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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer,
and early detection is crucial for improving survival. This study investigates whether
analyzing features from the main pancreatic duct (MPD) in abdominal CT scans can
enhance the prediction of PDAC before diagnosis. By integrating MPD features such
as diameter and volume with pancreatic radiomics, our model significantly improved
prediction, allowing for the identification of high-risk individuals up to 10 years in advance.
These findings suggest that incorporating MPD analysis into AI-driven imaging techniques
may help predict and detect PDAC at an earlier, more treatable stage, potentially improving
patient outcomes.

Abstract: Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) prediction
in high-risk individuals is essential for early detection and improved outcome. While prior
studies have utilized pancreatic radiomics for PDAC prediction, the added value of main
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pancreatic duct (MPD) features remains unclear. This study aims to assess the additional
value of features of the main pancreatic duct (MPD) for predicting PDAC occurrence across
different timeframes in advance. Methods: In total, 321 contrast-enhanced CT scans of the
MPD and pancreas carried out across control, pre-diagnostic, and diagnostic cohorts were
segmented, and radiomics were extracted. A support vector machine (SVM) classifier was
used to classify the control and pre-diagnostic cohorts, with model performance assessed
using area under the receiver operating characteristic (ROC) curves (AUCs) Results: The
MPD diameter and volume significantly increased from the control to the pre-diagnostic
and diagnostic CT scans (p < 0.05). The addition of features of the MPD to the pancreas
improved the PDAC prediction AUC from 0.83 to 0.96 for subjects 6 months to 3 years
in advance, from 0.81 to 0.94 for 3–6 years in advance, and 0.75 to 0.84 for 6–10 years
in advance of diagnosis. Additionally, integrating MPD radiomics with diameter and
volume significantly improved the AUC from 0.81 to 0.88 for subjects 6 months to 3 years
in advance. Conclusions: Radiomic features from abdominal CT scans allow PDAC
prediction up to 10 years in advance. Integrating MPD features, including diameter and
volume, significantly improves PDAC prediction compared to using radiomics of the
pancreas alone.

Keywords: pancreatic ductal adenocarcinoma (PDAC); main pancreatic duct (MPD);
radiomics; PDAC prediction; artificial intelligence; pre-diagnostic CT

1. Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor world-

wide, ranking as the third leading cause of cancer death with a 5-year relative survival
probability of only 13% [1]. The tumor is typically detected at an advanced stage, which lim-
its therapeutic options, contributing to a poor prognosis. Early detection is critical as it has
been shown to significantly improve overall survival rates [2]. Previous studies reported
stage 1A PDACs are more frequently eligible for R0 resection and adjuvant chemotherapy,
resulting in a 5-year survival rate exceeding 80% for these patients [3]. The prediction of
PDAC in high-risk patients is gaining increasing attention. Age, abdominal pain, obesity,
weight change, HbA1c, alanine transaminase change, new-onset diabetes mellitus (DM),
and genomics are all significant for early-onset PDAC [4–6].

CT is commonly used for abdominal examination and PDAC detection. CT is also
effective in identifying secondary main pancreatic duct (MPD) dilation, pancreatic disease,
lymph node status and distant metastasis [7,8]. The majority of PDACs are believed to
originate from the branches of pancreatic ducts near the MPD [9]. Even small PDACs
have a high possibility of extension and invasion into the MPD. Recent molecular studies
have shown that PDAC development occurs, at least in part, through the intraepithelial
proliferation/dysplasia–cancer sequence. The repeated stimulation of the pancreatic ductal
epithelium by various risk factors, such as chronic pancreatitis and precancerous diseases,
can lead to irreversible malignant transformation [10]. The slight dilation of the MPD and
changes in MPD morphology can serve as a predictor of early PDAC [11,12]. MPD dilation
is often a secondary change resulting from tumors, calculi, and other disease states [13].
The radiological appearance of the MPD on CT or MRI in various diseases shows some
overlap with PDAC from mass-forming lesions.

Radiomics based on CT images has shown high performance in tumor predic-
tion [14,15], early detection, differentiation, staging, detecting occult liver metastasis, and
predicting the outcome of PDAC [16–21]. Most imaging-based PDAC prediction studies
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have focused on diagnostic images. For example, Cao et al. developed a deep learning
model based on diagnostic CTs and controls to detect and classify pancreatic lesions, with a
sensitivity and specificity of 92.9% and 99.9%, respectively [16]. Studies that have examined
pre-diagnostic images have evaluated them for intervals up to 3 years prior to PDAC
diagnosis [4,12,15], which limits inference for more distant predictions beyond 3 years.
Additionally, using CT-based radiomics derived from the MPD and pancreas to develop a
model for PDAC prediction on pre-diagnostic CT images has not been investigated.

The widely employed imaging modality to visualize the pancreatic ductal anatomy
is magnetic resonance cholangiopancreatography (MRCP), which is non-invasive and
carries much fewer complication risks compared to endoscopic retrograde pancreatography
(ERCP) and shows a strong positive correlation in the MPD diameter measured with a
special pancreatic ultrasound [22]. But cost limits the use of MRCP in routine clinical
surveillance applications.

