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Abstract: Skin is the largest organ in the body comprised of three different layers including the
epidermis, dermis, and hypodermis. The dermis is mainly composed of dermal fibroblasts and
extracellular matrix (ECM), such as collagen and elastin, which are strongly related to skin elasticity
and firmness. Skin is continuously exposed to different kinds of environmental stimuli. For example,
ultraviolet (UV) radiation, air pollutants, or smoking aggravates skin aging. These external stimuli
accelerate the aging process by reactive oxygen species (ROS)-mediated signaling pathways and
even cause aging-related diseases. Skin aging is characterized by elasticity loss, wrinkle formation, a
reduced dermal-epidermal junction, and delayed wound healing. Thus, many studies have shown
that natural polyphenol compounds can delay the aging process by regulating age-related signaling
pathways in aged dermal fibroblasts. This review first highlights the relationship between aging
and its related molecular mechanisms. Then, we discuss the function and underlying mechanism
of various polyphenols for improving skin aging. This study may provide essential insights for
developing functional cosmetics and future clinical applications.
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1. Introduction

The skin dermis is composed of the upper papillary layer and the lower reticular layer.
The papillary layer includes abundant fibroblasts, blood vessels, and phagocytes, while the
reticular layer includes mainly collagen fibers in the dermal matrix [1]. The dermis is also
comprised of blood vessels, nerve endings, and the immune system, such as mast cells and
macrophages [1]. Skin is constantly exposed to various oxidative stress, and skin aging is an
inevitable process. Skin aging can be classified into intrinsic aging and extrinsic aging [2–4].
Intrinsic aging is a consequence of physiological changes that occur naturally as we age.
Especially, the ability of dermal fibroblasts to synthesize collagen attenuates with age and
leads to a severe decline in the integrity of collagen fibers. Extrinsic aging is a consequence
of continuous exposure to the external environment including ultraviolet (UV) irradiation
and air pollution [2–5]. Especially, UV radiation is a major causative factor of inflammatory
responses, DNA damage, and various cutaneous lesions such as skin photoaging.

Many studies have reported various harmful effects of UV on the dermis [6,7]. The
photoaged dermis is generally characterized by disorganized or fragmented collagen
fibers, and the degradation of elastic fiber, which results in wrinkle formation, delayed
wound healing, and sagging [6–8]. Damaged collagen fibrils and elastin fibers in the UV-
mediated dermis are mainly caused by the matrix-degrading metalloproteinases (MMPs)
synthesis. MMPs are a family of endopeptidases and take part in inflammatory processes
by modulating chemokine activity [6–8]. In addition, air pollution such as particulate
matter 2.5 (PM 2.5) also causes skin damage and results in oxidative stress, inflammation,
and even premature skin aging [5,9].
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For this reason, protection from extrinsic or intrinsic aging is an essential issue in the
cosmeceutical and dermatological fields. Novel active ingredients are required to retard or
prevent skin aging by suppressing the harmful effects of UV. Especially, many researchers
have demonstrated that natural polyphenols worldwide can be identified as a potential
active ingredient to improve the aged skin dermis [10–12]. Polyphenol is a type of aromatic
alcohol compound found in plants and is characterized by having several hydroxyl groups
with a functional group of two or more phenyl groups [13–15]. Polyphenols are the
ingredients of pigments and cause the bitterness of plants produced by photosynthesis, so
they are as clear as grapes and there are many in foods that are silvery or bitter. In addition
to catechin in green tea, quercetin in apples and onions, and anthocyanin are also known.
Polyphenols are classified into principal classes: “flavonoids, stilbenes, phenolic acids,
and lignans”. Flavonoids account for the majority of polyphenols. Flavonoids include
flavones, flavonols, flavanols, flavanones, isoflavones, and anthocyanins. Many studies
demonstrated that polyphenols have the antioxidant effect of scavenging reactive oxygen
species (ROS) and enhance the autophagy process for improving the aging process [13–15].
In this review, we investigated the recent anti-aging effects of polyphenols and their
mechanisms and propose potential insights for improving aged dermal fibroblasts in
the future.

2. Results
2.1. Molecular Mechanism in Aged Dermal Fibroblasts
2.1.1. Crosstalk between Reactive Oxygen Species and Inflammation

