). C–V: UCSC Genome
Browser plots of read coverage across these genes, using single–b-cell libraries and companion bulk sequencing across all studies and
platforms, highlighting differences between full-length and 39-based capture (43,44,46–48).
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(Supplementary Table 5). In addition to INS, examples
include transcription factors such as PDX1 (57), NKX6.1
(59), PAX6 (60), and MAFA (61), as well as proteins
required for normal stimulus-secretion coupling, insulin
processing, and exocytosis such as SLC2A1 (62), GLP1R
(63), ABCC8 (64), KCNJ11 (65), GCK (66), G6PC2
(67), KCNB1 (65), ERO1B (68), VAMP2 (69), SNAP25
(69), and UCN3 (70). With the exception of PDX1, MAFA,
and SLC2A1, all of the proteins encoded by these genes are
detected in more than an estimated 95% of human b-cells
in healthy islets by immunohistochemical techniques. How-
ever, mRNA for all but the most abundantly expressed of
these genes is consistently detected in a decidedly smaller
fraction ofb-cells than stain positive for the protein product
they encode (Fig. 4A). NKX6.1, UCN3, KCNJ11, and KCNB1
transcripts are detected in a particularly low fraction of
b-cells. One possible explanation for this is intermittent
transcription, where transcription occurs in discrete
bursts that underlies stable protein expression (71). How-
ever, if this is the case, one would expect uniform coverage
gene body capture for the subset of b-cells that would have
been captured during the burst phase of expression for
that gene. Instead, UCSC Genome Browser plots for these
genes indicate widespread 39 bias and underrepresentation
of many known b-cell genes, even those that are expressed
at medium to high transcript levels such as UCN3, MAFA,
and NKX6-1 (Fig. 4H–V). This is a likely consequence of
working at or below the level of detection of scRNA-Seq
approaches. One uncommon example with read coverage
across the full gene model was observed in a distinct subset
of b-cells for DLK1, which reflects a pattern in line with
burst transcription (Supplementary Fig. 6A–E). ST8SIA1
and CD9, two genes that encode protein markers recently
used to distinguish four distinct human b-cell types (21),
are also consistently underdetected in single–human b-cell
transcriptomes. A similar set of ubiquitous b-cell genes
that are expressed at medium to high levels in mouse b-cell
transcriptomes are detected in a higher fraction of b-cells,
although large discrepancies remain for Glp1r and Mafa
(Fig. 4B).

ASSESSING SINGLE-CELL SEQUENCING QUALITY

Until this point, we have largely used the fraction of b-cells
with detectable expression (CPM .1) of a given gene as
a metric of the fidelity of scRNA-Seq (Fig. 2, Supplemen-
tary Fig. 1B, and Supplementary Fig. 3E). This revealed
that heterogeneous detection and significant 39 bias is the
norm for single–human b-cell transcriptomes, irrespective
of investigator, approach, or platform (Supplementary
Table 1). To better quantify the gap in quality of gene
coverage between single-cell and bulk sequencing
approaches, we adopted the transcript integrity number
(TIN) score (72). This metric ranges between 0 and
100 and is calculated after library preparation and se-
quencing to reflect the quality and uniformity of read
coverage across the gene model. A high TIN score for
a gene reflects uniform read coverage across the gene

model, while a low TIN score reflects uneven coverage
across the gene model owing to 39 bias, GC bias, or
transcript degradation (Fig. 3 and Supplementary Fig.
7). TIN scores strongly correlate with the RNA integrity
number, a measure of RNA quality used to assess input
RNA quality before library preparation.

To visualize the relationship between gene expression
and quality of its representation in single-cell versus bulk
RNA-Seq approaches, we compared the correlation of TIN
scores and gene expression among five human (43,44,46–48)
and two mouse single-cell studies (42,45) with two mouse
(18,19) and three human bulk islet RNA-Seq data sets
(43,47,73). For bulk RNA-Seq approaches, there is essen-
tially no drop-off in TIN score with lower gene expression
(expressed as CPM) until CPM values are ,5 (Fig. 5A). In
other words, in bulk RNA-Seq approaches, the quality of
the coverage of gene expression across the gene model
from 59 to 39 is both high and independent of transcript
abundance unless gene expression is quite low. In sharp
contrast, in scRNA-Seq, there is a very clear effect of the
abundance of gene expression on TIN score across the full
range of transcript abundance values. Even at highly
abundant transcripts with CPM values .100, TIN scores
remain well below those of similarly abundant genes
detected via bulk RNA-Seq. This reflects the drop-off in
the quality of sequence coverage that is the consequence of
working at or below the level of detection in scRNA-Seq
approaches. Limiting analysis to only genes with a consis-
tently high TIN score would yield more reliable and re-
producible results but would also drastically undercut the
number of genes that are included in the analysis, as
over half of the genes detected in human b-cell scRNA-
Seq have TIN scores ,20. A comparison of TIN score
cutoff versus CPM cutoff to the fraction of remaining
genes suggests that TIN score cutoffs are a better metric
than CPM cutoffs to separate high- and medium-quality
read data (Fig. 5B).