In this paper, we hypothesize that adding MPD features including diameter and
volume and radiomics based on pre-diagnostic CT images can improve PDAC prediction in
high-risk patients as PDAC-related changes manifest both in the MPD and the surrounding
parenchyma well before PDAC diagnosis. Additionally, the model combining features from
both the MPD and the pancreas can improve the prediction of PDAC occurrence within
distinct timeframes (6 months to 3 years, 3–6 years, and 6–10 years in advance) compared to
models that analyze either the MPD or pancreas alone. This study aims to assess the utility
of integrating diameter, volume, and radiomic features from the MPD with those from
the pancreas on pre-diagnostic abdominal CT scans for predicting PDAC across different
timeframes in advance.

2. Materials and Methods
2.1. Ethics Approval

This retrospective study, including three (control, pre-diagnostic, and diagnostic)
cohorts, was approved by the Institutional Review Board (IRB) of each participating medical
center. All subjects enrolled in this study were de-identified prior to the expert’s reading
and segmentation.

2.2. Data Description

A total of 8 medical centers provided redacted images for this retrospective study.
This multicenter retrospective study involved abdominal contrast enhanced CTs of three
cohorts. Of the initial 500 evaluated subjects, 90 subjects were excluded due to image
quality, CTs with non-contrast, arterial or delayed phases, focal lesions of the pancreas
in the control cohort and pre-diagnostic cohort, and no follow-up results obtained either
by imaging or pathology. For MPD segmentation, 89 cases with a non-visible MPD were
further excluded, including 63 cases from the control cohort (117 with a visible MPD out of
170 cases), 26 cases from the pre-diagnostic cohort (104 with a visible MPD out of 130 cases),
and 10 cases from the diagnostic cohort (100 with a visible MPD out of 110 cases).

Diagnostic set: This dataset included abdominal contrast-enhanced CT scans with
the portal venous phase and radiologist’s reports indicating a tumor or mass within the
pancreas, confirming PDAC by histopathology, prior to surgery or chemotherapy between
January 2012 and December 2022. Patients who had a history of previous pancreatic surgery
(e.g., Whipple or pancreatectomy procedures) were excluded. This cohort consisted of
100 abdominal CTs (50 females and 50 males and a median age of 69 years with an age
range of 46–96 years) with histopathologically confirmed PDAC.

Pre-diagnostic abdominal contrast-enhanced CT were defined as scans conducted
between 6 months and 10 years prior to PDAC diagnosis. For patients with multiple
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pre-diagnostic CT scans, the closest scan at least 6 months prior to the PDAC diagnostic
date was selected. Pre-diagnostic CT was negative for PDAC, pancreatic cystic lesions such
as mucinous cystic neoplasm (MCN), serous cystic neoplasm (SCN), and other kinds of
benign and malignant tumors during radiological interpretation. Additionally, CT images
with secondary imaging signs of PDAC, such as attenuation difference, biliary or pancreatic
duct dilatation, or obstruction due to a tumor, were excluded.

This dataset comprised 104 abdominal CTs from subjects (52 females and 52 males
and a median age of 66 years, with an age range of 41–93 years) who developed PDAC at
least 6 months after the pre-diagnostic CT. The median interval between pre-diagnostic CTs
and PDAC diagnosis was 3.02 years, ranging from 6 months to 10 years.

Control set: A control group matched to the cases with pre-diagnostic images by
sex and age at the time of diagnosis (less than 3 years) was created from patients with
abdominal CTs with a normal pancreas. These include abdominal contrast-enhanced
CT scans taken for abdominal pain and other indications. The control dataset included
individuals with no history of pancreatic surgery, diabetes mellitus (DM), MCN, SCN, other
benign tumors or tumor-like lesions, or acute and chronic pancreatitis at the time of the CT
scans. No focal or diffuse atrophy was detected by radiologists. This cohort consisted of
abdominal CTs from 117 subjects (58 females and 59 males, and a median age of 63 years,
with an age range of 40–90 years) without pancreatic disorders, confirmed by imaging and
blood biomarkers.

Three hundred twenty-one subjects were finally enrolled in three cohorts. Sample
size was determined based on the available data that met the inclusion criteria, and no
formal power calculation was performed due to the retrospective nature of the study. The
portal venous phase of abdominal contrast-enhanced CT was segmented in this study by
one radiologist (LW). The portal venous phase was chosen because it provides a consistent
enhancement of the pancreatic parenchyma, which improves the contrast between the
pancreatic duct and surrounding tissue, thereby facilitating the accurate labeling of the
MPD. It is also the most consistently acquired in routine abdominal imaging protocols,
ensuring greater uniformity across the cohort and minimizing variability introduced by
other phases [23]. The venous phase was obtained 60–75 s after the intravenous administra-
tion of a contrast agent of a weight-based dose, generally ranging from 75 to 100 mL for
patients. CTs were performed on various scanner systems including Siemens, GE, Toshiba,
and Philips, with a matrix of 512 × 512 and slice thicknesses of 2.5–5 mm. The detailed
parameters are listed in Table S1.