External stimuli such as UV irradiation or air pollutants can generate ROS, which
causes an imbalance between ROS production and antioxidant mechanisms, leading to
causing oxidative stress [3,6]. This oxidative stress is an important factor regulating dermal
alteration in the aging process. This oxidative stress can also initiate pro-inflammatory
cytokines such as tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), which play a key
role in the inflammatory response [3]. NF-κB is a protein complex responsible for immune
responses, and its dysregulation is involved in various diseases, such as inflammation
and aging [16]. Activated NF-κB subunits are translocated into the nucleus and cause
upregulation of pro-inflammatory cytokine expression [16]. Activation of NF-κB can also
induce the expression levels of MMPs [6,16]. These external stimuli also increase the cellular
levels of nitric oxide (NO) and prostaglandin E2 (PGE2) by activating iNOS and COX-2,
respectively. The expression levels of pro-inflammatory cytokines including TNF-α and
IL-6 are remarkably increased in UV-irradiated human dermal fibroblasts (HDFs) [3,6,16].
These external stimuli also lead to an increase in the phosphorylation of the MAPK family
such as extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and
p38, which then affects the phosphorylation of nuclear transcription factor AP-1 (c-Jun,
c-Fos), which contributes to express MMPs [3,6,8]. On the contrary, many cells including
dermal fibroblasts have a system to defend ROS called the nuclear factor erythroid-2-
related factor 2 (NRF2) signaling pathway [17]. This pathway accelerates the expression
levels of genes that regulate processes such as protein stability, autophagy, senescence, and
protection against oxidative stress and inflammation. NRF2 is present in the cytoplasm as
an inactive complex bound to its repressor, Kelch-like ECH-associated protein 1 (KEAP1).
The dissociation of NRF2 from KEAP1 occurred in response to a stressful insult. In response
to UV irradiation, the antioxidant response by NRF2 activation promoted the expression
of detoxifying enzymes such as heme oxygenase 1 (HO-1) and cellular antioxidants [18]
(Figure 1).

This mechanism has long been known in aged dermal fibroblasts, and the most
common research on polyphenols has been used for products such as cosmetics and
functional foods (Table 1).
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Figure 1. Diagram of several molecular mechanisms in skin dermis exposed to external stimuli.
External stimuli such as UV radiation or air pollutants can cause direct damage to the DNA and pro-
duce ROS. These can further stimulate many inflammatory responses and the MAPK family, which
can lead to photoaging through inflammation and collagen degradation. The KEAP1-NRF2 stress
response pathway is the principal inducible defense against oxidative stresses. Under homeostatic
conditions, KEAP1 regulates the activity of NRF2. In response to stress, an intricate molecular mecha-
nism facilitated by sensor cysteines within KEAP1 allows NRF2 to escape ubiquitination, accumulate
within the cell, and translocate to the nucleus, where it can promote its antioxidant transcription
program. In the diagram, polyphenol chemicals in each box are organized into the classification
system of polyphenol. UV, Ultraviolet; ROS, reactive oxygen species, HO-1; heme oxidase.

Several studies have demonstrated that several polyphenols ameliorated the harm-
ful effects of UVA on aged dermal fibroblasts [2,19–22] (Figure 1). Apigenin, curcumin,
cyanidin-3-o-glucoside (C3G), myricetin, and syringaresinol (SYR) decreased the expres-
sion of the MMP-1 in UVA-irradiated HDFs [2,19–22]. In an in vivo study, the apigenin-
containing cream improved dermal density and skin elasticity and decreased fine wrinkle
length [2]. Curcumin attenuated UVA-induced ER stress and inflammation signaling by
reducing the protein expression of NF-κB [20]. C3G decreased the phosphorylation level
of p38 but not JNK [19]. SYR suppressed the UV-induced phosphorylation of JNK and
AP-1. In addition, SYR inhibited the UVA-induced secretion of IL-1β, IL-6, TNF-α, and
COX-2 [22]. Myricetin inhibited the UVA-mediated activation of p38, ERK, and JNK [21].
Interestingly, myricetin balances the TIMP1/MMPs ratio and oxidative stress in diabetic
fibroblasts, which causes foot ulceration in diabetic patients [23]. Quercetin remarkably
stimulated NRF2 and enhanced the expression of HO-1 and catalase [24]. Interestingly, a
ratio of 3:1 quercetin/curcuminoid mixture exhibited the maximal ability to activate the
migration of fibroblasts [25].

