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Abstract: High-grade serous ovarian cancer (HGSOC) is a highly lethal gynecologic cancer, in part
due to resistance to platinum-based chemotherapy reported among 20% of patients. This study aims
to generate novel hypotheses of the biological mechanisms underlying chemotherapy resistance,
which remain poorly understood. Differential expression analyses of mRNA- and microRNA-
sequencing data from HGSOC patients of The Cancer Genome Atlas identified 21 microRNAs
associated with angiogenesis and 196 mRNAs enriched for adaptive immunity and translation.
Coexpression network analysis identified three microRNA networks associated with chemotherapy
response enriched for lipoprotein transport and oncogenic pathways, as well as two mRNA networks
enriched for ubiquitination and lipid metabolism. These network modules were replicated in two
independent ovarian cancer cohorts. Moreover, integrative analyses of the mRNA/microRNA
sequencing and single-nucleotide polymorphisms (SNPs) revealed potential regulation of significant
mRNA transcripts by microRNAs and SNPs (expression quantitative trait loci). Thus, we report
novel transcriptional networks and biological pathways associated with resistance to platinum-
based chemotherapy in HGSOC patients. These results expand our understanding of the effector
networks and regulators of chemotherapy response, which will help to improve the management of
ovarian cancer.

Keywords: platinum-based chemotherapy resistance; high-grade serous ovarian cancer; The Cancer
Genome Atlas; differential expression analysis; coexpression network analysis; microRNAs; expression
quantitative trait loci

1. Introduction

High-grade serous ovarian cancer (HGSOC) is a highly lethal gynecologic cancer, in
part due to resistance to first-line, platinum-based chemotherapy treatment among 20% of
patients [1]. Chemotherapy-resistant patients have a significantly shorter overall survival
(OS) than sensitive patients, and many experience tumor recurrence within six months of
completing chemotherapy [2]. There is currently no strategy for predicting response to
platinum-based chemotherapy, which reflects our limited understanding of the underlying
molecular mechanisms of chemotherapy resistance [3].

MicroRNAs (miRNAs) are small single-stranded noncoding RNAs that post-transcrip
tionally repress mRNA expression and are involved in the regulation of all biological
processes and diseases [4], including ovarian cancer pathogenesis and chemotherapy
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response [5]. MiRNA and gene expression profiling of patient tumors has the potential to
identify signatures that determine disease prognosis [6]. Such prognostic signatures have
been implemented in clinic for some cancers [7], but no such tests exist for ovarian cancer
patients to date. The detection of transcriptomic signatures of progression-free survival
and chemotherapy resistance is an area of active interest, and several previous studies have
defined mRNA and miRNA signatures of chemotherapy resistance in HGSOC patients.

The majority of earlier studies reporting genes associated with platinum-based chemoth
erapy resistance in ovarian cancer patients had employed univariate analysis methods on
transcriptomics data [8]. These methods assume that chemotherapy response is driven
by a single gene. It is well established, however, that chemotherapy response, like other
drug-response outcomes, is a complex multifactorial trait modulated by multiple genes
contributing to common biological pathways [9,10]. To date, few studies have investigated
chemotherapy response in ovarian cancer using multivariate, machine-learning methods
to generate novel hypotheses for the underlying biological mechanisms [11–15]. Fewer
still have incorporated multiple types of omics datasets such as mRNA and miRNA se-
quencing in addition to genomics data to further investigate the regulation of associated
gene networks [16,17]. Finally, earlier studies that employed multivariate methods had
used expression microarray data, which do not allow for discovery of novel transcript
isoforms [18,19]. In contrast, RNA-sequencing data using next-generation technology
include gene transcripts that may have been missed by traditional microarray profiling.

In this study, we apply both univariate and multivariate analysis methods to high-
throughput miRNA- and mRNA-sequencing data from tumors of HGSOC patients to
identify novel biological pathways and networks associated with chemotherapy response.
We further determine miRNAs and single-nucleotide polymorphisms (i.e., expression
quantitative trait loci, eQTLs) correlated with the expression of the associated transcrip-
tional networks. These findings are validated in two independent ovarian cancer cohorts
and improve our understanding of the biological mechanisms underlying resistance to
platinum-based chemotherapy in HGSOC patients.

2. Results
2.1. Study Design

We obtained miRNA- and mRNA-sequencing data from HGSOC patients of The Can-
cer Genome Atlas (TCGA). An analysis pipeline for these data was curated as summarized
in Figure 1 and detailed in the Methods and Appendix A. Our pipeline applied select
software and tools for quality control of raw sequence reads, alignment to a reference
genome, quantification of reads into transcript isoform expression values, outlier removal,
and normalization. We separated the TCGA patients into chemotherapy-sensitive and
chemotherapy-resistant groups based on their platinum-free interval (Methods). After
preprocessing, we performed differential expression and network coexpression analyses,
as well as integration of miRNAs, mRNAs, and eQTLs. Our results were validated in two
independent HGSOC cohorts.

2.2. Differentially Expressed miRNAs and mRNAs between Sensitive and Resistant Patients

Differential miRNA expression analysis revealed 21 differentially expressed miRNA
isoforms between chemotherapy-sensitive and -resistant patients (adjusted p < 0.05), which
map to 16 unique miRNAs (Figure 2A, Table S1). Pathway enrichment analysis of these
miRNA isoforms revealed 16 pathways, such as blood vessel morphogenesis and negative
regulation of autophagy (Table S2).