Conversely, for bulk RNA-Seq samples, significant num-
bers of genes are excluded from the analysis only when the
TIN quality threshold is raised over 50 (Fig. 5C).

CROSS-CONTAMINATION IN SINGLE–ISLET CELL
TRANSCRIPTOMES

One question that continues to stir debate in the field is
whether healthy b-cells transcribe GCG at low abundance
and conversely if a-cells transcribe INS. Indeed, the a-cell
cluster in our study clearly contains lower but detectable
levels of INS, and b-cells had detectable levels of GCG (Fig.
1B and C). While cells that coexpress insulin and glucagon
protein are regularly observed during embryonic devel-
opment and in stem cell–derived b-cell–like cultures
(32,74,75), they are exceedingly rare in healthy adult islets
(76,77). However, this does not rule out translational
inhibition of GCG in b-cells and INS in a-cells. Indeed,
bulk RNA-Seq data of FACS-purified mouse a-cells detect
Ins2 expression at 80- to 170-fold lower than Ins2 in b-cells
from the same islets (Fig. 6A) (18). Similarly, Gcg is detected
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in FACS-purified b-cells at 220-fold lower levels than its
expression in a-cells (Fig. 6B) (18). This relatively low level
of detectable reads could be caused by cross-contamination
during FACS purification. While doublets, including those
consisting of an a-cell and a b-cell, are normally gated out
before collection, a well-calibrated FACS running at a con-
servative speed has an error rate less than 1%. In the
context of FACS purification of dissociated islet suspen-
sions, this means that fewer than 1% of the events that are
sorted as b-cells are in fact a non–b-cell, possibly an a-cell.
Since GCG accounts for up to 20% of all reads in the a-cell
pool (17,18), a couple of contaminating a-cells could suffice
to explain the detection of Gcg in transcriptomes of bulk
FACS-purified b-cells.

Single-cell approaches ostensibly do not suffer from this
confounder as they assess transcription in individual cells.
Indeed, 0.2–1.5% of all reads in single human b-cells map
to GCG and 0.001–1.109% of reads in single human a-cells
map to INS. These observations at face value have been

suggested as definitive proof that b-cells express GCG and
a-cells express INS. However, Macosko et al. (78), in their
original article describing the Drop-Seq approach, con-
ducted a key control experiment that is often over-
looked but is of direct relevance in this discussion. They
approached the question of contamination at the single-
cell level by mixing human HEK cells and mouse 3T3 cells
prior to droplet formation and single-cell sequencing. They
observed that an average of 0.26–2.44% of the reads in
each and every single cell mapped uniquely to the genome
of the other species (Fig. 6C). As they demonstrate, this can
only be explained by the integration of free-floating or
naked mRNA derived from cells that were disrupted by
generating cell suspensions into libraries constructed from
single cells that did not actually express the message (78).
This problem is not unique to the Drop-Seq approach but
will affect any procedure where tissues are dissociated into
a single-cell suspension in preparation of single-cell se-
quencing or FACS sorting in bulk RNA-Seq approaches