Similarly, UVB-damaged fibroblasts were improved by several polyphenols [26–32]
(Table 1). Baicalin, delphinidin, ellagic acid (EA), fisetin, isoorientin, genistein, and luteolin
increased the expression levels of collagen I and III, whereas it decreased the expression
levels of MMP-1 and MMP-3 [26–32]. Interestingly, baicalin had no difference in the normal
fibroblasts without UVB irradiation [26]. Delphinidin significantly inhibited UVB-induced
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ROS generation and even nicotinamide adenine dinucleotide phosphate oxidase (NOX)
activity by binding the NOX subunit [27]. EA recovered the total glutathione and superox-
ide dismutase activity levels and enhanced NRF2 activity [28]. Fisetin downregulated the
phosphorylation levels of three MAPKs and inhibited the activation of NF-κB [30]. Isoori-
entin remarkably blocked JNK signaling activation [31]. Genistein strongly suppressed the
production of IL-6 and MAPK signaling [33]. Hesperidin suppressed skin neovasculariza-
tion by inhibiting the expression of vascular endothelial growth factor (VEGF), MMP-13,
and MMP-9 in repetitive UVB-irradiated HR-1 hairless mice [34]. Luteolin diminished UV-
induced ROS generation and the subsequent release of IL-6, IL-20 [35], COX-2, IL-1β, and
TNF-α [36]. Luteolin also reduced UVB-induced erythema and wrinkle formation using
the UVB irradiation of bare skin on the back of rats [37]. Rutin diminished UV-induced
ROS generation and enhanced the activity/levels of SOD, plasma glutathione peroxidase
(GSH-Px), and thioredoxin reductase (Trx) [38]. Interestingly, rutin significantly contributed
to preventing the reduction in glutathione and vitamin E and C levels in UV-irradiated
HDFs [38]. Rutin also ameliorated the alteration in the level of lipid mediators including
malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE) [38]. Rutin also partially prevented
the UVA/B-induced increase in phosphatidylethanolamine and phosphatidyl-choline lev-
els [39]. In addition, rutin restored phospholipase A2 activity and ROS generation, and
the lipid peroxidation product, 4-hydroxynonenal level, increased UV-irradiated HDFs.
Geogotek et al. demonstrated that the combination of ascorbic acid and rutin enhanced
catalase and SOD. Interestingly, ascorbic acid stimulated UV-induced bilitranslocase activ-
ity necessary for transporting rutin, therefore accelerating the effect of rutin on the NRF2
pathway in UV-damaged fibroblasts [40].

Hydrogen peroxide (H2O2) is another harmful stimulus to accelerates the aging pro-
cess in dermal fibroblasts [41–45] (Table 1). Galangin, genistein, kaempferol, and rutin
recovered collagen I/III formation, and the expression of antioxidative proteins occurred
in H2O2-damaged dermal fibroblasts [41–45]. Galangin remarkably reduced NF-κB acti-
vation, leading to a decrease in the expression of inflammatory factors, and modulating
IGF1R/Akt-related proteins [41]. Genistein significantly improved the cell viability and
mitochondrial membrane potential, while it increased glutathione (GSH) levels and the
proliferation rate [43]. Rutin enhanced skin elasticity and downregulated the length, width,
and many wrinkles in vivo [45].

In 12-O-tetradecanoylphorbol-13-acetate (TPA)-damaged dermal fibroblasts, kaempferol
inhibited the phosphorylation of NF-κB, which is important for the IL-1β secretion and
the expression of cleaved caspase-3 (Table 1). Kaempferol blocked the production of
intracellular ROS and downregulated the phosphorylation level of JNK. Kaempferol also
significantly inhibited bleomycin-induced oxidative stress in OKD48 mice [46]. Nobiletin
inhibited the expression level of MMP-9 and suppressed the sustained activity of p38 in
TPA-induced HDFs [47].

A tumor necrosis factor-α (TNF-α)-induced damaged fibroblast could also be alle-
viated by several polyphenols [48–51] (Table 1). Alpinumisoflavone (AIF), (-)-catechin,
epigallocatechin-3-gallate (EGCG), and 7,8-dihydroxyflavone (7,8-DHF) suppressed the
TNF-α-induced MMP-1 synthesis and enhanced procollagen I [48–51]. AIF and (-)-catechin
inhibited NF-κB activity and COX-2 [48,49]. 7,8-DHF also significantly upregulated the
expression of antioxidant enzymes including manganese superoxide dismutase (Mn-SOD),
catalase, and heme oxygenase-1 (HO-1) [50]. EGCG also downregulated the phosphoryla-
tion level of ERK but not those of p38 and JNK [51]. Interestingly, EGCG has a beneficial
effect against fine dust particle (FDP)-stimulated skin aging in HDFs [52].

2.1.2. TGF-β/Smad Pathway

Transforming growth factor-β (TGF-β) is a key regulator of ECM biosynthesis [53].
Especially, the TGFβ/Smad pathway is mainly responsible for the collagen synthesis
in human dermal fibroblasts. TGF-β controls collagen homeostasis by regulating the
Smad pathway [53]. First, TGF-β binds to a TGF-β type II receptor (TβRII), which can
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be associated with a TGF-β type I receptor (TβRI) and lead to its phosphorylation. This
phosphorylation of TβRI induces the activation of both Smad2 and Smad3. Activated
Smad2 or Smad3 bind to Smad4 for forming heteromeric Smad complexes. These Smad
complexes move to the nucleus and interact with Smad-binding elements to induce the
transcription process of procollagen genes [53,54]. UV irradiation can decrease procollagen
synthesis by suppressing the TGF-β/Smad signaling pathway [55,56]. In addition to
collagen synthesis, TGF-β/Smad signaling upregulates the expression level of ECM genes
such as fibronectin, decorin, and versican, whereas it downregulates MMPs. This means
that the TGF-β/Smad signaling pathway has an important role in maintaining the structural
and mechanical integrity of dermal connective tissue by enhancing ECM production and
inhibiting ECM degradation. Impaired TGF-β signaling leads to reduced collagen synthesis
and causes a reduction in collagen levels (Figure 2).