Differential expression analysis identified 196 mRNAs associated with chemotherapy
response (adjusted p < 0.05) that map to 190 unique genes (Figure 2B, Table S3). Pathway
enrichment analysis of these associated transcripts indicated enrichment of 41 annotation
terms, including B-cell receptor regulation, complement activation, and peptide chain
elongation (Table S2).
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Figure 1. Flowchart of study analysis pipeline. First, reports of read-sequence quality were gener-
ated using FastQC [20] and MultiQC [21], followed by trimming of low-quality mRNA-seq reads 
with Trimmomatic [22]. Filtered reads were aligned to the hg19 human reference genome [23] using 
HISAT2 (hierarchical indexing for spliced alignment of transcripts) [24] and quantified by StringTie 
[25]. miRNA-seq data were obtained as quantified reads from the Cancer Genome Atlas [26]. Next, 
transcript expression was normalized using the DESeq2 R package [27], and highly variable tran-
scripts were selected with the varFilter function of the genefilter R package [28]. Moreover, tran-
script expression was used to test for differential expression using DESeq2 and to construct coex-
pression networks using the weighted correlation network analysis (WGCNA) R package [29]. In-
teractions between miRNAs and mRNAs from significant WGCNA networks were detected using 
Sperman’s correlation, and validated using miRNet [30] and miRGate [31]. Validation of differential 
expression analysis results was performed using Kaplan–Meier analysis on two independent 
HGSOC cohorts. Validation of network analysis results was performed using the Prognostic Index 
estimation method from the SurvExpress tool [32] on the same validation cohorts. Transcript ex-
pression data were integrated with genomics data from the same patients to determine eQTLs (ex-
pression quantitative trait loci) using the MatrixEQTL R package [33]. 
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Figure 1. Flowchart of study analysis pipeline. First, reports of read-sequence quality were gener-
ated using FastQC [20] and MultiQC [21], followed by trimming of low-quality mRNA-seq reads
with Trimmomatic [22]. Filtered reads were aligned to the hg19 human reference genome [23]
using HISAT2 (hierarchical indexing for spliced alignment of transcripts) [24] and quantified by
StringTie [25]. miRNA-seq data were obtained as quantified reads from the Cancer Genome Atlas [26].
Next, transcript expression was normalized using the DESeq2 R package [27], and highly variable
transcripts were selected with the varFilter function of the genefilter R package [28]. Moreover,
transcript expression was used to test for differential expression using DESeq2 and to construct
coexpression networks using the weighted correlation network analysis (WGCNA) R package [29].
Interactions between miRNAs and mRNAs from significant WGCNA networks were detected using
Sperman’s correlation, and validated using miRNet [30] and miRGate [31]. Validation of differential
expression analysis results was performed using Kaplan–Meier analysis on two independent HGSOC
cohorts. Validation of network analysis results was performed using the Prognostic Index estima-
tion method from the SurvExpress tool [32] on the same validation cohorts. Transcript expression
data were integrated with genomics data from the same patients to determine eQTLs (expression
quantitative trait loci) using the MatrixEQTL R package [33].
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Figure 2. Differential expression analysis of miRNA and mRNA transcripts. (A) Significant differ-
entially expressed miRNA isoforms (n = 21) are shown in red. The Benjamini–Hochberg adjusted 
significance threshold is indicated by the dashed line. Transcripts with a positive fold change are 
upregulated in resistant patients, whereas transcripts with a negative fold change are downregu-
lated in resistant patients. (B) Significant differentially expressed mRNA transcripts (n = 196) are 
shown in red. The Benjamini–Hochberg adjusted significance threshold is indicated by the dashed 
line. Transcripts with a positive fold change are upregulated in resistant patients, whereas tran-
scripts with a negative fold change are downregulated in resistant patients. Gene symbol labels are 
provided for the top 20 most significant mRNAs, as well as for mRNAs that were replicated in an 
independent cohort (Results Section 2.7, Table S11). 
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structed 100 coexpression modules (Table S4), of which three are associated with chemo-
therapy response. The ivory (p = 0.0098, log OR = −5.67) and lightcoral (p = 0.042, log OR = 
−4.36) modules are negatively associated with chemotherapy resistance, while the third 
plum network (p = 0.045, log OR = 4.29) is positively associated with chemotherapy re-
sistance. The ivory network consisted of 25 miRNA isoforms mapping to 11 unique miR-
NAs (Figure 3A, Table S5), which are enriched for seven pathways and functions, includ-
ing regulation of lipoprotein transport and cholesterol efflux (Table S2). The lightcoral 
module consists of 17 isoforms of miR-187 and the plum network consists of 17 isoforms 
of miR-221 and miR-222 (Figure 3A, Table S5). While no pathway annotations were de-
rived for the lighcoral module, the plum module is enriched for 18 pathways and oncogenic 
functions, such as inhibition of the TRAIL-activated apoptotic pathway and inflammatory 
cytokine production, and upregulation of protein kinase B signaling (Table S2). 
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expressed miRNA isoforms (n = 21) are shown in red. The Benjamini–Hochberg adjusted significance
threshold is indicated by the dashed line. Transcripts with a positive fold change are upregulated in
resistant patients, whereas transcripts with a negative fold change are downregulated in resistant
patients. (B) Significant differentially expressed mRNA transcripts (n = 196) are shown in red. The
Benjamini–Hochberg adjusted significance threshold is indicated by the dashed line. Transcripts with
a positive fold change are upregulated in resistant patients, whereas transcripts with a negative fold
change are downregulated in resistant patients. Gene symbol labels are provided for the top 20 most
significant mRNAs, as well as for mRNAs that were replicated in an independent cohort (Results
Section 2.7, Table S11).

2.3. miRNA Coexpression Networks Involved in Lipid Transport and Oncogenic Pathways
Associated with Chemotherapy Response

Weighted gene coexpression network analysis (WGCNA) of the miRNA dataset
constructed 100 coexpression modules (Table S4), of which three are associated with
chemotherapy response. The ivory (p = 0.0098, log OR = −5.67) and lightcoral (p = 0.042,
log OR = −4.36) modules are negatively associated with chemotherapy resistance, while
the third plum network (p = 0.045, log OR = 4.29) is positively associated with chemotherapy
resistance. The ivory network consisted of 25 miRNA isoforms mapping to 11 unique miR-
NAs (Figure 3A, Table S5), which are enriched for seven pathways and functions, including
regulation of lipoprotein transport and cholesterol efflux (Table S2). The lightcoral module
consists of 17 isoforms of miR-187 and the plum network consists of 17 isoforms of miR-221
and miR-222 (Figure 3A, Table S5). While no pathway annotations were derived for the
lighcoral module, the plum module is enriched for 18 pathways and oncogenic functions,
such as inhibition of the TRAIL-activated apoptotic pathway and inflammatory cytokine
production, and upregulation of protein kinase B signaling (Table S2).
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Figure 3. Weighted correlation network analysis of mRNA and miRNA transcripts. (A) The miRNA
modules lightcoral, plum, and ivory are visualized in their respective colors. Each node represents
one miRNA isoform, and each edge represents a connection or coexpression. The distance between
nodes is the connection weight, where more similarly expressed transcripts are plotted closer. (B) The
mRNA modules lavenderblush3 and darkolivegreen are visualized in their respective colors. Each node
represents a transcript, and each edge represents a connection or coexpression. The distance between
nodes is the connection weight, where more similar transcripts are plotted closer.
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2.4. mRNA Coexpression Networks Involved in Protein Ubiquitination and Fatty-Acid Metabolism
Associated with Chemotherapy Response

WGCNA of the mRNA transcripts resulted in 58 coexpression modules, of which
2 were associated with platinum-based chemotherapy (Table S6). First, the lavenderblush3
module is negatively associated with chemotherapy resistance (p = 0.016, log OR = −5.40).
This module contains 39 transcripts, mapping to 31 unique genes (Figure 3B, Table S7).
Pathway analysis indicates enrichment of biological pathways related to protein ubiquiti-
nation, and the binding motif for the transcription factor GABP-alpha (Table S2). Second,
the darkolivegreen module is significantly upregulated in chemoresistant patients (p = 0.032,
log OR = 13.63) and contains 82 transcripts mapping to 80 unique genes (Figure 3B, Table S7).
This module is significantly enriched for the protein-containing complex term, as well as
for eight pathways involved in fatty-acid metabolism with nominal significance (Table S2).