2.3. Image Segmentation and Radiomic Feature Extraction and Feature Reduction

The CTs of all subjects were downloaded and de-identified by the anonymization of
Digital Imaging and Communication in Medicine (DICOM). Metadata including scanner
equipment specifications, CT slice thickness, the field of view, and the acquisition matrix
were extracted from DICOM headers. As the datasets were multi-center contrast-enhanced
CT images, standardized normalization and a harmonization pipeline were performed to
reduce inter-center variability. All CT studies were first loaded into ITK-snap Software
(version 3.6.0; RRID: SCR_002010) and saved in the Neuroimaging Informatics Technology
Initiative (NIFTI) format (RRID: SCR_003141). Next, all images were resampled to a uni-
form voxel size (e.g., 1 × 1 × 1 mm3) to ensure spatial consistency and optionally denoised
to enhance image quality. Intensity normalization is applied by clipping Hounsfield Unit
(HU) values to a predefined range (e.g., −50 to 200 for soft tissue) to address scanner
differences. Histogram matching is performed to align intensity distributions across scans.
Following this, harmonization is conducted using ComBat (RRID: SCR_010974) harmoniza-
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tion, a widely used statistical approach to correct scanner- and center-related biases while
preserving biological variations in radiomic features.

Once the images are standardized, the segmentation of the MPD and pancreas is performed.
The MPD was manually segmented slice by slice in the portal venous phase by a

board-certified abdominal oncologic radiologist (LW) with 25 years of experience. For each
subject in the three cohorts, the visible portion of the MPD on each slice was labeled. The
pancreas was auto-segmented using an abdominal organ segmentation model followed
by manual correction to ensure its quality. The surrounding vessels, stents of the common
bile duct, and accessory spleen were removed, while calcifications within the pancreas and
MPD were retained.

After segmentation, radiomic features are extracted using the open-source Python
(RRID: SCR_024202) package PyRadiomics (version 3.8.5; Python Software Foundation,
Wilmington, DE; RRID: SCR_026019), capturing first-order, texture, and shape character-
istics. In cases where portions of the MPD were invisible on CT images, we conducted
a piecewise feature analysis on the visible segments. The visible portions of the MPD
were segmented into distinct regions based on their anatomical characteristics. Radiomic
features were calculated separately for each segmented region. These features were then
analyzed to capture localized variations within the MPD. For the invisible segments, these
features were excluded from the analysis to ensure that the results remained robust and
free from potential bias introduced by missing data. To minimize bias, the radiologist who
performed ductal and pancreatic segmentation and radiomic feature extraction was blinded
to cohort assignments.

The maximum, minimum, mean, and standard deviation (SD) of the ductal diameter
and the segmented volume of the MPD for each subject were measured using the Python
package in a 2D transverse position.

A total of 107 radiomics features were extracted from the MPD and the pancreas
alone for each subject, including 14 shape features, 18 first-order features, and 75 texture
features. Texture features included 24 gray-level cooccurrence matrices (GLCMs), 16 gray-
level run-length matrices (GLRLMs), 16 gray-level size zone matrices (GLSZMs), 14 gray-
level dependence matrices (GLDMs), and 5 neighborhood gray-tone difference matrix
(NGTDM) features.

2.4. Statistical Analysis

To manage a large number of radiomic features, an unpaired two-tailed Student’s t-test
was first used to identify significant differences between control and pre-diagnostic features
(p > 0.05). Normality was checked using the Shapiro–Wilk test, and equal variances were
tested with Levene’s test. All analyses were performed using SPSS software, version 24 (IBM
Corp., Armonk, NY, USA; RRID: SCR_002865). Next, highly correlated radiomic features
(the threshold was 0.8) were identified and removed to eliminate redundant information.
This reduced the feature space dimension. An ANOVA was performed to select radiomic
features based on the classifier, using a recursive feature selection approach. An SVM
classifier was used and hyperparameters were determined using 5-fold cross-validation on
the training data.

Model performance was evaluated using receiver operating characteristic (ROC) curve
analysis based on the diameter and volume of the MPD, features of the MPD and pancreas
alone, and their combinations. The area under the ROC curve (AUC), accuracy, sensitivity,
and specificity were calculated at a cutoff value that maximized the Youden index [24].
The DeLong test was performed to compare the AUC values from different models in
predicting PDAC within each timeframe. p values less than 0.05 indicated statistically
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significant differences. The trends of all selected features in the model were also observed.
The radiomics workflow is shown in Figure 1.

 
1111111 

   

Figure 1. The workflow of radiomics analysis in this study.

A one-way ANOVA was performed to investigate the differences in the diameter
and volume of the MPD among the 3 cohorts using IBM SPSS statistics, version 24 (IBM
Corp., Armonk, NY, USA; RRID:SCR_002865). Turkey’s test was used for post hoc multiple
comparisons among the three groups, respectively. The Pearson correlation coefficient
was calculated to observe the correlation between the ductal diameter measured on CT
and MRCP.

3. Results
3.1. Demographic Information

There are 221 participants with a total 321 CT scans in the study. The average age
at the time of the CT image was 66.2 years, ranging 40–96 years. The sample size and
the demographic distribution are presented in Table 1. The distribution of time intervals
between pre-diagnostic CT and PDAC occurrence is presented in Figure S1.