Figure 5—Visualization of the difference in sequence quality between single-cell and bulk RNA-Seq. A: Average TIN quality score plotted
against transcript abundance in CPM across five human and two mouse single-cell and bulk RNA-Seq data sets. Note the large difference in
quality between single-cell and bulk RNA-Seq data and that TIN scores in bulk are uniformly high irrespective of transcript abundance. B:
Progressive application of a CPM threshold leads to the exclusion of similar relative numbers of genes between single-cell and bulk data sets
(after correcting for the fact that single-cell libraries detect between 2,000 and 6,000 genes, while bulk libraries detect around 16,000 genes).
C: Progressive application of a TIN threshold leads to the rapid exclusion of genes from single-cell data sets but only effects bulk RNA-Seq
data sets at much more stringent TIN score cutoffs. Data from human (43,44,46–48) and mouse (42,45) scRNA-Seq and human (43,47,73)
and mouse (18,19) bulk RNA-Seq.
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(78). This relatively low level of cross-contamination will
likely not meaningfully affect detection of the large ma-
jority of genes. However, INS and GCG are expressed so
abundantly in b- and a-cells, respectively, that their cross-
detection could be explained entirely by contamination
of free-floating mRNA (Fig. 6D–F). These observations
do not rule out true GCG expression by b-cells. However,
the detection of GCG in single–b-cell transcriptomes
at levels below those estimated through the species

cross-contamination paradigm established by Macosko
et al. (78) cannot be taken as proof that b-cells actually
express GCG mRNA.

FUTURE OUTLOOK
The fact that we can now detect and attempt to quantify
gene expression in single cells is in itself a remarkable
achievement. A survey of b-cell gene expression at single-
cell resolution across hundreds or even thousands of

ls ls

Figure 6—Detection of GCG in b-cells and INS in a-cells in bulk and scRNA-Seq.A: Detection of Ins2 in FACS-purifiedmouse a-cells at 260-
fold lower levels compared with b-cells from the same islets. Data from DiGruccio et al. (18). B: Detection of Gcg in FACS-purified mouse
b-cells at 100-fold lower levels compared with a-cells from the same islets. Data from DiGruccio et al. (18). C: Species mixing experiments
between cell lines of mouse and human origin have illustrated that 0.26–2.44%of all reads detected in single-cell libraries uniquelymapped to
the other species. Data fromMacosko et al. (78).D: Fraction of readswithin 161 single–b-cell libraries thatmaps to GCG, and fraction of reads
within 443 single a-cell libraries that maps to INS. Data from Segerstolpe et al. (47). The INS and GCG cross-detection is below the threshold
of species contamination established by Macosko et al. (78). Given the extremely high abundance of INS and GCG, their detection in single
a- and b-cells, respectively, may not be evidence of actual gene expression. E: Coverage of INS across all single b- and a-cell libraries.
Data from Segerstolpe et al. (47). F: Coverage of GCG across all single a- and b-cell libraries. Data from Segerstolpe et al. (47).
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individual cells is a very enticing prospect that would
resolve some of the long-known heterogeneity among
b-cells with regard to their functional state or proliferative
status. However, in attempting to detect gene expression
in single b-cells, it has become obvious that we are
operating at or below the limit of reliable detection for
a large majority of genes. This comes at a steep price with
regard to the quality of the single-cell sequence data that is
obtained, irrespective of the investigating laboratory or
the chosen single-cell approach.

In this Perspective, we have illustrated these inherent
limitations of scRNA-Seq applied to adult human islet cells
by pointing out the underestimation of the number of
detected genes per single cell and by applying TIN scores as
a quantitative measure of the incomplete coverage and 39
bias that affects all genes, from rare to highly abundant. By
comparison, the quality of the gene coverage in bulk RNA-
Seq samples is so much better that it is quite possible that
the coverage and data quality of scRNA-Seq may not
approach that of bulk RNA-Seq for some time. Therefore,
for each experiment investigators need to determine if
transcript detection at single-cell resolution is worth these

inevitable drawbacks (Fig. 7). Given the large quality gap
between single-cell versus bulk transcriptome data, we
would advocate for a bulk transcriptome approach, if
compatible with your experimental question, in spite of
the perceived novelty of single-cell sequencing. Evidently,
if transcriptional heterogeneity among b- or a-cells is the
central focus of a study, scRNA-Seq experiments may be
the only choice, unless a known marker for these sub-
populations can be leveraged to isolate these cells by FACS
for bulk sequencing. Nevertheless, our illustration that—
with the exception of a handful of the most highly abun-
dant transcripts—every single gene is detected in only
a fraction of b-cells questions the ability of scRNA-Seq to
discern true heterogeneous expression amid widespread
heterogeneous detection. Case in point is the fact that
none of the many markers of known heterogeneity were
independently identified by any of the “unbiased” scRNA-
Seq approaches, with some acknowledging their inability
to do so (43). Therefore, any observation derived from
single-cell or bulk RNA-Seq experiments should—wherever
possible—be subject to rigorous validation using indepen-
dent approaches that can achieve single-cell resolution, such

Figure 7—Workflow to align the appropriate sequencing approaches with the stated experimental goal. Starting from five common
experimental scenarios, this flowchart offers guidance to the reader to facilitate the choice for the different experimental strategies available,
considering their benefits and drawbacks. FISH, fluorescence in situ hybridization.
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as RNA fluorescence in situ hybridization to detect the
message, immunofluorescence to detect the protein encoded
by that mRNA, and/or live cell functional imaging to corre-
late gene expression with functional readout that indicates
the presence of the corresponding protein.