2.5. Germline eQTLs May Regulate the Expression of Associated miRNAs, mRNAs, and Networks

Integrative analysis with germline SNP data identified 268 unique cis-eQTLs associated
with the expression of significant mRNAs and miRNAs (Table S8). A total of 20 SNPs
are associated with the expression of 7 significant miRNAs, and 248 SNPs are associated
with the expression of 55 significant mRNAs. Of the 268 SNPs, 118 are novel eQTLs,
whereas 126 are previously known and 24 are not yet recorded in the annotation database.
The majority (227) are predicted to alter regulatory motifs, and 67 are associated with
94 human phenotypes from published genome-wide association studies. The most common
phenotypes are related to triglycerides, high-density lipoprotein (HDL), and low-density
lipoprotein (LDL) cholesterol.

2.6. Network Integration Reveals miRNA-Mediated Regulation of Chemotherapy Response Mechanisms

Integration of the associated miRNA and mRNA networks determined that the plum
miRNA network significantly correlates with the lavenderblush3 mRNA network (Spearman
correlation of module eigengenes, ρ = −0.26, p < 0.001), and the ivory miRNA network
significantly correlates with the darkolivegreen mRNA network (Spearman correlation of
module eigengenes, ρ = −0.17, p = 0.023). Annotations using miRNet and miRGate deter-
mined that 20 of these mRNA-miRNA interactions are experimentally validated, while
15 others are supported by in silico predictions (Table 1). The experiments that validated
miRNA binding to mRNA molecules involved HITS-CLIP (high-throughput sequencing of
RNA isolated by crosslinking immunoprecipitation), AGO-CLIP (Argonaute-crosslinking
and immunoprecipitation), CLASH (crosslinking, ligation, and sequencing of hybrids), and
PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipita-
tion) assays (Table S9). The computational prediction algorithms inferred miRNA-mRNA
binding by assessing the complementarity between the miRNA seed sequence and the
mRNA transcript, as well as the mRNA-miRNA duplex energy (Table S9). Combined
with the potential cis-eQTL regulation of mRNAs and miRNAs in these networks, these
results reveal an integrative, multi-omics view of transcriptional networks associated with
chemotherapy response in ovarian cancer (Figure 4).

2.7. Replication in Two Independent Ovarian Cancer Cohorts

Replication of the differentially expressed miRNAs used miRNA-seq data from the
MITO cohort (Table S10). The ivory and plum miRNA network modules replicated in the
MITO cohort (p = 6.1 × 10−4, log HR = −0.78 and p = 0.022, log HR = −0.52, respectively),
while the lightcoral module reached nominal significance (p = 0.057, log HR = −0.43)
(Figure 5A–C).

Replication analysis of the differentially expressed mRNAs used RNA microarray
data from the AOCS cohort (Table S11). The lavenderblush3 and darkolivegreen mRNA
network modules replicated in the AOCS cohort (p = 1.6 × 10−10, log HR = −1.27 and
p = 1.3 × 10−10, log HR = −1.27, respectively) (Figure 5D,E).
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Figure 4. Integration of significant networks. The mRNA transcripts (oval nodes) from the laven-
derblush3 and darkolivegreen modules are arranged based on coexpression similarity (grey edges).
Regulatory interactions (black edges) indicate inhibition (bar-headed arrow) or activation (arrow).
The colors of miRNA nodes indicate their membership in the plum and ivory coexpression networks.
Four miRNA isoforms (rectangular nodes) were identified, either using experimental methods (solid
edges) or in silico predictions (dashed edges), to regulate the expression of genes in the lavenderblush3
network module. In addition, 6 eQTLs (hexagonal nodes) may regulate the expression of the NFX1
gene. Genes in the darkolivegreen module have 10 validated or predicted regulatory miRNAs and
97 regulatory eQTLs. Finally, the ivory miRNA miR-140 may be regulated by the miR-QTL rs71397980.
eQTL, expression quantitative trait loci; miR-QTL, microRNA expression quantitative trait loci.
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Figure 5. Replication analysis of significant transcript coexpression networks. (A–C) Kaplan–Meier
analysis of patient PFS association with the prognostic index of miRNA networks ivory, plum, and
lightcoral in the MITO cohort. The ivory (A) and plum (B) miRNA network modules replicated in the
MITO cohort (p = 6.1 × 10−4, log HR = −0.78 and p = 0.022, log HR = −0.52, respectively), while the
lightcoral module (C) reached nominal significance (p = 0.057, log HR = −0.43). (D,E) Kaplan–Meier
analysis of patient PFS association with the prognostic index of mRNA networks lavenderblush3 and
darkolivegreen in the AOCS cohort. The lavenderblush3 (D) and darkolivegreen (E) mRNA network
modules replicated in the AOCS cohort (p = 1.6 × 10−10, log HR = −1.27 and p = 1.3 × 10−10, log
HR = −1.27, respectively). PFS, progression-free survival; AOCS, Australian Ovarian Cancer Study;
MITO, Multicenter Italian Trial in Ovarian cancer.
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Table 1. Predicted and validated mRNA—miRNA network interactions.

