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Bone metastasis is commonly seen in patients with breast cancer, prostate cancer and
lung cancer. Tumor-intrinsic factors and the tumor microenvironment cooperate to affect
the formation of bone metastatic niche. Within the bone microenvironment, immune cells
have been regarded as a major contributor to metastatic progression. In this review, we
describe the dynamic roles of immune cells in regulating metastatic homing, seeding,
dormancy, and outgrowth in the bone. We also summarize the diverse functions of
immune molecules including chemokines, cytokines, and exosomes in remodeling the
bone metastatic niche. Furthermore, we discuss the therapeutic and prognostic potential
of these cellular and molecular players in bone metastasis.
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INTRODUCTION

Bone metastasis is a multi-stage process which involves escape from the primary site, survival in the
circulation and metastatic colonization (1). These events are driven by both cancer cell-intrinsic
traits and extrinsic factors in the tumor microenvironment (TME) (2). Emerging evidence has
highlighted the importance of immune modulation in the bone metastatic niche formation (3–6). In
this review, we aim to focus on the contribution of immune cellular components and molecular
mediators to the homing, seeding, dormancy and subsequent outgrowth of metastatic cancer cells in
the bone microenvironment (Figure 1).
IMMUNE CELLS MODULATING METASTATIC NICHE
FORMATION IN THE BONE

Innate Immune Cells
Macrophages participate in all steps of metastasis. They can be polarized into either proinflammatory
M1-like macrophages or anti-inflammatory M2-like macrophages in response to environmental
stimuli (7). In the primary site, tumor-associated macrophages (TAMs) are involved in angiogenesis,
migration and intravasation (8). At the distant organs, metastasis-associated macrophages (MAMs), a
distinct population of TAMs, were first described in mouse models of breast cancer lung metastasis
(9). They were reported to promote tumor cell extravasation, seeding and metastatic outgrowth (10,
11). Similar to lung MAMs, bone MAMs also play metastasis-promoting roles. Our recent study
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reveals that MAMs are enriched in mouse models of breast cancer
bone metastasis and patient samples. Macrophage depletion with
clodronate liposomes and colony-stimulating factor 1 receptor
(CSF1R) reduces breast cancer cell growth in the bone. Using
lineage tracing methods and gene expression analysis, we are the
first to demonstrate bone MAMs originate from circulating
inflammatory monocytes and bear specific cell surface markers
CD204 and interleukin 4 receptor (IL4R). IL4R acts as promoters
of metastatic outgrowth. The absence of IL4R in bone MAMs
results in a reduction of metastatic tumor growth in the bone,
which holds therapeutic promise for bone metastatic patients (12).

Neutrophils, a key player in the innate immunity, have gained
attention in the metastatic process (13–15). The neutrophil-to-
lymphocyte ratio in the blood has been reported as a prognostic
indicator of survival in patients with bone metastasis (16).
Moreover, neutrophil accumulation in the TME showed
resistance to immune checkpoint blockade (ICB) relative to other
immune compositions (17). Given the highly heterogeneity and
plasticity of neutrophils, they display opposing behaviors during the
metastatic dissemination and colonization. On one hand,
neutrophils elicit cytotoxic responses by directly killing tumor cell
to suppress metastatic growth. In the bone metastatic prostate
cancer, Ly6G+ neutrophils are recruited to the bone lesions and
induce apoptosis of prostate cancer cells through inhibition of
signal transducer and activator of transcription (STAT) 5. Notably,
the cytotoxic property of neutrophils can be gradually lost during
tumor progression, which is consistent with previously reported
immunosuppressive activity of neutrophils in the late stages of
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cancer (18, 19). On the other hand, increasing evidence indicates
the relevance of neutrophils in supporting metastatic establishment
in other distal organs. For example, neutrophils are shown to
facilitate extravasation of tumor cells and lung colonization
through secretion of inflammatory cytokines and suppression of
natural killer (NK) cells (20). Overall, these studies uncover the
context-dependent roles of neutrophils in metastasis.

NK cells are innate cytotoxic lymphocytes that mediate cancer
cell killing in the tumor progression (21). In the experimental
metastasis models of breast cancer, metastatic cancer cells have
been found to evade the NK cell immune attack and remain
dormancy by downregulating levels of ligands for NK-cell
activating receptors (22). The functions of NK cell can also be
impaired by certain signaling pathways and inflammatory
cytokines in bone metastasis. A recent study indicated that
inhibition of the JAK/STAT pathway dramatically decreased NK
cell activity and enhanced the metastatic burden, which could be
restored by interleukin-15 (IL-15) stimulation (23).