Table 1. Demographics of the participants included in this study.

Variable Control Pre-Diagnostic Diagnostic

Subjects (CT scans) 117 104 100
Median age (range),

in years 63 y (40–90 y) 66 y (41–93 y) 69 y (44–96 y)

Gender
Female 58 52 50
Male 59 52 50

Duratio n between
pre-diagnostic and

diagnostic scan
Mean 3.02 years (0.60–10 years)

6 months–3 years 51 cases (49.0%)
3–6 years 32 cases (30.8%)

6–10 years 21 cases (20.2%)
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3.2. Trend of Diameters and Volumes for Control, Pre-Diagnostic, and Diagnostic Data

The sample size, maximum ductal diameter, minimum ductal diameter, mean ductal
diameter, standard deviation, and volume for each scan group are listed in Table 2. All
parameters displayed an increasing trend (Figures 2 and 3). The one-way ANOVA indicated
significant differences in the diameter and volume of the MPD among the groups (p < 0.05).
When comparing between two groups, all parameters, except for the Min diameter and
volume between control and pre-diagnostic cohorts, showed statistically significant differ-
ences (p < 0.05). Figure S2 illustrates the increased trend in diameter from the control to
pre-diagnostic and diagnostic cohorts validated with MRCP and demonstrates the correla-
tion between the Max ductal diameter on CT and MRCP (Pearson correlation coefficient:
r = 0.894).

Table 2. Diameters and volume of main pancreatic duct, and difference among three cohorts (0 = con-
trol cohort, 1 = pre-diagnostic cohort, 2 = diagnostic cohort).

Class Sample Size Max Ductal
Diameter (mm)

Min Ductal
Diameter (mm)

Mean Ductal
Diameter (mm)

Standard
Deviation

Ductal Volume
(mm3)

Control 117 1.94 ± 0.80 0.89 ± 0.05 1.10 ± 0.25 0.31 ± 0.29 1017.41 ± 446.58

Pre-diagnostic 104 2.59 ± 1.24 0.89 ± 0.07 1.41 ± 0.70 0.48 ± 0.43 1296.21 ± 1061.06

Diagnostic 100 4.67 ± 2.49 0.97 ± 0.31 2.63 ± 1.46 1.07 ± 0.67 2583.22 ± 2335.84

p-value (ANOVA)

0.000 0.001 0.001 0.000 0.000

0 vs. 1 0.009 0.961 0.032 0.023 0.334

0 vs. 2 0.000 0.002 0.000 0.000 0.000

1 vs. 2 0.000 0.006 0.000 0.000 0.000

3.3. Performance of Radiomic Models for PDAC Prediction Across Timeframes

Table 3 summarizes the performance of models based on the diameter and volume
of the MPD, the addition of radiomic features of the MPD to the diameter and volume,
radiomics features from the pancreas, and the combination of both the MPD and pancreas in
predicting PDAC across different timeframes: 6 months–3 years, 3–6 years, 6–10 years and
6 months–10 years in advance. All models showed their highest predictive performance
within 6 months–3 years in advance, with AUC values of 0.81, 0.88, 0.83, and 0.96 for the
four models, respectively. Model performance varied for more distant prediction intervals
over time, with AUC values of 0.77, 0.81, 0.81, and 0.94 for images taken 3–6 years in
advance and 0.69, 0.75, 0.75, 0.84 for images taken 6–10 years in advance. For the overall
pre-diagnostic cohort with 6 months to 10 years in advance, the AUC values of the three
models were 0.71, 0.72, 0.77, and 0.83. Additional evaluation metrics are listed in Table 3.