Gene ID mRNA ID miRNA ID Spearman’s ρ p Value Interaction Evidence

lavenderblush3 mRNA—plum miRNA network interactions
PSIP1 ENST00000397519 hsa-mir-222-3p −0.32 0.000021 Experimental validation [34]

CDC37L1 ENST00000381854 hsa-mir-222-3p −0.31 0.000042 Computational prediction
CDC37L1 ENST00000381854 hsa-mir-221-3p −0.27 0.00034 Computational prediction
CDC37L1 ENST00000381854 hsa-mir-221-5p −0.27 0.00034 Computational prediction

NFIB ENST00000380959 hsa-mir-221-3p −0.27 0.00039 Experimental validation [35]
SMU1 ENST00000397149 hsa-mir-221-5p −0.26 0.00082 Experimental validation [36]
VCP ENST00000358901 hsa-mir-222-3p −0.25 0.00089 Experimental validation [37]

CAAP1 ENST00000333916 hsa-mir-222-5p −0.22 0.0041 Computational prediction
CAAP1 ENST00000333916 hsa-mir-221-5p −0.21 0.0076 Computational prediction

TOPORS ENST00000360538 hsa-mir-221-3p −0.19 0.014 Experimental validation [38]
SLC25A51 ENST00000496760 hsa-mir-222-3p −0.19 0.016 Experimental validation [37]
PPAPDC2 ENST00000381883 hsa-mir-222-5p −0.18 0.021 Computational prediction

VCP ENST00000358901 hsa-mir-221-3p −0.17 0.023 Experimental validation [39]
VCP ENST00000358901 hsa-mir-221-5p −0.17 0.023 Experimental validation [38]

NFX1 ENST00000379540 hsa-mir-221-5p −0.17 0.027 Computational prediction
PPAPDC2 ENST00000381883 hsa-mir-221-5p −0.17 0.03 Computational prediction
DNAJA1 ENST00000330899 hsa-mir-221-5p −0.16 0.035 Experimental validation [38]

AK3 ENST00000381809 hsa-mir-222-5p −0.16 0.037 Computational prediction

darkolivegreen mRNA—ivory miRNA interactions
RPL18 ENST00000552347 hsa-mir-212-3p −0.29 0.00017 Experimental Validation [40]

MRPL55 ENST00000411464 hsa-miR-1306-5p −0.25 0.001 Computational prediction
FASTK ENST00000466855 hsa-mir-140-3p −0.25 0.0013 Experimental Validation [41]
RPL18 ENST00000552347 hsa-mir-361-3p −0.24 0.0021 Experimental Validation [40]
ACBD4 ENST00000321854 hsa-miR-128-2-5p −0.22 0.0041 Computational prediction
OAZ1 ENST00000581150 hsa-mir-361-3p −0.22 0.0047 Experimental Validation [36,40]

ACBD4 ENST00000321854 hsa-miR-128-1-5p −0.21 0.0059 Computational prediction
MYL12A ENST00000578611 hsa-mir-103a-3p −0.17 0.023 Experimental Validation [38,40]
MYL12A ENST00000578611 hsa-mir-107 −0.17 0.023 Experimental Validation [38,40,42]
HTRA2 ENST00000484352 hsa-mir-1306-5p −0.17 0.029 Experimental Validation [40]

ACADVL ENST00000579425 hsa-mir-103a-3p −0.17 0.03 Experimental Validation [38]
ACADVL ENST00000579425 hsa-mir-107 −0.17 0.03 Experimental Validation [38]

SOD1 ENST00000470944 hsa-mir-140-3p −0.16 0.037 Experimental Validation [34]
RHOT2 ENST00000569675 hsa-mir-1306-5p −0.16 0.044 Experimental Validation [40]
TSSK6 ENST00000360913 hsa-miR-212-5p −0.15 0.048 Computational prediction
RCC1 ENST00000373832 hsa-miR-1306-3p −0.15 0.048 Computational prediction
RCC1 ENST00000373832 hsa-miR-1306-5p −0.15 0.048 Computational prediction

Both (100%) of the miRNAs in the plum network significantly interact with 12 of the 31 (39%) genes in the
lavenderblush mRNA network. A total of 8 of the 11 (73%) miRNAs in the ivory network significantly interact with
12 of the 80 (15%) genes in the darkolivegreen mRNA network.

3. Discussion

In this study, we identified miRNA and mRNA transcripts and networks associated
with chemotherapy response in HGSOC patients. Our findings implicate novel and known
biological pathways that were further replicated in independent cancer cohorts. In addition,
we identified potential interactions among these miRNA and mRNA networks, as well
as eQTLs that potentially regulate the associated transcripts. Thus, our results provide
an integrative, multi-omics view of biological networks associated with chemotherapy
response in HGSOC.

We identified one miRNA coexpression network (ivory), associated with chemotherapy
sensitivity in HGSOC, which is involved in the negative regulation of lipid transport. This
enrichment is mainly mediated by miR-128-1 and miR-128-2, which play a key role in
cholesterol and lipid homeostasis through their suppression of the ABCA1 cholesterol
efflux transporter and the low-density lipoprotein receptor (LDLR) [43,44]. MiR-148a,
which is significantly downregulated in resistant patients, is also a regulator of these
key genes [43]. The overexpression of ABCA1 is associated with reduced survival in OC
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patients [45], and levels of LDLR are increased in chemoresistant OC cell lines [46]. In
addition, overexpression of miR-128 promotes sensitivity to cisplatin in previously resistant
OC cells [47]. Our results are consistent with the chemosensitivity-promoting role of
miR-128 and its potential activity in cholesterol efflux inhibition alongside miR-148a in
this cohort.

We identified a second miRNA coexpression network (plum) consisting of miR-221
and miR-222 isoforms, which have been implicated in the development of chemotherapy
resistance in OC. Expression of miR-221/miR-222 transcripts is high in cisplatin-resistant
OC cell lines, and their inhibition increases cellular sensitivity [48]. Overexpression of
miR-221 and miR-222 promotes proliferation of OC cell lines [49,50] and is associated with
reduced disease-free and overall survival [49]. Thus, our findings are consistent with earlier
studies showing increased activity of miR-221 and miR-222 in chemoresistant tumors.

The lavenderblush mRNA coexpression network was significantly upregulated in
platinum-sensitive patients, which replicated in another independent cohort (AOCS). This
module consists of genes involved in ubiquitin-mediated proteolysis in the endoplasmic
reticulum (ER). We also detected a significant downregulation of genes responsible for
translation initiation in sensitive patients in our differential mRNA expression analysis.
These findings suggest that the unfolded protein response (UPR), a cellular process respon-
sible for resolving ER stress, may be increasingly activated in sensitive patients compared
to resistant cases. The UPR alleviates ER stress through several pathways, including in-
creased ER-associated protein degradation (ERAD) to remove misfolded proteins, and
inhibition of translation to reduce protein load in the ER [51]. ER stress promotes cis-
platin resistance in OC cell lines [52] and the upregulation of ERAD genes such as VCP
in the lavenderblush3 module is associated with longer OS and platinum sensitivity in
HGSOC cohorts [17,53]. Finally, the lavenderblush3 genes VCP, DNAJA1, and TOPORS are
overexpressed in platinum-sensitive HGSOC patients as part of a cell cycle and damage-
response-associated network [16].