While initially regarded as an anti-tumor immune component
(24), eosinophils in the context of inflammation also contribute to
bone metastasis. Mechanistically, they secrete CC-chemokine
ligand 6 (CCL6) to attract tumor cells to the bone metastatic
niche through CC-chemokine receptor 1 (CCR1). Inhibition of the
CCL6-CCR1 signaling significantly attenuates the tumor cell
migration and bone metastasis formation, which suggests the
close connection between inflammation and metastasis and
provides new paradigms for cancer prevention (25).
Furthermore, plasmacytoid dentritic cells have been described in
FIGURE 1 | Immune mechanisms in the progression of bone metastasis. After being detached from the primary tumor, circulating tumor cells produce CXC-
chemokine ligand 12 (CXCL12) to facilitate metastatic homing to the bone. They can also secrete CC-chemokine ligand 2 (CCL2) to recruit CC-chemokine receptor
2 (CCR2)+ inflammatory monocytes towards the bone metastatic niche, in which they differentiate into metastasis-associated macrophages (MAMs). Following
metastatic seeding into the bone, disseminated tumor cells can remain in a dormant state driven by type I interferon, the receptor of leukemia inhibitory factor (LIFR),
transforming growth factor-b (TGF-b). Induced by several immune molecules, dormant tumor cells can be reactivated and initiate metastatic outgrowth. Eosinophils,
MAMs, myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) conspire to support the persistent growth of metastatic tumor cells. Furthermore, the
tumor-stroma interactions are engaged in the acceleration of bone metastasis. Osteoblasts-derived receptor activator of nuclear factor-kB-ligand (RANKL) induces
the differentiation of osteoclasts, which in turn stimulates bone resorption and tumor cell proliferation mediated by growth factors like transforming growth factor-b
(TGF-b). In addition, immune cells including neutrophils, nature killer (NK) cells and CD8+ T cells act to restrict metastatic tumor cell growth.
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mouse models of breast cancer bone metastasis. Their metastasis-
supporting effects are driven by induction of immunosuppressive
cells and osteolytic cytokine receptor activator of nuclear factor-kB-
ligand (RANKL) (26).

Adaptive Immune Cells
CD8+ T cells exert cytotoxic effects in the bone metastatic niche.
They act as negative regulators of tumor growth in the bone.
Adoptive transfer of cytotoxic CD8+ T cells into PLCg2-/- mice
prevents the growth of B16 melanoma cells in the bone (27).
Their anti-tumor responses in the bone are further enhanced by
the transcription factor estrogen-related receptor alpha (ERRa).
On one hand, overexpression of ERRa increased the production
of the chemokines CCL17 and CCL20 to attract more cytotoxic T
cells the bone. On the other hand, ERRa decreased the tumor cell
secretion of anti-inflammatory cytokine transforming growth
factor-b (TGF-b) (28). In contrast to CD8+ T cells, cancer-
primed CD4+ T cells are reported to create the premetastatic
niche via the release of RANKL before bone colonization in
breast cancer models (29). As a subtype of CD4+ T cells, the
immunosuppressive regulatory T cells (Tregs) enrichment has
been detected in the bone marrow of patients with prostate
cancer. These cells are found to inhibit the differentiation of
osteoclasts (OCs), which might elucidate the potential
mechanisms of osteoblastic lesions of prostate cancer (30).

Other Non-Immune Cells
Myeloid-derived suppressor cells (MDSCs) represent a heterogenous
population of immature myeloid cells with immunosuppressive
features (31). An abundance of MDSCs is observed in both
preclinical mouse models and patients with bone metastasis (32,
33). Several factors are required for the accumulation and function of
MDSCs in the bone microenvironment. Interferon regulatory factor
7 (IRF7) was reported to suppress pro-metastatic activity of MDSCs
in the 4T1 murine metastatic model. Overexpression of IRF7
reduced metastatic burden and prolonged survival time by
counteracting the action of MDSCs and restoring CD8+ T cell and
NK cell activity (34). More recently, DKK1, an inhibitor of the Wnt
pathway, has been directly targets b-catenin in MDSCs from mouse
models and patients. Neutralization of DKK1 leads to reduced tumor
growth and MDSC expansion (35). Additionally, since MDSCs are
progenitors of macrophages, they also have the capacity to
differentiate into bone-resorbing OCs in a nitric oxide-dependent
manner, thereby enhancing bone destruction and tumor
growth (36).
IMMUNE MEDIATORS REMODELING THE
BONE METASTATIC NICHE