The model of the MPD including radiomic features, diameter and volume performed
comparably to the pancreas model in predicting PDAC for the three timeframes. The
addition of MPD features to those of the pancreas significantly improves the model’s
performance compared to the radiomics model of the pancreas alone for all timeframes
(p < 0.05). Figure 4 shows ROC curves of four models based on the MPD including radiomic
features, diameter and volume, the pancreas, and a combination of the MPD and pancreas
for each time interval. All extracted features, selected feature coefficients, definitions, and
clinical relevance are shown in Tables S2 and S3. Table 4 and Figure S3 show compar-
isons of different model performances calculated by the Delong test in each time interval.
Figures S4–S7 demonstrate the trends of selected features across the control, pre-diagnostic,
and diagnostic cohorts. Figure S8 shows the feature importance in the combined model of
different timeframes using the SHAP method.
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Figure 2. Main pancreatic duct (MPD) segmentation and imaging across disease progression. The top
row (A–C) displays axial CT images with MPD segmentations in control (A), pre-diagnostic (B), and
diagnostic (C) subjects. The yellow line within the pancreas represents the segmentation of the main
pancreatic duct. From control to pre-diagnostic to diagnostic subjects, the diameter of main pancreatic
duct gradually increase. The second row (D–F) presents corresponding coronal views, while the
third row (G–I) shows sagittal views. The red arrows in the figures indicate the appearance of main
pancreatic duct from different views. The fourth row (J–L) includes MRCP images of the same cases,
and the fifth row (M–O) shows 3D reconstructions of the segmented MPD. The pre-diagnostic subject
demonstrates slight MPD dilatation, evident in both MRCP and 3D views. In the diagnostic case with
PDAC, segmentation and MRCP reveal a disrupted MPD, indicating tumor-induced blockage and
upstream ductal dilation.
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Figure 3. Violin plots of the Max ductal diameter (A), Min ductal diameter (B), mean ductal diam-
eter (C) and volume (D) across the control (blue), pre-diagnostic (orange) and diagnostic cohorts
(green). Each plot illustrates the distribution and central tendency (white dot = median) of ductal
measurements within each cohort. The control cohort shows a wider distribution with a lowest
median value in Max ductal diameter, Min ductal diameter, mean ductal diameter and volume,
suggesting greater variability but overall smaller ductal sizes and volumes. The Pre-dx cohort shows
a moderate spread and a median between the control cohort and Dx cohort, suggesting early struc-
ture changes in the MPD. The Dx cohort shows a narrower distribution and the highest median
value, indicating more consistently elevated values with disease progression. Statistical analysis
confirms significant differences and an increasing trend in ductal measurements from the control to
pre-diagnostic and diagnostic cohorts. (Pre-dx: pre-diagnostic cohort; Dx: diagnostic cohort, MPD:
main pancreatic duct).
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Table 3. Diagnosis performance of models in classifying control and pre-diagnostic pancreas within
distinct timeframes.

Model ACC AUC AUC (95% CIs) SE SP

6 months–3 years

Diameter + volume 0.86 0.81 0.59–1 0.80 0.91

MPD 0.86 0.88 0.73–1 0.90 0.82

Pancreas 0.86 0.83 0.65–1 1 0.73

MPD + pancreas 0.95 0.96 0.89–1 1 0.91

3–6 years

Diameter + volume 0.86 0.77 0.46–1 0.83 0.88

MPD 0.79 0.81 0.58–1 0.83 0.75

Pancreas 0.86 0.81 0.56–1 0.83 0.75

MPD + pancreas 0.86 0.94 0.82–1 1 0.75

6–10 years

Diameter + volume 0.75 0.69 0.25–1 0.75 0.75

MPD 0.87 0.75 0.26–1 0.75 1

Pancreas 0.75 0.75 0.35–1 0.75 0.75

MPD + pancreas 0.88 0.84 0.53–1 0.75 1

6 months–10 years

Diameter + volume 0.73 0.71 0.56–0.87 0.62 0.83

MPD 0.70 0.72 0.56–0.87 0.71 0.70

Pancreas 0.77 0.77 0.62–0.91 0.90 0.65

MPD + pancreas 0.80 0.83 0.70–0.96 0.86 0.70

(MPD = diameter + volume + radiomics of main pancreatic duct, ACC = accuracy, CI = confidence interval,
SE = sensitivity, SP = specificity).

Table 4. The differences in AUCs between two models within each timeframe.

Delong Test p Value

6 months–3 years

Diameter vs. MPD 0.02

MPD vs. pancreas 0.38

MPD vs. MPD + pancreas 0.010

Pancreas vs. MPD + pancreas 0.000

3–6 years

Diameter vs. MPD 0.08

MPD vs. pancreas 0.34

MPD vs. MPD + pancreas 0.002

Pancreas vs. MPD + pancreas 0.01

6–10 years

Diameter vs. MPD 0.45

MPD vs. pancreas 0.65

MPD vs. MPD + pancreas 0.05

Pancreas vs. MPD + pancreas 0.05

6 months–10 years

Diameter vs. MPD 0.76

MPD vs. pancreas 0.000

MPD vs. MPD+ pancreas 0.000

Pancreas vs. MPD + pancreas 0.003
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4 

 Figure 4. Performance analysis of radiomic models for predicting PDAC occurrence within 6 months–
3 years (A), 3–6 years (B), 6–10 years (C), and 6 months–10 years (D). The graphs present receiver
operating characteristic (ROC) curves for models based on the diameter and volume of main pancre-
atic duct (MPD), diameter and radiomic features of the MPD, the pancreas, and a combination of
both. The purple line represents the model of the diameter and volume, the blue line corresponds to
the model derived from the MPD, the green line corresponds to the model derived from the pancreas,
and the red line represents the model based on the combination of the MPD and the pancreas. The
diagonal dotted line represents the performance of a classifier that makes random guesses.

4. Discussion
To the best of our knowledge, this is the first study to investigate the predictive

performance of radiomic features, diameter and volume from the MPD both independently
and integrated with the radiomics of the pancreas in predicting PDAC occurrence across
distinct timeframes: 6 months–3 years, 3–6 years, and 6–10 years and 6 months–10 years in
advance. The pre-diagnostic and diagnostic CT images demonstrated a progressive increase
in the diameter and volume of the MPD. Radiomic models derived from the MPD including
radiomic features, the diameter and volume, the pancreas, and a combination of both
exhibited the highest predictive performance within the 6 months–3 year intervals, with
AUC values of 0.81, 0.88, 0.83, and 0.96, respectively, with attenuated accuracy over longer
intervals. The addition of the MPD including the diameter and volume and radiomics
improved the PDAC prediction AUC from 0.83 to 0.96 for subjects 6 months to 3 years
in advance, from 0.81 to 0.94 for those 3–6 years in advance, and 0.75 to 0.84 for those
6–10 years in advance of diagnosis, respectively. These results suggested that MPD features
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are important biomarkers for predicting PDAC, even up to 10 years in advance, and should
be included for PDAC prediction.