The second mRNA coexpression network associated with chemotherapy resistance in
our HGSOC cohort that replicated in the AOCS (darkolivegreen) included genes associated
with fatty-acid metabolism (SREBF1, ACAA1, ACADVL), and the protein kinase B oncogene
(AKT1), which promotes de novo lipid biosynthesis in cancer [54]. SREBF1 is a key enzyme
for cholesterol and fatty-acid synthesis, and an essential gene for OC tumor growth [55].
Specifically, SREBF1 is activated by AKT1, promoting fatty-acid synthesis [56], which favors
cell proliferation in OC [57]. Expression of ACADVL, involved in the β-oxidation of long-
chain fatty acids, is linked to OC metastasis and cell survival [58]. Our findings indicate
the upregulation of these lipid metabolism genes among chemotherapy-resistant patients.
Lipid metabolism dysregulation activates the UPR, which triggers lipid metabolism-based
adaptations in the cell through several pathways, including SREBF1 regulation [59]. The
interaction of these pathways may present a link between our two gene coexpression
modules and warrants further study.

Differential expression analysis identified a downregulation of mRNA transcripts in-
volved in the adaptive immune system, which is associated with chemoresistance. Previous
studies reported that a high tumor immune score is a strong predictor of chemosensitiv-
ity in HGSOC [60]. In addition, there are potential links between this immune response
activation, UPR, and lipid metabolism. ER stress can induce proinflammatory cytokine
production and UPR activation in tumor cells [61], which can disrupt dendritic cell function
in the OC tumor microenvironment [62]. Moreover, dendritic cell function can also be
inhibited by increased lipid uptake in various cancers [63].

Integrative analysis of mRNA-seq and miRNA-seq datasets identified potential interac-
tions of the associated transcript coexpression modules. The overexpression of miR-221/222
in resistant patients may be inhibiting the chemosensitivity-associated lavenderblush3 mRNA
network, revealing a novel potential mechanism of chemotherapy resistance. This finding,
combined with the accumulating evidence of miR-221/miR-222 involvement in chemoresis-
tance, may point to a promising avenue for therapeutic intervention. However, overexpres-
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sion of miR-221/miR-222 promotes UPR-induced apoptosis in hepatocellular carcinoma
(HCC) cells [64]. Additionally, ER stress suppresses miR-221/miR-222 in HCC, promoting
resistance to apoptosis. The contribution of this mechanism to chemotherapy response in
HGSOC is currently unclear and presents an area for future investigation.

We also identified potential regulation of the darkolivegreen mRNA module by the
ivory miRNA network, which may inhibit lipid metabolism in chemotherapy-sensitive
patients. As increased lipid metabolism by cancer cells is a known mechanism of chemore-
sistance in HGSOC, this miRNA-mediated inhibition may present a novel mechanism of
chemotherapy sensitivity.

Finally, cis-eQTL analysis identified known and novel genomic variants correlated
with the expression of mRNAs and miRNAs, which are associated with lipid-related phe-
notypes. These SNPs have not been previously associated with platinum-based chemother-
apy response in ovarian cancer [65] and may represent novel genomic associations with
chemotherapy response. High HDL and triglyceride levels have been correlated with
increased cancer stage at diagnosis in OC patients [66]. In addition, advanced-stage OC pa-
tients with high LDL levels have a shorter PFS than patients with normal levels [67]. Further
investigation of these eQTLs is necessary to further elucidate their role in platinum-based
chemotherapy resistance and HGSOC prognosis.

To date, there have been few studies to investigate miRNA and mRNA network
associations with chemotherapy response in ovarian cancer using multivariate analysis
methods. Bernardini et al. (2005) used unsupervised two-dimensional hierarchical clus-
tering and feature selection to identify genes that were predictive of response to platinum
chemotherapy [12]. Spentzos et al. (2005) used pattern recognition and compound covariate
predictive algorithms that identified a multigene pattern to classify patient chemotherapy
response [11]. Bagnoli et al. (2016) applied a semisupervised principal component analysis
method on selected miRNAs, leading to a prognostic miRNA model whose expression
is associated with risk of disease progression [15]. Chen et al. (2018) used WGCNA to
identify gene networks associated with chemosensitivity [13]. Zhang et al. (2019) also
used WGCNA and identified gene networks associated with chemoresistance [14]. The
above studies all performed multivariate analysis using a single data modality; two addi-
tional studies made use of multiple omics datasets to investigate chemotherapy response.
Benvenuto et al. (2020) used a micrographite algorithm to integrate significant mRNA and
miRNA expression profiles into a single network that distinguished chemotherapy-sensitive
and -resistant patients [16]. Finally, our group previously used WGCNA to identify gene
networks associated with chemotherapy sensitivity; the expression of significant genes was
integrated with patient germline genomic polymorphisms to identify cis-eQTLs that may
regulate the expression of these networks [17]. All of the above studies used expression
data from microarrays, which do not allow for the distinction of miRNAs from the same
sequence family and of mRNA transcript isoforms [18,19]. Our use of miRNA- and mRNA-
sequencing data, as well as our analysis of three different data modalities, results in a more
detailed profiling of the transcriptome and generates novel hypotheses for the biological
mechanisms underlying variable chemotherapy response in ovarian cancer.

Our study provides novel insight of the underlying mechanisms modulating resis-
tance to platinum-based chemotherapy in HGSOC. Specifically, we conducted whole-
transcriptome analysis of miRNA-seq and mRNA-seq data to generate novel mechanistic
hypotheses using both univariate and network methods. Moreover, we integrated this
data with miRNA-seq and genome-wide SNPs to determine potential regulation of the
associated transcripts and networks. Our findings implicate novel and known signaling
pathways and networks associated with chemotherapy response in HGSOC as well as
regulators, which could become novel drug targets. Further studies are needed to validate
these findings in other cancers, and to investigate the contribution of these networks to
patients’ overall survival.
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4. Materials and Methods
4.1. Chemotherapy Response Classification

Sequencing of miRNA and mRNA was derived from chemotherapy-naïve tumors of
191 and 205 HGSOC patients of TCGA, respectively [68]. Patients who received platinum-
based adjuvant chemotherapy were selected and classified for chemotherapy response
based on their platinum-free interval. Sensitive patients remained cancer-free for at least
12 months after chemotherapy completion, whereas resistant patients experienced cancer
recurrence within 6 months (Table 2; Appendix A).