Chemokines
Increasing evidence reveals the involvement of chemokines in the
bone metastatic progression. In breast cancer, CCL2 induces the
recruitment of circulating inflammatory monocytes to the bone
through the interaction with CCR2 (12). Similarly, prostate cancer-
derived CCL2 also facilitates tumor growth in the bone, which
results from increased OC differentiation and angiogenesis (37).
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Treatment with anti-CCL2 antibody attenuated metastatic
outgrowth and prolonged survival in mouse models of breast
cancer metastasis (12). However, application of anti-CCL2 agents
alone should be cautioned because discontinuation of CCL2
inhibition has rebound effects that augment metastasis in mice
(38). Furthermore, inhibition of CCR2 with humanized
monoclonal antibodies, MLN1202, has shown beneficial effects in
patients with bone metastases, as evidenced by reduced levels of
bone-resorbing factors urinary N-telopeptide of type I collagen
(uNTX) (ClinicalTrials. gov ID: NCT01015560). CCL4 binding to
CCR5 on bone marrow fibroblasts stimulates their release of
connective tissue growth factor/CCN2, which supports breast
cancer cell growth in bone (39). High expressions of CCL5 are
associated with high Gleason grade and poor prognosis in prostate
cancer patients (40). In response to prostate cancer cell growth-
induced pressure, osteocytes produce CCL5, which promotes tumor
proliferation in the bone (41). CXC-chemokine ligand 5 (CXCL5)
are also reported to deliver growth signals to malignant cells.
Exposure to TME elicits CXCL5 secretion from bone marrow
cells, which allows breast cancer cells to exit from dormancy and
colonize the bone microenvironment (42). The CXCL12/CXC-
chemokine receptor 4 (CXCR4) axis plays an important role in
regulating DTC homing and survival. In triple negative breast
cancer (TNBC), CXCL12 from cancer-associated fibroblasts is
found to select cancer cells with high Src activity homing to the
bone (43). Moreover, the CXCL12/CXCR4 pathway modulates
tumor growth in the bone. In prostate cancer, pyruvate kinase
M2 (PKM2) released by primary cancer-derived exosomes initiates
the downstream release of hypoxia inducible factor-1a (HIF-1a)
and CXCL12, which promotes metastatic seeding and outgrowth.
Genetic inhibition and pharmacological blockade of CXCR4
diminish the number of bone metastases and total metastatic
burden (44). This study suggests that the growth of tumor cells in
the distant organs can be conditioned by metabolic alterations at
the primary site.

Cytokines
Interferons (IFN), comprised of type I IFNs and type II IFNs
(IFNg), are critical cytokines during the anti-metastatic immune
response (45). The importance of type I IFNs in the bone
metastatic niche was shown in three non-bone metastatic
breast cancer models in which loss of host type I IFN signaling
accelerated metastatic spreading to the bone in part through
impairing the ability of NK cells to eliminate cancer cells (46). As
observed in breast cancer, tumor-inherent type I IFN was also
downregulated in proliferative prostate cancer cells from bone,
which disrupted dormancy status and promoted metastatic
outgrowth. This effect could be reversed by the use of histone
deacetylase inhibitors (HDACi), suggesting the therapeutic
potential of epigenetic modifications in the regulation of IFN
signaling (47). Importantly, the presence of IRF9 is a positive
prognostic biomarker for the chemotherapeutic response in
TNBC patients (48). In addition, IFN-g can directly target OCs
to inhibit bone loss and bone metastasis (49).