Figure 2. Diagram of TGFβ-mediated Smad2/3 signaling pathway and polyphenols in aged der-
mal fibroblasts.

TGF-β binds to the TGF-β receptor, which enhances the phosphorylation level of
Smad2/3. The Smad2/3 binds with Smad 4 and then moves to the nucleus. This pathway
contributes to increasing collagen fibers. In the diagram, polyphenol chemicals in each box
are organized into the classification system of polyphenols.

Various polyphenols have been studied to activate this TGF-β/Smad signaling path-
way in aged dermal fibroblasts, which is important for the production of ECM (Table 1).
Apigenin stimulated type-I and type-III collagen synthesis by activating the smad2/3
signaling pathway [57]. Glycitin also increased the phosphorylation levels of Smad2 and
Smad3 [58]. Furthermore, glycitin also enhanced the phosphorylated form of AKT. Simi-
larly, curcumin and daidzein also recovered UVA-damaged HDFs by increasing the protein
expression of TGF-β and Smad2/3 [20,59]. Fisetin enhanced mRNA expression levels of
CCN2 and Smad2, a CCN2 downstream mediator, dose-dependently [29]. In addition,
fisetin treatment stimulated cell growth and proliferation in a time-dependent manner.
Galangin ameliorated the H2O2/UVB-induced decrease in cell viability, the impairment of
TGFβ/Smad signaling in H2O2/UVB-treated Hs68 cells, and dermal aging in UVB-induced
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C57BL/6J nude mice [60]. Interestingly, galangin suppressed the H2O2-induced expression
of hsa-miR-4535, which is a candidate miRNA for targeting Smad4 and led to activating the
Smad4 complex in HDFs. Topical application of galangin to the dorsal skin of C57BL/6J
nude mice remarkably reduced UVB-induced skin photodamage by accelerating TGF-
β/Smad collagen synthesis signaling, diminishing epidermal hyperplasia, and wrinkling.
Interestingly, galangin also remarkably decreased the expressions of type I collagen, type
III collagen, and TGF-β1, whereas it increased the expression of Smad7 in the HS rabbit ear
model [61]. Genistein enhanced the thickness of collagen fibers by increasing TGF-β and
tissue inhibitor of metalloproteinase (TIMP) expression levels [62]. Interestingly, luteolin
selectively decreased the phosphorylation level of Smad2/3 in TGF-β/Smad signaling
through binding to activin receptor-like kinase 5 (ALK5) and interfering with its catalytic
activity [63].

2.1.3. Senescence and Senolytic

The main characteristics of senescent cells contain oxidative DNA damage, double-
strand DNA breaks, and the impairment of DNA repair mechanisms. Compared to young
cells, senescent cells exhibit a reduction in the extracellular matrix. The senescent cells
exhibit increased cell-cycle inhibitors p21 and p16 and increased β-galactosidase activity,
loss of nuclear high mobility group box 1 (HMGB1), and decreased lamin B1 [8,64]. These
senescent cells produce senescence-associated secretory phenotypes (SASPs) such as pro-
inflammatory cytokines and immune modulators [65]. Because these senescent cells have
harmful effects on surrounding cells, recent strategies have aimed at the selective killing
of senescent cells (called senolytic) or inhibiting SASPs without affecting the neighbor
cells [66]. NF-κB has been considered to be a key factor in generating these SASPs [67,68]
(Figure 3).

Figure 3. Diagram of senescence signaling pathway and polyphenols in aged dermal fibroblasts.

UV irradiation is one of the key stimuli causing fibroblast senescence in vitro and
in vivo [8,69]. Chronic UV radiation can cause a DNA damage response that can trigger
cell cycle arrest through the p53/p21 pathway, and a significantly high accumulation of
senescent cells [70,71]. This phenomenon can aggravate skin aging by secreting SASPs such
as IL-6 and IL-8. These factors are responsible for chronic inflammation as well as ECM
degradation [70,71].
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Polyphenols such as flavonoids may prevent dermal fibroblasts from the aging process
by targeting cellular pathways important for modulating cellular senescence and the
secretion levels of SASPs (Table 1). Apigenin restored the viability of UVA-damaged HDFs
and protects against the UVA-induced senescence of HDFs using a senescence-associated
(SA)-β-gal assay [2]. Baicalin could also reduce the ratio of β-galactosidase-positive cells
and p16, p21, and p53 expression in UVB-irradiated fibroblasts [26]. Interestingly, long-term
baicalin incubation of UVB-induced senescent fibroblasts had no effects on cell proliferation.
Galangin recovered H2O2/UVB-induced cell viability loss in HDFs [72]. The knockdown
of SIRT1, PGC-1α, or NRF2 siRNA reversed the anti-aging effects of galangin. Furthermore,
galangin diminished UVB-induced epidermal hyperplasia and activated the SIRT1/PGC-
1α/NRF2 signaling pathway in the dorsal skin cells of C57BL/6J nude mice. Galangin
could reverse the expression level of aging markers such as p53, p21Cip1/WAF1, p16INK4A,
and senescence-associated β-galactosidase in H2O2-damaged Hs68 cells.