Table 2. Characteristics of the HGSOC cohorts with mRNA-Seq and miRNA-Seq data from TCGA.

mRNA-Seq Cohort miRNA-Seq Cohort

Sensitive Resistant p Value All Cases Sensitive Resistant p Value All Cases

Age
Mean 57.2 62.0 0.0043 a 59.2 57.8 61.5 0.018 a 59.3
Range 30–87 38–87 30–87 30–87 38–87 30–87

Grade
G2 18 (15.9%) 8 (10.3%) 0.27 b 26 (13.6%) 23 (18.7%) 8 (9.8%) 0.14 b 31 (15.1%)

G3/4 95 (84.1%) 69 (88.5%) 164 (85.9%) 99 (80.5%) 73 (89.0%) 172 (83.9%)
Ungraded 0 (0.0%) 1 (1.3%) 1 (0.5%) 1 (0.8%) 1 (1.2%) 2 (1.0%)

Stage
II 7 (6.2%) 2 (2.6%) 0.48 b 9 (4.7%) 8 (6.5%) 2 (2.4%) 0.41 b 10 (4.9%)
III 91 (80.5%) 67 (85.9%) 158 (82.7%) 99 (80.5%) 67 (81.7%) 166 (81.0%)
IV 15 (13.3%) 9 (11.5%) 24 (12.6%) 16 (13.0%) 13 (15.9%) 29 (14.2%)

Cytoreductive surgery outcome
Optimal (≤10 mm) 73 (64.6%) 54 (69.2%) 0.23 c 127 (66.5%) 77 (62.6%) 56 (68.3%) 0.21 c 133 (64.9%)

Suboptimal (>10 mm) 26 (23.0%) 20 (25.6%) 46 (24.1%) 29 (23.6%) 21 (25.6%) 50 (24.4%)
Unknown 14 (12.4%) 4 (5.1%) 18 (9.4%) 17 (13.8%) 5 (6.1%) 22 (10.7%)

Overall survival
Mortality events 48 (42.5%) 60 (76.9%) 2.35 × 10−6 c 108 (56.5%) 55 (44.7%) 66 (80.5%) 0.0002 c 121 (59.0%)
Median months 52.0 28.2 6.97 × 10−10 a 39.9 51.9 28.2 1.13 × 10−10 a 39.5

95% CI 50.1–54.0 26.2–30.2 37.9–41.9 49.9–53.9 26.2–30.2 37.5–41.5

Adjuvant chemotherapy regimen
Platinum agent only 4 (3.5%) 3 (3.9%) 1 b 7 (3.7%) 4 (3.3%) 4 (4.9%) 0.71 b 8 (3.9%)
Platinum and Taxane

combination 109 (96.5%) 75 (96.2%) 184 (96.3%) 119 (96.8%) 78 (95.1%) 197 (96.1%)

Primary tumor mRNA subtype
Differentiated 37 (32.7%) 22 (28.2%) 0.49 b 59 (30.9%) 42 (34.2%) 24 (29.3%) 0.68 c 66 (32.2%)

Immunoreactive 23 (20.4%) 10 (12.8%) 33 (17.3%) 24 (19.5%) 13 (15.9%) 37 (18.1%)
Mesenchymal 22 (19.5%) 18 (23.1%) 40 (20.9%) 24 (19.5%) 18 (22.0%) 42 (20.5%)
Proliferative 30 (26.6%) 27 (34.6%) 57 (29.8%) 33 (26.8%) 27 (32.9%) 60 (29.3%)

Unknown 1 (0.9%) 1 (1.3%) 2 (1.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Total patients 113 78 191 123 82 205

a—p-value based on t-test; b—p-value based on Fisher’s Exact test; c—p-value based on Chi-Squared test;
CI, Confidence Interval.

4.2. Processing of Sequencing Data

The miRNA-sequencing data were downloaded as quantified expression files (level 3
data from TCGA). Sequencing reads from mRNA were downloaded as FASTQ files
(level 1 data from TCGA), filtered for base-quality, aligned, and quantified (detailed in
Appendix A). Both mRNA and miRNA datasets underwent outlier detection, normaliza-
tion, and nonspecific filtering, resulting in 49,116 mRNA and 4479 miRNA transcripts for
further analyses.

4.3. Differential Expression Analysis

Differentially expressed miRNA and mRNA transcripts were detected between sen-
sitive and resistant patients using a negative binomial generalized linear model (GLM)
in the DESeq2 R package [27]. DESeq2 uses the median-of-ratios normalization method,
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which divides transcript counts in each sample by a size factor determined by the ratios of
gene counts in the sample to the average gene counts among all samples [69]. This method
considers the sequencing depth and RNA composition in each sample and is a recom-
mended normalization method for RNA-sequencing data [70,71]. This analysis controlled
for patients’ ages at diagnosis, as resistant patients were significantly older (Table 2). The
Benjamini–Hochberg method corrected for multiple testing.

4.4. Weighted Network Correlation Analysis

The weighted gene coexpression network analysis (WGCNA) R package [29] was used
to identify modules of coexpressed miRNA and mRNA transcripts using an unsupervised
machine-learning approach. We performed multivariate WGCNA to evaluate the associa-
tion of miRNA and mRNA networks with chemotherapy response. This method groups
coexpressed transcripts into modules prior to testing for association to the clinical outcome.
This analysis identifies groups of transcripts that individually may have modest effects
on chemotherapy response, but collectively contribute to a common biological network or
pathway that is significantly associated with the outcome. In addition, this method reduces
the sequencing datasets into a smaller number of transcript modules and uses Principal
Component Analysis (PCA) to further summarize the information of each cluster into a
representative value, referred to as the eigengene, for association testing. This reduces the
multiple testing corrections needed. Module eigengenes were used to determine associa-
tion with chemotherapy response using a GLM, adjusted for patients’ age as a covariate
(Appendix A).

4.5. Pathway Enrichment Analysis

Pathway enrichment analysis with g:Profiler [72] was used to determine overrepresen-
tation of biological pathways from lists of differentially expressed transcripts (miRNA and
mRNAs) and coexpression networks (Appendix A).

4.6. Expression Quantitative Trait Locus Analysis

Germline single-nucleotide polymorphisms (SNPs) from TCGA–HGSOC patients
were imputed as described by Choi et al. [17] before undergoing quality control and linkage
disequilibrium-based pruning, retaining 1,722,608 common SNPs for analysis. SNPs were
integrated with patient miRNA-seq data (n = 178) and mRNA-seq data (n = 167) to identify
correlations with transcript expression (eQTLs) using the MatrixEQTL R package [33]
(Appendix A).