These findings align with previous results, which demonstrated high sensitivity in
detecting MPD changes including slight dilation or narrowing [12,25]. Positive findings
were significantly associated with the classifying of small PDAC and a normal pancreas.
Tanaka et al. reported that 65% of pre-cancer cases had an MPD diameter larger than
2 mm on ultrasonography, and the mean diameter of the MPD in the pre-cancer group
increased over time [26]. Our results showed that 72.1% (75/104) of pre-diagnostic cases
had an MPD diameter larger than 2 mm and increased from the pre-diagnostic cohort to
the diagnostic cohort. The measurements and trends in the MPD diameter and volume
utilizing different protocols or scanners remained consistent, suggesting that the differences
in imaging protocols did not significantly affect this finding. To avoid bias in radiomic
features, we performed image harmonization and normalization before segmentation
and extracting radiomic features. Anatomical variability, patient age, and tumor stage can
significantly affect MPD visibility and delineation on CT. Variations in ductal anatomy, such
as branching patterns or naturally narrow ducts, may reduce contrast with surrounding
tissue, complicating segmentation. The MPD diameter tends to increase with age, and
age-related changes like parenchymal atrophy or ductal ectasia can either improve visibility
or introduce boundary ambiguity. In early or pre-diagnostic tumor stages, MPD changes
are often subtle and hard to detect, while advanced tumors typically cause obstruction and
upstream dilation, enhancing MPD visualization.

MRCP served as a complementary modality to CT, particularly in confirming subtle
ductal changes. In cases where both CT and MRCP were performed within a close time
interval (typically within 30 days), the maximum MPD diameter was compared at matched
anatomical locations. Agreement was assessed using both qualitative and quantitative mea-
sures. High correlation was observed between two modalities, with a Pearson correlation
coefficient of r = 0.894, indicating strong consistency. Notable discrepancies were primarily
related to ductal morphology; MRCP offered a superior visualization of subtle features
such as irregularities or mild dilation, which may be less apparent on CT. Nonetheless, the
overall trend of increasing ductal size across disease stages was consistently observed on
both imaging modalities.

MPD dilatation is noted in various pancreatic conditions and is an easily missed
sign of tumor onset [4,27–29]. Chronic pancreatitis (CP), characterized by long-term and
recurrent inflammation and pancreatic fibrosis, can lead to the narrowing and irregularity
of the MPD, predisposing individuals to PDAC development [30,31]. Precursor lesions
such as pancreatic intraepithelial neoplasia and pancreatic intraductal papillary mucinous
neoplasm (IPMN) can contribute to MPD dilatation by stimulating the secretion of pan-
creatic fluid and blocking or compressing the MPD [32]. In some instances, PDAC tumors
originate from the branch pancreatic duct and spread along the ductal system, causing
ductal dilation, and occur before the development of a visible mass. The dense fibrotic
stroma of non-cancerous pancreatic parenchyma can cause mechanical compression and
the torturing of the MPD. Additionally, tumor-induced ischemia, neoplastic angiogenesis,
and PDAC-associated cystic changes within the mass further exacerbate MPD dilatation by
disrupting normal tissue architecture and blood flow within the pancreas.

Previous studies have highlighted the importance of predicting PDAC. Identifying
individuals at a high risk of developing PDAC can enable early detection and the ongo-
ing monitoring of high-risk factors and further improve the outcome [33,34]. In recent
years, various efforts have been made to stratify PDAC risk using pre-diagnostic abdom-
inal CT scans. Qureshi examined the anatomical characteristics of the entire pancreas
through radiomic analysis on pre-diagnostic abdominal CT scans to predict PDAC within
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6–36 months and achieved 85.7% accuracy [35]. Javed further extended the anatomical
analysis to pancreatic subregions for a more precise PDAC prediction, resulting in a 3.6%
improvement in classification accuracy [15]. Two subsequent studies adopted a similar
approach and reached comparable conclusions [36,37]. However, these studies only predict
PDAC occurrence within 3 years. There is a possibility of missing cases that slowly develop
PDAC after 3 years. In our dataset, nearly half of the pre-diagnostic cases developed PDAC
after 3 years.

Predicting PDAC occurrence across distinct timeframes (6 months–3 years, 3–6 years,
and 6–10 years in advance) is crucial as it addresses the significant variability in disease
progression, particularly in individuals with slower-evolving precursor lesions like PanINs
and IPMNs [38,39]. Long-standing diabetes (>3 years) is associated with increased risk
for PDAC [40]. Pancreatitis diagnosed beyond 5 years continues to present an elevated
adjusted relative hazard of 2.02 for PDAC [41]. Early-stage pancreatic changes, which may
remain undetected or asymptomatic within a shorter timeframe, can progress to invasive
cancer over several years. This extended prediction interval up to 10 years allows for
the identification of at-risk individuals who might not show immediate signs but could
benefit from ongoing monitoring and early intervention strategies. By capturing these
later-occurring cases, clinicians can implement timely preventive measures, ultimately
improving patient outcomes and reducing mortality associated with PDAC.