Our intent in drawing attention to the limitations of
scRNA-Seq approaches applied to islet cells is certainly not
to dissuade our colleagues from relying on observations
obtained by scRNA-Seq approaches in their studies of islet
function. It should not be a surprise that working at the
extreme limits of our technical capabilities comes at a price.
Ongoing improvements in library preparation, including
the generation of protocols that no longer rely on multiple
rounds of PCR amplification, should constitute a significant
improvement (79,80). As tissue collection and processing
time will influence gene expression and mRNA stability,
standardization of the collection of human islets to the
extent possible will increase the conformity of gene rep-
resentation across both bulk and scRNA-Seq studies. New
methods, such as split-pool ligation-based transcriptome
sequencing (SPLiT-Seq) (81), may be able to overcome
some of the limitations of current scRNA-Seq protocols.
While SPLiT-Seq still requires tissue dissociation, it instead
compartmentalizes the RNA into single-cell libraries
within the native cell rather than relying on droplets or
wells. This may help mitigate issues such as poor library
complexity and 39 bias and may reduce contamination
with naked mRNA (78) (Fig. 6). Spatial transcriptomics
may also provide more reliable avenues for scRNA-Seq, as
they avoid confounders associated with islet dissociation
and would allow the field an unbiased perspective to
determine whether heterogeneity of gene expression is
spatially driven (82), as was recently suggested (35,83).
Newer 39-based methods that allow for higher throughput,
and greater sample sizes at reasonable cost, have allowed
the identification of rarer populations, such as e-cells (84).
Targeted sequencing approaches, such as droplet-assisted
RNA targeting by single-cell sequencing (DART-Seq), sig-
nificantly improve coverage by targeting the limited depth
of scRNA-Seq to a subset of preselected transcripts of
interest (85). Computational methods are being developed
to take into account and correct for confounding factors,
such as donor genetic variation, dropout, and technical
noise, although avoiding confounders will always be pref-
erable to correcting for them through bioinformatic means
(86,87).

Despite the current limitation of the approach, scRNA-
Seq experiments have successfully resolved gene expres-
sion in human d-cells (47,88), for which purification
methods to obtain bulk samples do not exist. Moreover,
scRNA-Seq has recapitulated known differentiation trajec-
tories in the development of many organs and tissues
(89–93). This includes the pancreas, where scRNA-Seq has
been able to trace Ngn3+ progenitor populations at dif-
ferent embryonic ages to preferentially differentiate into
a- or b-cells (94), thus recapitulating and validating a phe-
nomenon that had previously been independently described

by careful developmental biology experiments (95,96).
Gjd2, Scg2, Ociad2, and Fev, novel genes whose contribution
to embryonic pancreas development had not been known,
have also emerged from scRNA-Seq efforts (80,94). More-
over, pseudo-time strategies, where single cells are placed on
a lineage based on their transcriptional stage instead of their
chronological age, have successfully resolved aspects of
postnatal b-cell maturation (42).

In summary, our goal with this Perspective has been to
raise awareness among a general audience of diabetes
researchers of some of the limitations of scRNA-Seq and
discuss potential solutions to overcome the current lim-
itations. It is amazing that we are now capable of detecting
islet cell gene expression at single-cell resolution. It there-
fore should not come as a surprise that there is inevitably
a price to pay for the benefit of single-cell resolution. The
limitations we discussed should be well known to inves-
tigators who have been at the forefront of single-cell
sequencing. However, they are likely less appreciated by
a general audience of diabetes researchers not as well
versed in bioinformatics, who nevertheless use scRNA-
Seq data generated by others or are adopting scRNA-Seq
for their own future experiments. Next-generation se-
quencing at single-cell resolution has the potential to
reveal unprecedented insight into biological processes
that until recently had remained out of reach. We hope
that the considerations discussed in this Perspective will
help our colleagues align their sequencing approaches with
realistic experimental goals.
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