4.7. mRNA-microRNA Interaction Analysis

Potential regulation of mRNA networks by miRNAs was tested on a subset of patients
with both mRNA and miRNA data from the same tumor (n = 165). We measured the
Spearman correlation of module eigengenes from the mRNA and miRNA coexpression
networks, as well as the Spearman correlation of individual mRNA and miRNA tran-
script expression. Results were validated using miRNet [30], a database of experimentally
validated mRNA-miRNA interactions, and miRGate [31], a tool that identifies predicted
mRNA-miRNA interactions based on the consensus of several algorithms that assess the
complementarity between miRNA seed sequences and mRNA transcript sequences, as
well as the mRNA-miRNA duplex energies.

4.8. Replication Cohorts and Analysis

Our results were replicated using two independent ovarian cancer cohorts. First,
miRNA results were replicated in the Multicenter Italian Trial in Ovarian cancer cohort
(MITO; GSE25204; n = 130) [73]. Next, mRNA results were replicated in the Australian
Ovarian Cancer Study cohort (AOCS; GSE9891; n = 285) [74]. Replication of differentially
expressed transcripts used the auto-cutoff Kaplan–Meier analysis method from the KM
Plotter tool [75] to test the association of each transcript with progression-free survival (PFS)
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in the AOCS and MITO cohorts. Validation of transcript networks used the Prognostic
Index estimation method from the SurvExpress tool [32] to test the association of miRNA
and mRNA networks with PFS in the above cohorts (Appendix A).

4.9. Software and Statistical Analysis

All statistical analyses were performed using R (v. 3.6.0) [76] in the RStudio environ-
ment (v. 1.1.383) [77]. The association tests of continuous patient clinical data, such as age,
with chemotherapy-response-employed t-tests, while categorical patient clinical data, such
as cancer stage and tumor subtype, were tested with Fisher’s exact tests and Chi-squared
tests (stats R package, v. 3.6.0) [76]. Differential expression analyses were performed using
DESeq2 (v. 1.26.0) [27] and plotted with ggplot2 (v. 3.3.5) [78] and ggrepel (v. 0.9.1) [79].
Coexpressed transcript networks were detected using WGCNA (v. 1.69) [29] and plotted
with Cytoscape (v. 3.7.0) [80]. The association of transcript networks with chemotherapy
response was tested using a generalized linear model (stats R package, v. 3.6.0). The corre-
lation of miRNA and mRNA transcript expression was tested using Spearman’s correlation
(stats R package, v. 3.6.0). Detection of eQTLs was performed using an additive linear
model in the MatrixEQTL R package (v. 2.3) [33]. Validation of differentially expressed
transcripts in independent cohorts was performed using Kaplan–Meier analysis with the
survival R package (v. 3.2-7) [81] and plotted with survplots from the R package rms
(v. 6.1-1) [82]. Validation of network analysis results in independent cohorts was performed
using Cox proportional hazards regression models to generate a prognostic index estimator
for each network (survival R package, v. 3.2-7).
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Appendix A. Supplementary Methods

Appendix A.1. Chemotherapy Response Classification

Sensitive patients remained cancer-free one year after completion of chemotherapy,
whereas resistant patients experienced cancer recurrence within 6 months of chemotherapy
completion. We excluded patients who developed new tumors between six months to
one year from chemotherapy completion to enrich for genetic differences between the
drug response groups. Included patients received platinum-based adjuvant chemotherapy,
which consisted of a platinum agent (3.66–3.90% of patients) or a combination of a platinum
agent and a taxane (96.10–96.34% of patients) (Table 2). We excluded patients who were
treated with an alternative therapy instead of platinum-based adjuvant chemotherapy,
patients without a tumor recurrence who passed away within six months of chemother-
apy completion, patients who were followed for less than one year after chemotherapy
completion, and patients without transcriptomic data.

Appendix A.2. RNA-Sequencing Data Preprocessing

Raw mRNA-sequencing reads from frozen chemotherapy-naïve tumor samples of high-
grade serous ovarian cancer (HGSOC) patients were obtained from the TCGA database [68]
on 31 August 2017 using the TCGAbiolinks R package [83]. Patient mRNA-seq data were
filtered for base quality using the Trimmomatic software package [22]. Bases were evaluated
in a window of four bases progressing from the 5′ end of each read to the 3′ end. Each
read was trimmed when the average quality within the window dropped below 15 on the
PHRED base 33 quality scale, which indicates a 3.1% probability of error [84]. Sequences
matching Illumina HiSeq adapters and Illumina PCR primers were removed.

Patient RNA-sequence reads were aligned to the hg19 reference genome [85] using the
HISAT2 software [24], with a mean overall alignment rate of 96.38%. The aligned reads
were assembled into transcripts by the StringTie software package [25] and quantified using
the GRCh37.87 Ensembl transcript list (release 92) [86], resulting in the quantification of
196,464 gene transcripts and isoforms for each patient.

Aligned and quantified frozen chemotherapy-naïve tumor microRNA-sequencing data
(Level 3) for the TCGA HGSOC cohort were obtained from the Broad Institute Genome Data
Analysis Center Firehose [26] (http://gdac.broadinstitute.org) on 17 September 2018 (TCGA
data version 2016_01_28 for OV). Patient data were acquired in the form of quantified
microRNA-seq isoform counts (n = 29,382) in the .txt format. The microRNA (miRNA)
isoform data had been aligned to GRCh36/hg18 and quantified using TCGA’s modified
version of the British Columbia Genome Sciences Centre miRNA profiling pipeline [87].

Appendix A.3. Patient-Level Quality Control

Patient mRNA data were iteratively filtered for outliers based on Spearman’s correla-
tion of gene expression between patients, using Tukey’s outlier labeling threshold (Q1—α *
IQR) [88] and fine-tuning the α value based on our sample size (α = 2.3) [89] as described
by Panarelli et al. [90]. This process removed four patients. Patient miRNA expression
profiles were also filtered for outliers using the above method, with an α value of 2.4 based
on the larger number of patients in the miRNA cohort. This process removed nine patients.

Appendix A.4. Transcript-Level Quality Control

Transcript count data were normalized using the median of ratios method from the
DESeq2 R software package [27]. Next, we applied nonspecific filtering to the mRNA

http://gdac.broadinstitute.org
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expression dataset using median absolute deviation (MAD) [28], and retained the top
25% of mRNA transcripts with the highest variance among patients for further analysis
(n = 49,116). As for nonspecific filtering of the miRNA dataset, we omitted isoforms with
variance below the median value, resulting in 14,691 remaining miRNA transcripts. In
addition, we removed miRNA isoforms with low expression among patients (isoform count
mean < 1), resulting in 4479 miRNAs for further analysis.