The innovative finding in our study is using radiomic features of the MPD plus
diameter and volume, the pancreas, and their combination to predict PDAC across dif-
ferent timeframes up to 10 years. The model combining radiomic features, diameter and
volume from the MPD shows superior performance within 6 months–3 years (AUCs:
0.88) and promising results within 3–6 years and 6–10 years (AUCs: 0.81 and 0.75), high-
lighting the importance of the MPD in PDAC prediction for a shorter interval, likely
due to the direct involvement of the MPD in the early pathophysiological changes as-
sociated with pancreatic cancer. Our findings also highlighted that the addition of ra-
diomic features from the MPD improved PDAC prediction beyond the conventional
diameter and volume model within 6 months–3 years in advance (AUCs from 0.81 to
0.88). Among all radiomic features, gldm_DependenceNonUniformity, glrlm_RunEntropy,
glszm_SizeZoneNonUniformityNormalized, and glszm_SmallAreaEmphasis were selected
as the most predictive radiomic features. These features measure the variability in depen-
dence groups in the image, capture the randomness of run lengths in the image, calculate
the variability in zone sizes, and emphasize fine-textured regions by highlighting the pro-
portion of small homogeneous zones that reflect textural heterogeneity, microstructural
complexity, and subtle tissue variations that may precede overt anatomical changes. Unlike
diameter and volume, which primarily reflect macroscopic ductal dilation, these radiomic
features provide a more granular assessment of tissue irregularities, offering an earlier
and more precise detection of pre-diagnostic abnormalities that are likely influenced by
factors such as changes in ductal contents and pressure, ductal dilatation, and scarring
associated with PDAC, pancreatitis, and other pathological processes. The increasing
trend observed in radiomic features from the control to pre-diagnostic and diagnostic
cohorts further emphasizes the growing complexity and heterogeneity within the MPD
area. The superior predictive performance of adding radiomic features from the MPD un-
derscores the potential of radiomics in detecting pre-diagnostic abnormality from the MPD
that are imperceptible in routine imaging. Gldm_DependenceNonUniformityNormalized,
gldm_GrayLevelNonUniformity and glszm_GrayLevelNonUniformityNormalized from
the pancreas are the most significant radiomic features for predicting PDAC within
6 months to 3 years in advance. DependenceNonUniformityNormalized reflects the
variability in local intensity dependencies, suggesting increased tissue complexity, while
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GrayLevelNonUniformity and GrayLevelNonUniformityNormalized measure gray-level
distribution irregularities, which may indicate early desmoplastic changes and altered
pancreatic tissue organization. These subtle variations in tissue heterogeneity may relate to
changes in microstructure like fibrosis and fatty infiltration [42] and correspond to early
microstructural alterations associated with tumor initiation.

For predicting PDAC 3–6 years in advance, our study identified key radiomic features
of both the main pancreatic duct (MPD) and the pancreas and significantly enhanced PDAC
prediction when combining MPD and pancreas. From the MPD, the following features were
selected including Max ductal diameter, firstorder_RobustMeanAbsoluteDeviation, which
measures the mean distance of all intensity values from the mean value based on a subset
of images with gray levels between the 10th and 90th percentile, glcm_SumEntropy, which
represents the sum of intensity differences between neighboring pixels, glcm_SumSquares,
which measures the variance in neighboring intensity-level pairs around the mean in-
tensity level in the GLCM, gldm_GrayLevelVariance, which evaluates the variance in
gray level intensities within the zones, glszm_GrayLevelNonUniformityNormalized,
which measures the variability in gray-level intensity values in the image, normalized
for size, glszm_SizeZoneNonUniformity, which assesses the variability of size zone vol-
umes in the image, where a lower value suggests greater homogeneity in zone sizes, and
ngtdm_Complexity, which measures the level of complexity in an image by evaluating the
variations in intensity between a voxel and its neighboring voxels.

These features also reflect variations in textural heterogeneity, structural irregulari-
ties, and early microarchitectural changes in ductal tissue. Similarly, InterquartileRange,
SumSquares, DependenceEntropy, and Sphericity from the pancreas, which measure tissue
intensity variations, gray-level dispersion, and morphometric differences, are the most
predictive features and are associated with early neoplastic alterations.

In predicting PDAC within 6–10 years in advance, the selected radiomic features from
the MPD include firstorder_Skewness and glszm_SizeZoneNonUniformityNormalized,
which capture the asymmetry in the intensity distribution within the MPD and quantify
the variability in homogeneous intensity regions, indicating irregular tissue organiza-
tion within the duct. Glcm_JointEnergy, gldm_DependenceNonUniformityNormalized,
gldm_DependenceVariance, gldm_LargeDependenceEmphasis and glrlm_RunPercentage
from the pancreas capture tissue heterogeneity, disorganization and altered glandular
structure, a hallmark of tumor development.

