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ABSTRACT The gastrointestinal ecosystem is formed from interactions between the
host, indigenous gut microbiota, and external world. When colonizing the gut, bacteria
must overcome barriers imposed by the intestinal environment, such as host immune
responses and microbiota-mediated nutrient limitation. Thus, understanding bacterial col-
onization requires determining how the gut landscape interacts with microbes attempting
to establish within the ecosystem. However, the complicated network of interactions
between elements of the intestinal environment makes it challenging to uncover emer-
gent properties of the system using only reductionist methods. A systems biology
approach, which aims to investigate complex systems by examining the behavior and
relationships of all elements of the system, may afford a more holistic perspective of the
colonization process. Here, we examine the confluence between the gut landscape and
bacterial colonization through the lens of systems biology. We offer an overview of the
conceptual and methodological underpinnings of systems biology, followed by a discus-
sion of key elements of the gut ecosystem as they pertain to bacterial establishment and
growth. We conclude by reintegrating these elements to guide future comprehensive
investigations of the ecosystem in the context of bacterial intestinal colonization.
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The mammalian gastrointestinal tract is a dynamic ecosystem shaped by interac-
tions between the host, indigenous gut microbiota (the community of microorgan-

isms inhabiting the gut), and external world (Fig. 1). Diverse bacteria continuously
attempt to integrate within this ecosystem; while some are harmless and potentially
beneficial, others pose a threat to host health. However, regardless of their effects on
host well-being, to successfully colonize the gut bacteria must overcome challenges
imposed by the intestinal environment, such as host-derived antimicrobial defenses
and microbiota-mediated nutrient competition. Understanding bacterial intestinal col-
onization, therefore, requires uncovering mechanisms by which the gut ecosystem
interfaces with microbes attempting to associate with the established community.

The myriad interactions between elements of the gastrointestinal ecosystem make
it difficult to detect emergent properties of the system when studied via reductive
methods. As such, a systems biology approach, which broadly seeks to understand
complex biological systems by studying their components collectively (1), may be the
best way to obtain an integrated perspective on the colonization process. However,
the use of holistic experimental frameworks for deciphering the complexity of the gut
is still in its infancy.

In this minireview, we explore the relationship between the intestinal environment
and bacterial colonization from a systems biology standpoint. We first provide an over-
view of the theoretical and methodological foundations of systems biology. Then, we
“break apart” the gut ecosystem to discuss key elements as they relate to bacterial in-
testinal colonization. Finally, we recombine these elements to highlight the complexity
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of the gut landscape and provide a basis for future integrative investigations of this
landscape as it pertains to bacterial establishment and growth.

SYSTEMS BIOLOGY: AN OVERVIEW

Systems biology seeks to investigate complex systems, from the inner workings of a sin-
gle cell to the multifaceted gut landscape, by examining the behavior and relationships of
all elements of the system (1). Conceptually, the approach is rooted in the theory of emer-
gence, which posits that the characteristics and functions of complex systems are not
entirely deducible from their individual components (2, 3). To that end, emergent proper-
ties are those that cannot be assigned to single system elements but stem from the
“togetherness” of those elements (3). Colonization resistance is a relevant example,
whereby the interplay between the host and microbiota and their interactions with the
external environment prevent integration of foreign microbes into the gut ecosystem (4,
5). As such, the permissiveness of the gut is a novel attribute of the system that varies
depending on the nature of interactions between its composite parts.

Methodologically, systems biology sits at the crux of technology, computation, and
biological experimentation (1, 6). “Omics” technologies have been foundational to the
field by allowing researchers to broadly profile the genomic, metabolic, transcriptomic,
and proteomic facets of systems in response to specific perturbations (e.g., genetic
deletions, disease, introduction of a pathogen, etc.) in biological models (6). In the con-
text of the gut, these models can range in complexity, from simple in vitro cell culture,
through germfree animals, to vertebrates with replete microbial communities, includ-
ing humans. The choice of model depends on the experimental goals and the type of
data to be collected; the degree of model complexity depends on the components of
the system to be analyzed (6). Thus, it can be beneficial to use models of various com-
plexities to gain diverse insights into the functions of system elements.