Appendix A.5. Differential Expression Analysis

Volcano plot figures were generated using the R packages ggplot2 (v. 3.3.5) [78] and
ggrepel (v 0.9.1) [79].

Appendix A.6. Pathway Enrichment Analysis

Three differentially expressed miRNAs (miR-151a, miR-103a-1, miR-203a) were re-
annotated with the newest miRbase [22] identifiers before pathway analysis with g:Profiler [72].
A total of 3 of the 16 miRNAs (miR-320a, miR-1974, and miR-886) are not yet identified in
the g:Profiler database and not included in the pathway enrichment analysis.

Appendix A.7. Weighted Correlation Network Analysis

Patient transcript expression data were analyzed using the weighted correlation net-
work analysis (WGCNA) R package [29]. We used this tool to calculate the Pearson
correlation between all transcripts, then used an adjacency function to form a network
where each node is a gene, and each connecting edge corresponds to the strength of the
correlation between nodes. The power adjacency function raised the correlations to a
power β, making the connectivity distribution of our gene expression network approach
that of a scale-free network. Fine tuning indicated β = 10 to be optimal for the mRNA
dataset, and β = 9 to be optimal for the miRNA dataset. We constructed a Topological
Overlap Matrix (TOM), where the topological overlap of two transcripts is a function of
their adjacency and number of shared connections. The TOM-based dissimilarity was then
used in hierarchical clustering to generate gene modules. We used a minimum module
size of 30 to encourage larger gene clusters, as recommended by the WGCNA manual [91].
After clustering, we merged modules that were not sufficiently distinct from each other to
produce robust networks that better capture biological pathways. We calculated a module
membership value for each transcript that shows how well a transcript fits into each of
the available modules. A total of 50% of transcripts from each module were tested for
membership. If more than 25% of transcripts tested had a higher membership value for
a module other than their own, those two modules were merged. This process was per-
formed in rounds until no more modules could be merged. Finally, principal component
analysis was conducted for all transcripts within a module, resulting in a value called
an eigengene. We used these module eigengene values and the patient age covariate to
construct a generalized linear model that revealed modules with significant correlation
with chemotherapy response. Networks with a significant association were functionally
annotated using pathway analysis. Cytoscape was used for network visualization [80].

Appendix A.8. Expression Quantitative Trait Locus (eQTL) Analysis

Germline single-nucleotide-polymorphism (SNP) data were profiled in normal tissues
of HGSOC patients in the TCGA cohort using the Affymetrix SNP Array 6.0. A total
of 47,960,330 genetic polymorphisms for 262 patients were obtained after phasing and
imputing as described by Choi et al. [17]. The imputed data were then processed for
quality control using PLINK 1.9 [92]. We first performed patient-level quality control:
20 patients were removed due to low (F < −0.05) or excessive (F > 0.05) heterozygosity, and
2 patients were removed due to high genetic relatedness (pi-hat > 0.9), leaving 240 patients
for further analysis. We then performed variant-level quality control, starting with linkage
disequilibrium (LD)-based variant pruning. This process evaluated variants in a window
of 50 SNPs, which shifted by 5 SNPs after every iteration, and removed variants with a
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variance inflation factor (VIF) larger than 2 (r2 > 0.5). A total of 7,075,175 independent
SNPs were retained after LD pruning. After checking for allelic independence with the
Hardy–Weinberg equilibrium, 112 more variants were removed. Finally, we retained
SNPs with a minor allele frequency ≥ 5% and variant missingness < 10%, resulting in
1,722,608 variants to be used for further analysis. A total of 167 patients from the RNA-Seq
cohort and 178 patients from the miRNA-Seq cohort had genomic data available following
quality control.

Next, we tested the association of common patient polymorphisms (n = 1,722,608)
with mRNA transcript expression (n = 196,464) or miRNA isoform expression (n = 29,382),
in order to determine novel expression quantitative trait loci (eQTLs) in our dataset.
We used the MatrixEQTL R package [33] to test SNPs located within 1 Mb of recorded
transcripts [93] (cis-eQTLs) for association with transcript expression. Based on this dis-
tance, 1,676,365 common SNPs were tested for association with mRNA expression, while
356,189 common SNPs were tested for association with miRNA expression. miRNA isoform
locations were converted to hg19 coordinates using UCSC’s liftOver utility [94].

We identified 121,900 significantly associated SNP-mRNA transcript pairs and 36,995 sig-
nificantly associated SNP-miRNA isoform pairs after false-discovery-rate correction. Of
those, 248 SNPs were associated with 55 mRNA transcripts found to be significant in
differential expression or network analysis, while 20 SNPs were associated with 7 miRNAs
that were significant in differential expression or network analysis (Table S8). We mapped
these SNPs to an rsID using the dbSNP Build150 Human Variation Set [95], and functionally
annotated them using HaploReg v4.1 [96].

Appendix A.9. Replication Analysis

The replication of our findings was performed in two independent ovarian cancer
cohorts The replication of mRNA results was performed on tumor transcriptomic data
collected on the Affymetrix Human Genome U133 Plus 2.0 expression microarray from a
cohort of 285 patients from the Australian Ovarian Cancer Study (AOCS; GSE9891) [74].
The replication of miRNA results was performed on normalized tumor miRNA data
collected on the Illumina Human v2 MicroRNA expression beadchip microarray from a
cohort of 130 patients from the Multicenter Italian Trial in Ovarian cancer cohort (MITO;
GSE25204) [73]. The AOCS expression microarray data were retrieved from GEO and
processed as described by Choi et al. [17] before analysis. We retained only patients with the
serous ovarian cancer subtype that received platinum-based therapy from AOCS (n = 226).
Outliers were identified using the arrayQualityMetrics R package [97], leaving 224 patients
from the AOCS cohort and 107 patients from the MITO cohort for further analysis.

Differential mRNA and miRNA expression analysis results were replicated using the
expression auto-cutoff and Kaplan–Meier analysis method used by the KM-Plotter tool [75].
The replication of our network analysis results was performed using the Prognostic In-
dex (PI) estimation method as described by Aguirre-Gamboa et al. in the SurvExpress
biomarker validation tool [32]. We used the AOCS and MITO datasets to validate our
mRNA and miRNA networks, respectively. Survival plots in Figure 5 were generated using
the R package survminer (v. 0.4.8) [98].
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