Senescence signals trigger DNA damage. Senescent cells are characterized by a DNA
damage response, including chronic Ataxia Telangiectasia-mutated (ATM) and Ataxia
Telangiectasia and Rad3-related (ATR) kinase signaling, which ultimately induces cell
cycle arrest and senescence by activation of the p53/p21 and p16 pathways. In the di-
agram, polyphenol chemicals in each box are organized into the classification system
of polyphenols.

Fisetin exhibited potent senolytic properties in vitro and in vivo. Administration of
fisetin to old wild-type mice decreased the expression levels of p16 and p21, down-regulated
the SASPs, and recovered tissue homeostasis by suppressing the PI3K/AKT/mTOR [73].
Kaempferol suppressed the induction of various SASP mRNAs in bleomycin-induced
senescent fibroblasts and aged rats [74]. Mangiferin lowered the elevated ROS, stabilized
the mitochondrial membrane potential, and downregulated the expression level of SA-
β-gal in senescent HDFs [75]. Naringenin protected hairless mice from UVB-damaged
skin by suppressing the secretion of SASPs such as IL-1β, IL-6, IL-10, TNF-α, and lipid
hydroperoxides [76]. Puerarin enhanced cell proliferation and diminished the number of
senescence-associated β-positive cells in senescent HDFs [77]. Puerarin downregulated
the number of smooth muscle actin (SMA)-positive myofibroblasts and the expression of
a reticular fibroblast marker, calponin 1 (CNN1), which were upregulated in senescent
HDFs [77]. Recently, the combination of quercetin and dasatinib has been reported to
remove senescent cells in vitro, improve physical function, and enhance the lifespan of
mice in vivo [78].

2.1.4. Autophagy

Autophagy is one of the conserved cellular processes that degrades damaged or-
ganelles or abnormal macromolecules to maintain cell survival and adaptation during
starvation and oxidative stress [79]. Autophagy-related proteins Atg5, Atg12, and Atg16
and the 200 kDa family-interacting protein (FIP200), which make the mammalian complex
after association with ULK1 and Atg13, are involved in the early phases of autophagy [80].
Then, ubiquitin-like Atg12 forms a complex with Atg5 by enzymatic conjugation to Atg7
and Atg10. The Atg5-Atg12 protein complex forms with Atg16. The complex then at-
taches to phagophores and detaches from mature autophagosomes. LC3 links to lipid
phosphatidylethanolamine (PE) and is stimulated by Atg7 and Atg3 to generate LC3-II [80].
This LC3-II accelerates the targeted degradation of abnormal proteins and damaged cellular
organelles by binding with adaptor proteins. A selective adaptor, p62, is attached to cargo
proteins for the final degradation, and a targeted substrate is attached to LC3-II and the
autophagosome and is used as a measurement index of autophagic flux [81]. Finally, LC3-
positive autophagosomes are fused with lysosomes and lead to the degrading of a targeted
substrate by lysosomal proteases [81,82]. Autophagy components are recycled in the cytosol
and contribute to restoring important cellular processes after exposure to various stress
factors and starvation. mTOR (mechanistic target of rapamycin), as a negative regulator of
autophagy, integrates various signals and stress to regulate cellular metabolism. In contrast,
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5’ adenosine monophosphate-activated protein kinase (AMPK), which is activated through
an increase in the AMP/ATP ratio, stimulates the autophagy process [83].

Autophagy function and activity are reduced in aged human dermal fibroblasts be-
cause of the impaired degradation of autophagy [84]. Tashiro et al. demonstrated that
impaired autophagic flux mainly caused the increased number of autophagosomes, which
induced significant alteration in the composites of extracellular matrix proteins [84]. Repeti-
tively UVA-irradiated HDFs downregulated autophagy through lysosome dysfunction [85].
The activation of autophagy aims to increase the degradation of metabolite adducts by UV
irradiation-induced ROS and eventually leads to the inhibition of photoaging.

Thus, several polyphenols have been reported to protect against photoaging by ac-
tivation of autophagy (Table 1). Cyanidin-3-o-glucoside (C3G) can remarkably inhibit
UVA-induced oxidative damage and apoptosis of HDFs [86]. The expression levels of Atg5
and LC3-II were remarkably diminished under 12 J/cm2. C3G recovered the levels of Atg5
and LC3-II in UVA-induced HDFs. To confirm this phenomenon, HDFs were pretreated
with C3G and then treated with the autophagy inhibitor, 3-methyladenine (3-MA), after
UVA irradiation of 12 J/cm2. 3-MA significantly decreased the inhibitory effects of C3G on
morphological changes, oxidative damage, and apoptosis in UVA-damaged HDFs. The
topical application of isoorientin ameliorated the UVB-damaged skin of mice by activating
autophagy [31].