Once generated via omics methods, high-throughput data are integrated using compu-
tational modeling to visualize and explore complex phenomena (6). While beyond the
scope of this review, there are multiple discussions of the different modeling schemes for
systems biology (6–9). Ultimately, constructing and refining a model is an iterative process,
one which yields new hypotheses that can be experimentally tested and validated. The
results of these experiments produce data that seed new questions to promote model
refinement, hypothesis generation, biological experimentation, and subsequent data inte-
gration and modeling, thus highlighting the repetitious nature of systems biology (1).

FIG 1 The gut is a complex ecosystem. Factors inherent to the host, microbiota, and external
environment interact with others within and between sectors to shape the dynamic intestinal landscape.
While there are numerous elements that influence the gut ecosystem beyond those depicted here (e.g.,
age, pH, oxygen concentrations, lifestyle factors, etc.), we have chosen to highlight only those discussed in
this review.
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Because of its emphasis on holistic, interactions-based research, systems biology is of-
ten viewed in direct opposition to reductionist approaches that have historically domi-
nated biological research (1, 6). However, reductionist methodologies are not distinct from,
but part of, holistic experimental frameworks. Indeed, prior to integration of a system, it is
necessary to define its components and characterize the functions and responses of those
components by methodically perturbing and monitoring the system, as outlined above (1).
These steps lie at the heart of reductionist science, which emphasizes dissecting parts of a
system to understand its workings as a whole; systems biology builds on this framework
by elucidating relationships between those parts and characterizing properties resulting
from their interactions (6, 10). This synergy of holistic and reductive methodologies under
the systems biology umbrella is perhaps best summarized by Francis Crick, who stated
that “while the whole [system] may not be the sum of the separate parts, its behavior can,
at least in principle, be understood from the nature and behavior of its parts plus the knowl-
edge of how all those parts interact” (11).

“BREAKING APART” THE GUT ECOSYSTEM

As discussed, systems biology is defined by iterative cycles of experimentation and
modeling. The approach involves delineating a system’s components and then com-
bining those components to describe the system at large. To the first point, a great
deal of work has been done to understand specific gut environmental factors derived
from the host, microbiota, and external world that modulate bacterial intestinal coloni-
zation. We highlight some of these factors below, focusing on those that are well
established and backed by strong experimental evidence. Such knowledge provides a
basis for holistic investigations of the ecosystem moving forward.

HOST-INTRINSIC FACTORS

The host is traditionally viewed as providing the structural and biochemical bases
of the intestinal ecosystem; the epithelium and immune system are two such host-
intrinsic pillars of the gut environment (Fig. 1). These factors directly and indirectly
interface with microbes to promote or inhibit their growth. Essentially, they serve as fil-
ters that actively select for the integration of certain microbes into the gut ecosystem
while excluding others.

The intestinal epithelium. The intestinal epithelium is a single layer of diverse cell
types lining the gastrointestinal tract that exhibit unique functions, such as mucus
secretion and production of antimicrobial compound or hormones (12). The epithelium
forms a dynamic barrier between the lumen and host circulation that allows selective
passage of macromolecules across the intestinal wall (13). Epithelial secretion of antimi-
crobials, including antimicrobial peptides like defensins and cathelicidins, proteins like lyso-
zyme and calprotectin, and C-type lectins such as RegIII-g, prevent bacteria from traversing
this barrier (14, 15). Moreover, these compounds influence which bacteria will survive and
thrive within the gut (16, 17). For example, epithelial-derived antimicrobials inhibit intesti-
nal colonization and survival of Salmonella enterica serovar Typhimurium and Listeria
monocytogenes (18, 19). Lysozyme deficiency in mice promotes expansion of lysozyme-sen-
sitive, mucus-degrading bacteria, such as Ruminococcus gnavus and Akkermansia mucini-
phila (20), indicating that lysozyme contributes to the host barrier against these species.
Similarly, RegIII-g-deficient mice have more bacteria directly associated with their small in-
testinal epithelium than wild-type animals, demonstrating that RegIII-g promotes physical
separation between luminal bacteria and the epithelial surface (15).