The addition of radiomics of the MPD, including diameter and volume, to the pancreas
showed the highest predictive performance for PDAC, with AUCs of 0.96, 0.94, 0.84, and
0.83, respectively, for the different pre-diagnostic intervals. The superior performance of this
combined model outperformed the radiomic model based on the pancreas alone (p < 0.05),
which suggests that integrating features from both anatomical structures that can capture
complementary information is proven to be a promising approach in radiomics research
and reinforces the hypothesis that PDAC-related changes manifest both in the MPD and
the surrounding parenchyma well before PDAC diagnosis. The selected features reflect
the early changes in the shape and tissue physiology environment, including the MPD
and pancreas, to provide a more comprehensive evaluation and improve the robustness
of predictive models. Our results showed consistency with the previous consensus that a
combination of multi-region radiomics analysis can lead to higher predictive performance
compared to single-region analysis. The model’s performance varied over longer time
durations, with AUC values decreasing as the interval extended to 6–10 years in advance,
which aligns with the biological and pathological progression of PDAC [43]. This trend
potentially reflects the increasing heterogeneity and complexity of the disease over time,
where early changes in the pancreatic tissue that are more easily captured by radiomic
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features may become less distinct as the disease progresses or as the precursor lesions
evolve at different rates [44]. This approach not only improves early detection but also
extends the predictive capacity into longer intervals, supporting the notion that different
radiomic features may dominate at various stages of disease progression.

There are some limitations in our study. Firstly, this retrospective study benefits
from having a larger sample size than previous efforts, but its power remains limited in
detecting subtle feature differences that could further enhance discriminatory performance.
To mitigate this, we utilized multicenter data, applied advanced statistical methods, and
enhanced feature engineering to improve model robustness and reduce single-center bias.
However, a key limitation is the absence of prospective external validation, which is
essential to confirm the model’s generalizability in real-world settings. Future work will
focus on acquiring prospective datasets to validate the model’s performance over time
and ensure its generalization. Secondly, the MPD is a very detailed structure within the
pancreas, and some parts of the MPD in CT images may be invisible, especially for control
subjects, and result in disconnection when MPD segmentation is performed. We use
piecewise feature analysis to extract meaningful radiomic characteristics from the visible
portions of the MPD. Future work will focus on developing autosegmentation techniques
of very detailed structures or other methods to extend the invisible portions of the MPD,
improving segmentation consistency and feature extraction. Finally, the control cohort was
confirmed to have no pancreatic disorders based on imaging and blood biomarkers, and
genetic predispositions to pancreatic diseases were not available. Some control subjects may
be at an elevated risk due to underlying genetic factors. Future studies should integrate
genetic screening or family history analysis to further refine the control group and improve
the robustness of comparisons.

5. Conclusions
Pancreatic radiomics of pre-diagnostic abdominal CT scans have been shown to pre-

dict PDAC occurrence within 3 years. In this work, we developed radiomic models to
predict PDAC occurrence in various timeframes up to 10 years in advance. The addition
of the radiomics of the MPD significantly improves the performance of PDAC prediction
compared to the model using pancreas radiomics alone across different timeframes be-
fore diagnosis. A major challenge of including the MPD for PDAC prediction using CT
scans is that the MPD is not always visible. Future work will explore autosegmentation
techniques to improve reproducibility and extend the visibility of the MPD in cases where
segmentation is challenging. Additionally, future research will validate these findings
in larger and prospective cohorts and develop models incorporating age, gender, and
ethnicity alongside the radiomics model, as well as other radiomic biomarkers associated
with PDAC occurrence.
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MPD Diameter among across control, pre-diagnostic and diagnostic cohorts measured on MRCP
(A), and the correlation of Max ductal Diameter on CT with diameter on MRCP (B). Figure S3.
AUC values across different time frames for four models. Figure S4. Violin plots illustrating the
distribution and density of selected radiomic features from the pancreas and the main pancreatic
duct (MPD) across control (blue), pre-diagnostic (orange), and diagnostic cohorts in predicting
PDAC occurrence within 6 months–3 years.Figure S5. Violin plots illustrating the distribution and
density of selected radiomic features from the pancreas and the main pancreatic duct (MPD) across
control (blue), pre-diagnostic (orange), and diagnostic cohorts in predicting PDAC occurrence within
3–6 years. Figure S6. Violin plots illustrating the distribution and density of selected radiomic features
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from pancreas and MPD across control (blue), pre-diagnostic (orange), and diagnostic cohorts in
predicting PDAC occurrence within 6–10 years. Figure S7. Violin plots illustrating the distribution
and density of selected radiomic features from the pancreas and the main pancreatic duct across
control (blue), pre-diagnostic (orange), and diagnostic cohorts in predicting PDAC occurrence for
overall cases (6 months–10 years). Figure S8. Global model explanation by the SHAP method of
different timeframe(A,B,C within 6 months–3 years in advance; D,E,F within 3–6 years in advance,
G,H,I within 6–10 years in advance; J,K,L within 6 months–10 years in advance) when combined
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