2.1.5. DNA Damage and Repair

DNA damage has been considered to be the primary cause of aging for a long time [87].
Many studies have demonstrated that the accumulation of DNA damage is involved with
aging [88,89]. There are oxidative alterations, single- and double-strand breaks (DSBs), and
various mutations in DNA damage [90]. DNA repair systems including base excision repair
(BER), nucleotide excision repair (NER), mismatch repair (MMR), and double-strand break
repair (DSBR) contribute to the repair of DNA damage. Unrepaired DNA damage during
aging can cause genome instability and trigger a signal cascade that leads to cellular death
or cellular senescence, and aging-related phenotypes [91]. In general, UVB irradiation
generated the cyclobutane pyrimidine dimers (CPDs) in HDFs [92]. UVB-induced CPDs
suppressed the expression levels of nucleotide excision repair (NER) genes including
xeroderma pigmentosum complementation group proteins (XPC, XPB, XPG, and XPF) in
HDFs. The capacity to repair DNA damage is reduced with aging [93]. There are a few
studies regarding the effects of polyphenols on the DNA repair system in aged dermal
fibroblasts (Table 1).

Table 1. Role of each polyphenol compound and its underlying mechanism for improving aged
dermal fibroblasts.

Chemical
Name Group Cell or Animal

Type
Stimulus

(Intensity)
Working

Conc. (Max) Mode of Action References

Alpinum-
isoflavone Isoflavone HDFs TNF-α

(20 ng/mL) 25–50 µM ↓ NF-κB, NOS
↓ COX2, AP 1 [48]

Apigenin Flavone

HDFs,
Women (>30 y)

UVA
(25 J/cm2) 5–20 µM ↓ MMP-1

↓ β-gal [2]

HDFs,
NIH/3T3

C57B/6 mice
None 0.1–10 µM ↑ collagen I/III,

↑ smad2/3 [57]

HDFs UVB
(20 mJ/cm2) 15 µM ↓ CPDs,

↓ XPB/C/G/, TFIIH [92]

HDFs
BJ cells/
SD rat

UVA
(25 J/cm2)
Bleomycin

(50 µg/mL)

5–10 µM
10, 20 µM

↓ NF-κB
↓ β-gal, SASPs [74]
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Table 1. Cont.

Chemical
Name Group Cell or Animal

Type
Stimulus

(Intensity)
Working

Conc. (Max) Mode of Action References

Baicalin Flavone C57BL/6 mice
UVB

(0–240
mJ/cm2)

0.5, 1 mg/cm2

skin area

↑ collagen I/III
↓ MMP-1/3
↓ β-gal, p53,
↓ p16, p21

[26]

Curcumin Phenolic
compound HDFs UVA

(0–15 J/cm2) 0–10 µM ↓ ROS, MMP-1/3
↓ NF-κB [20]

Cyanidin-3-o-
glucoside

(C3G)
Anthocyanin HDFs UVA

(0–12 J/cm2) 0–80 µM ↓ ROS, p38
↑ Atg5, LC3II [19,86]

(-) catechin Flavanol HDFs TNF-α
(20 ng/mL) 50, 100 µM

↓ MMP-1, ROS,
↓ MAPKs
↓ COX-2, IL-1β/-6

[49]

Daidzein Isoflavone HDFs
BALB/C mice None 0.5–50 µg/mL

200 µg/mL

↑ TGFβ/Smad,
↑ collagen I
↓ MMP-1

[59]

7,8 Di-
hydroxyflavone Flavone Hs68 TNF-α

(20 ng/mL) 0–10 µM ↓ ROS, MAPKs, Akt
↑ Mn-SODs, HO-1 [50]

Delphinidin Anthocyanin HDFs UVB
(20 mJ/cm2) 0–20 µM ↓ p38, JNK, ERK

↓ NOX [27]

Ellagic Acid (EA) Phenolic
Lactone HDFs UVB

(70 mJ/cm2) 0–30 µM ↓ MMP-2
↑ Nrf-2 [28]

Epigallocatechin-3-
gallate

(EGCG)
Flavanol

Hs68 TNF-α
(20 ng/mL) 10, 20 µM ↓ MMP-1, ERK [51]

HDFs ERM-CZ100
(200 mg/mL) 12.5–50 µM

↓ ROS, MMPs,
↓ NF-κB, AP-1,
↓ MAPKs

[52]

Fisetin Flavonol

HDFs None 10–25 µM ↑ Smad2, CCN2,
↑ TGF-β1, β2, β3 [29]

HDFs UVB
(40 mJ/cm2) 5–25 µM

↓ ROS, MMP-1,3,9
↓ ERK, JNK, p38,
↓ NF-κB, COX-2,
↓ NO

[30]