The epithelium also offers spatial and nutritional niches that support microbial growth.
For instance, mucus secreted by the epithelium forms a scaffold for bacterial adherence
(21), provides nutrients for microbial consumption, contributes to spatial organization of
bacterial communities (e.g., by impacting transport of nutrients throughout the gut), and
provides regulatory signals that influence bacterial behavior and survival within the gut
landscape, such as biofilm formation (22). Thus, the epithelium serves as a framework on
which bacterial populations are built and regulated.
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The immune system. Innate and adaptive immune cells reside below the epithelial
surface in the lamina propria, as well as in Peyer’s patches and mesenteric lymph nodes
embedded within the epithelium, where they sample and engage with intestinal bacteria
(13, 23). Host secretion of cytokines, antibodies, and antimicrobial compounds determines
how bacteriologically hostile the gut is, and which microbes are targeted, at a given time
(24). For example, immunoglobulin A (IgA) secreted by plasma cells is abundant at muco-
sal surfaces and is integral in regulating the composition of gut bacterial populations (25).
IgA can bind bacteria to limit motility and invasion, as well as aggregate microbes to pro-
mote their elimination from the gut (25, 26). On the other hand, IgA can promote coloni-
zation of bacteria, such as Bacteroides fragilis, by helping them anchor to the epithelial
surface (27). Whether the immune system tolerates or inhibits bacteria depends on the
microbe, and how the host distinguishes between friend and foe is not entirely under-
stood. Indeed, a misguided immune attack on symbiotic organisms is a well-recognized
feature of chronic intestinal diseases like inflammatory bowel disease (28).

Beyond direct interactions between bacteria and immune cells or their secretory prod-
ucts, immune responses alter the nutritional landscape of the gut to make it hospitable or
hostile to specific microbes. For example, pathogens like S. Typhimurium, Vibrio cholerae,
and Clostridioides difficile capitalize on nutrients liberated from host cells during infection-
associated inflammation to occupy a niche that is absent under homeostatic conditions
(29–32). However, intestinal inflammation can also limit concentrations of bacterially cov-
eted micronutrients, such as zinc, thereby preventing colonization and infection (33). In
addition to metabolic modifications, inflammation increases intestinal oxygen concentra-
tions, which promote expansion of aerobic Enterobacteriaceae species while inhibiting
growth of anaerobic bacteria (34–36).

MICROBIOTA-ASSOCIATED FACTORS

The intestinal environment is densely populated, with nearly 100 trillion microbes inhab-
iting the gut (37). To establish residence in the gut, bacteria must secure sufficient resources
to survive within the intestinal ecosystem. The indigenous gut microbiota determines the
relative hostility of the intestinal landscape to invading microbes by creating nutritional
niches in the intestine, releasing metabolic by-products that facilitate or inhibit growth of
other bacteria, producing signaling molecules that foster communication between micro-
biota members, and secreting compounds that target and kill microbial competitors. As a
result, the ability of bacteria to engraft within the gut is largely regulated by the metabolic
and antimicrobial defenses of the established bacterial community.

Microbial nutrient competition, cross-feeding, and production of metabolites.
By sequestering nutrients within the intestine, the indigenous microbiota constitutes a bar-
rier to colonization and growth of adventitious bacteria. The importance of nutrient avail-
ability in shaping gut bacterial populations was first recognized by Rolf Freter, whose “nutri-
ent niche” hypothesis posits that populations of gut bacteria are controlled by competition
for distinct nutritional niches, and that each particular species is more efficient than others
in utilizing one or a few specific substrates (38). The population of a given species, therefore,
is regulated by the concentrations of these limiting substrates.

For instance, in one proof-of-concept study, Bacteroides ovatus was engineered to
metabolize the marine polysaccharide porphyran, a substrate that is not endogenous to
the murine diet, thus equipping this gut bacterium to stably engraft in the gut of porphy-
rin-fed mice in the presence of a complex microbiota (39). Without porphyran supplemen-
tation, the bacteria were excluded from the gut (39). Another study illustrated that three
nonpathogenic strains of Escherichia coli collectively eliminated a pathogenic strain
(EDL933) from the gut of streptomycin-treated mice, despite exhibiting variable individual
success in reducing EDL933 colonization (40). These results suggest that indigenous E. coli
strains saturate available niches for invading strains and, in light of Freter’s hypothesis, con-
sume distinct nutrients to coexist in the gut (40, 41). However, such coexistence could also
be explained by an alternative theory, known as the Restaurant hypothesis (42, 43), which
theorizes that organisms with the same nutritional preferences can coexist within the gut if
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they reside in spatially distinct biofilms (42, 43). The hypothesis emerged from work postu-
lating that E. coli occupies mixed mucosal biofilms (“restaurants”), where it consumes poly-
saccharides released by other, namely anaerobic, species (44, 45). The Restaurant hypothe-
sis refines Freter’s theory by adding a spatial dynamic to microbial competition and
coexistence within the gut. Both hypotheses, however, highlight the necessity of nutrient
accessibility for bacterial intestinal colonization and growth.