Interleukin-1b(IL-1b) is highly expressed in tumor cells and
bone marrow cells during progression of bone metastasis. IL-1b in
tumor cells induces epithelial to mesenchymal transition (EMT)
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and correlates with recurrence and bone relapse in patients with
stage II and III breast cancer. Bone marrow-derived IL-1b can
activate intracellular nuclear factor Kappa B (NF-kB) and the Wnt
signaling to promote metastatic expansion to form overt
metastases. Targeting IL-1b with anti-IL-1b antibody or the IL-1
receptor antagonist, Anakinra, prevents metastatic seeding and
colony formation (50, 51). IL-6 is a critical promoter of tumor
growth in osteolytic bone metastasis of breast cancer. In this
process, tumor cell-derived Jagged1 simulates Notch signaling in
osteoblasts, which increases the IL-6 release and OC differentiation
(52). IL-11, a member of the IL-6 family, has a similar effect in
osteolytic lesions dependent on the STAT3 signaling (53). By
contrast, the receptor of leukemia inhibitory factor (LIFR), whose
ligand LIF belongs to the IL-6 family of cytokines, shows an anti-
tumor effect through induction of dormancy in the bone (54). IL-
20 is a tumor-promoting cytokine partly due to their capacity to
induce proliferation and migration of tumor cells. Mice treated
with anti-IL-20 antibody 7E displayed a reduction in bone
colonization and osteolysis (55). Mesenchymal stem cell-derived
IL-28 confers apoptotic resistance properties on prostate cancer
cells disseminated to bone lesions via STAT3 activation (56).
Although initially identified as an inhibitor of osteoclastogenesis
(57), granulocyte macrophage-colony stimulating factor (GM-
CSF), produced by breast cancer cells, has been recently found to
increase the number of OCs and bone metastatic potential (58).
Another cytokine TGF-b is involved in bone metastasis. TGF-b
released by the bone matrix is a well-established driver of tumor
growth and bone degradation (59). However, osteoblast-derived
TGF-b induces dormancy of metastatic prostate cancer cells in the
bone mediated by TGFbR-III-p38MAPK-pS249/T252RB pathway
(60). This demonstrates the temporal differences of TGF-b
signaling during different stages of bone metastasis. Beyond
stromal cells, cancer cells can also express TGF-b to suppress the
Wnt signaling through dishevelled binding antagonist of b-catenin
1(DACT1)- dependent biochemical condensates formation, which
in turn promotes bone metastatic outgrowth (61). Finally, in the
mouse model of prostate cancer bone metastasis, high levels of
TGF-b in the TMEwere associated with poor response to ICB. This
immunosuppressive effect of TGF-b is achieved by restraining type
1 T helper cell development. The efficacy of ICB was enhanced by
TGF-b inhibition, suggesting the potential value of targeting TGF-
b to improve ICB response (62).

Exosomes
Exosomes are nano-sized extracellular vesicles secreted by multiple
cell types. They deliver signaling molecules such as proteins, lipids,
microRNAs (miRNAs) to specific target cells, affecting the bone
metastatic formation (63, 64). Breast cancer-derived exosomes
containing CCL3, CCL27 and other molecules are found to
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remodel the bone microenvironment, characterized by stimulation
of osteoclastogenesis and angiogenesis (65). Similarly, exosomes
frommelanoma cells can reprogram the phenotype of bone marrow
progenitor cells and support tumor metastasis to the bone (66). In
addition, exosomes from stromal cells contribute to the dormancy
of breast cancer cells via reducing CXCL12 levels (67). Stromal-
derived exosomal miR-148a-3p was reported to target the ERK1/2
signaling to suppress the proliferation of bone metastatic cancer
cells (68). Furthermore, plasma exosomes act as noninvasive
biomarkers to predict response to Radium-223 treatment. In bone
metastatic prostate cancer, exosomal programmed death-ligand 1
(PD-L1) was upregulated in patients with unfavorable response to
radium-223 treatment (69).
PERSPECTIVES

Immune cells exhibit either pro-metastatic or anti-metastatic activity
in the bone microenvironment. Their reciprocal interactions with
tumor cells and other bone-resident cells are essential for the bone
metastatic progression. Technological advances have allowed us to
identify specific immune cell subtypes and define their molecular
characteristics. Blocking the pro-tumoral phenotypes of immune
cells and exploiting their anti-tumor activities represent a novel
therapeutic strategy to prevent the formation and recurrence of bone
metastasis. In addition, immune mediators including chemokines,
cytokines, and exosomes have shown great therapeutic and
prognostic value in the bone metastases. Furthermore, the bone
microenvironment can also influence the metastatic seeding into
other distant organs triggered by epigenetic reprogramming (70).
Despite deep insights into the immune landscape of bone metastasis,
future studies are still needed to identify novel determinants and
elucidate their immunological mechanisms, which will pave the way
for immune-based therapy and improve clinical outcomes.
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