Murine DFs,
HDFs

C57BL/6 p16Luc
None 1–15 µM

500 mg/kg
↓ SA-β-gal
↓ SASPs [73]

Galangin Flavonol

Hs68 H2O2
(200 µM) 10–40 µM ↓ NF-κB, IL-6

↑ collagen I/III [41]

HDFs/Hs68
C57BL/6J mice

H2O2
(20–40 M)

UVB
(150 mJ/cm2)

10, 30 µM
12,24 mg/kg

↑ NRF2,
↑ TGFβ/Smad
↑ SIRT1/PGC-1α
↓ p53, p16, p21

[60,61,72]

New Zealand
white rabbits
ear HS Model

None 0.5–2 mg/mL ↑ TGF-β1, Smad 7
↑ collagen I/III [61]
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Table 1. Cont.

Chemical
Name Group Cell or Animal

Type
Stimulus

(Intensity)
Working

Conc. (Max) Mode of Action References

Genistein Isoflavone

HDFs H2O2
(200 mM) 10, 100 µM

↑ GSH
↓ MAPKs
↓ NO, ROS

[43]

HDFs
Hairless male

mice

UVB
(100 mJ/cm2)

UVB
(200 mJ/cm2)

10 µM ↓ IL-6, MAPKs
↓ iNOS, COX-2 [31]

OVX SD rats None 1, 10 mg/kg
(12 weeks)

↓ TGF-β1, VEGF,
↓ MMP-2, MMP-9 [62]

Glycitin Isoflavone HDFs None 20 µM
↑ collagen I/III
↑ TGF-β1
↓ MMP-1

[58]

Hesperidin Flavanone HR-1
hairless mice

UVB
(20 mJ/cm2) 20 µM ↓ VEGF

↓ MMP-9/13 [34]

Isoorientin Flavone HDFs
C57BL/6 mice

UVB
(100 mJ/cm2) 40 µM

↓ MMP1, MMP3,
↓ JNK
↑ LC3II

[31]

Kaempferol Flavonol

HDFs TPA (5 µM) 100 nM ↓ IL-1β, ROS, JNK
↓ NF-κB, IκBα [46]

SSc fibroblast
C57BL/6,

OKD48 mice

H2O2
(0.5 mM)

Bleomycin
(300 µL/ug)

1, 10, 30 nM
40 mg/kg

↓ αSMA+, CD68+

↓ HO-1, NOX2,
↓ IL-6, TNFα, ROS

[44]

BJ cells
SD rats

Bleomycin
(50 µg/mL) 10, 20 µM ↓ NF-κB

↓ SA-β-gal, SASPs [74]

Myricetin Flavonol

diabetic
fibroblasts from

the patient
None 3 µM

↑ TIMP1
↑ catalase, SOD
↑ collagen I/III

[23]

HDFs UVA
(10 J/cm2) 25 µM

↓ MMP-1, p38,
↓ ERK, JNK
↑ TGFβ/Smad

[21]

Nobiletin Flavone HDFs TPA (200 nM) 5–50 µM ↓ MMP-9, p38 [47]

Naringenin Flavanone HDFs UVA
(6.3 J/cm2)

0.1, 0.05,
0.025%

↓ MMP-1
↓ SA-β-gal
↓ SASPs

[76]

Rutin Flavonol

HDFs
from aged

30–50 years

H2O2
(0.2 mM) 100 µM ↓ ROS, MMP-1

↑ collagen I [45]

CCD 1112Sk

UVA
(20 J/cm2)
UVB (200
mJ/cm2)

25 µM
↑ NRF2, catalase,
↑ SOD
↓ NF-κB

[38]

CCD 1112Sk

UVA (20
J/cm2)
UVB

(200 mJ/cm2)

25 µM
↑ PE, PC
↑ linoleic acids, PLA2
↓ ROS

[39]

CCD 1112Sk

UVA (20
J/cm2)

UVB (200
mJ/cm2)

25 µM

↓ ROS, MDA,
↓ 4-HNE, SOD
↑ GSH-Px, Trx
↑ vitamin E, GSH

[38]
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Table 1. Cont.

Chemical
Name Group Cell or Animal

Type
Stimulus

(Intensity)
Working

Conc. (Max) Mode of Action References

Puerarin Isoflavone HDFs 25–35
Passages 25, 50 µM ↓ SA-β-gal

↓ SASPs [77]

Quercetin Flavonol

HDFs UVA
(10 J/cm2)

12.5 µM ↓ ROS
↑ HO-1, NRF2 [24]

HDFs None

Quercetin
(5–25

µg/mL)/
Curcumin

[(3:1)

↑ HDFs migration [25]

Silibinin Flavono-
lignan HDFs UVB

(1 mJ/cm2) 100 µM ↓ CPDs, XPA/B/C
↑ p53 [94]

Syringaresinol Lignan HDFs UVA
(10 J/cm2) 1, 5, 20 µM

↓ TNF-α, COX-2,
↓ IL-1β, IL-6
↓ AP-1, MMP-1

[32]

Human dermal fibroblasts (HDFs), Conditioned medium (CM), membrane potential (∆Ψm), nicotinamide adenine
dinucleotide phosphate (NAPDH) oxidase (NOX), Ovariectomized (OVX), Sprague-Dawley (SD) Rat, Phos-
phatidylethanolamine (PE), Phosphatidylcholine (PC), Phospholipase A2 (PLA2), Systemic sclerosis (SSc), Super-
oxide dismutase (SOD), fibroblast from mouse embryo (3T3-L1), 12-O-tetradecanoylphorbol-13-acetate (TPA),
human foreskin fibroblast (BJ cells), “↑” increased; “↓” decreased.

Apigenin improved this UVB-induced loss of NER proteins in HDFs, meaning its
protective effect against CPDs formation [92]. Interestingly, apigenin treatment prevented
nuclear fragmentation, and apoptotic proteins, Bax and Caspase-3, in single low-dose UVB-
irradiated HDFs. Apigenin also possessed a strong UV absorbance property and exhibited a
10.08 value of sun protection factor. Silibinin accelerated DNA repair by activating the NER
pathway-related proteins such as XPA, XPB, XPC, and XPG in UVB-damaged HDFs [94].
Silibinin also increased the expression levels of p53 and GADD45α, which are the key
factors of the NER pathway and DNA repair. Interestingly, silibinin exhibited no effect
on UVB-irradiated DNA damage repair in XPA- and XPB-deficient HDFs, implying its
important role in silibinin-mediated DNA damage repair. Furthermore, the DNA repair
efficacy of silibinin was abolished in the presence of pifithrin-α, an inhibitor of p53. These
data suggested that the efficacy of silibinin against UVB-induced photodamage is mainly
processed by inhibiting NER and p53.

3. Discussion

Most scientific studies have focused on identifying natural polyphenols with various
beneficial effects such as blocking ultraviolet rays, removing harmful oxygen, collagen
synthesis, and preventing skin wrinkles. In this review, we provided information on several
key molecular mechanisms in aged dermal fibroblasts and discussed natural polyphenols
including many flavonoids, which have anti-aging effects and their molecular mecha-
nisms. As described previously, the evaluation of polyphenol efficacy for aged dermal
fibroblast has mainly focused on ROS, inflammation, and the TGF-β/Smad pathway. Re-
cently, many studies on the effects of polyphenols on molecular mechanisms such as
autophagy [15,95–97] and senescence [67,98–100] have been actively performed in various
tissues. On the other hand, there are few studies on the effects of polyphenols on autophagy,
senescence, and the DNA repair system in aged dermal fibroblasts.

Most polyphenol compounds are usually stable and bioactive in plants. However,
after the extraction from plants, these polyphenols are generally degraded because they
are very sensitive to light or heat [101,102]. These polyphenols are also characterized by
low solubility, bioavailability, and rapid metabolism. To increase their bioavailability and
solubility, encapsulation technology such as liposomes is considered an efficient way to
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encapsulate polyphenol. This encapsulation retards the rapid degradation and regulates
the optimal release of these polyphenols [101,102].

Thus, the research and development of these natural polyphenols in aged dermal
fibroblasts should proceed as follows. First, the studies of polyphenols on autophagy,
senescence, and the DNA repair system in aged dermal fibroblasts should be further
progressed. Second, new aging biomarkers should be identified to understand dermal
aging. Third, adequate formulations for the topical application of these effective natural
polyphenols should be investigated and optimized regarding skin delivery improvement
such as novel liposome technology. Fourth, clinical trials to maximize anti-aging efficacy
by a combination of effective polyphenols or alone should be carried out. These studies
may contribute to reducing oxidative stress, inflammation, and cellular damage in the aged
dermis and can be used as an effective agent of cosmeceuticals for improving skin health.

4. Materials and Methods
4.1. Search Strategy

Until 4 April 2022, we searched PubMed for published articles that investigated the
effects of polyphenols on aged dermal fibroblasts. To reflect the latest research, the search
timeframe was limited from 2012 year to the present (within 10 years). The search combined
the keywords “polyphenol”, “flavonoid”, “lignan”, “tannic acid“, “aging”, “autophagy”,
“senescence”, and “dermal fibroblast”. We also contained “liposome technology for the
application of cosmetics”.

4.2. Selection of Studies

Records were chosen by title and/or abstract to exclude studies that did not help an-
swer the question in this review. Inclusion criteria: (1) published in English; (2) intervention
included a flavonoid or polyphenol; (3) TGFβ/Smad, autophagy, senescence, or senolytic,
or DNA repair.

4.3. Data Extraction

Data were extracted from selected studies (Table 1) as follows: (1) polyphenol source;
(2) cell or animal type; (3) stimulus (or intensity); (4) polyphenol working concentration;
(5) mode of action (or major molecular mechanism); (6) references.
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