In addition to nutrient utilization and competition, the microbiota produces thousands
of metabolites that modulate intestinal microbial community composition and behavior.
For example, short-chain fatty acids (SCFAs) generated via microbial fermentation of die-
tary fiber serve as a food source for microbes and support cross-feeding relationships
(46–48). SCFAs can also be directly toxic to bacteria by dissociating within and acidifying
the intracellular environment (49). As such, SCFAs prevent potentially pathogenic bacteria
from colonizing the gut (50). Indeed, butyrate can inhibit growth of C. difficile, and a reduc-
tion in SCFA levels in murine models of C. difficile infection is associated with an altered
microbiota and susceptibility to infection (51–53).

Bile acids represent another class of microbiota-associated metabolites with well-recog-
nized roles in bacterial intestinal colonization. These compounds disrupt bacterial mem-
brane integrity and induce DNA damage and oxidative stress, among other inhibitory effects
(54). Primary bile acids are produced in the liver and conjugated to the amino acids taurine
and glycine (54); upon passage into the large intestine, they are metabolized by members
of the microbiota via deconjugation and 7a-dehydroxylation. The resulting secondary bile
acids are particularly important for inhibiting growth of a range of bacteria, including mem-
bers of the genera Lactobacillus and Bifidobacteria (55) and C. difficile (56, 57).

In addition to these inhibitory compounds, the microbiota also secretes signaling
molecules (i.e., autoinducers) that, via quorum sensing, regulate the density and behav-
ior of intestinal bacterial populations. For instance, Thompson and colleagues demon-
strated that treatment with streptomycin alters the microbiota of mice, leading to an
enrichment in members of the phylum Bacteroidetes and a decrease in Firmicutes species
(58). However, when antibiotic-treated mice were colonized by a strain of E. coli capable
of producing high levels of AI-2, an autoinducer that fosters cross-species communica-
tion, animals exhibited an increased abundance of Firmicutes and fewer Bacteroidetes
species (58). This study points to bacterial communication as an important regulator of
microbial cooperation and community structure within the gut ecosystem.

Microbiota production of antimicrobial compounds. In addition to the aforemen-
tioned metabolites, bacteria secrete antimicrobial compounds that directly target and
kill other bacteria, thus giving the secreting cell a competitive edge (59, 60). For exam-
ple, bacterial cells produce peptides called bacteriocins, which come in various sizes
and structures, and elicit their bactericidal activity in several ways, including forming
pores in target cell membranes and inhibiting DNA, RNA, or protein synthesis (61–66).
Bacteriocins are highly prevalent within the microbiota and are secreted by both
Gram-positive and Gram-negative bacteria; lactic acid bacteria, including members of
the genera Lactobacillus and Enterococcus, are some well-known producers (67).
Importantly, bacteriocins can promote resistance to colonization by enteric invaders,
like Yersinia enterocolitica, Salmonella enterica, and L. monocytogenes (60, 68, 69).

While some antimicrobial compounds are secreted into the extracellular milieu,
others are directly injected into competitors via the type VI secretion system (T6SS), a
mechanism employed by both pathogenic and nonpathogenic bacteria (69, 70).
Effectors secreted by T6SS include cell wall-degrading enzymes, pore-forming toxins,
and nucleases, and gut microbes employ T6SS to effectively colonize the gut. For
example, B. fragilis uses a T6SS to deploy toxins that antagonize other Bacteroidales
species and create a niche within the intestine (71).

HOST-EXTRINSIC FACTORS

The external world plays an important role in regulating conditions within the gut
environment and the bacterial populations that reside there. Factors associated with
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host lifestyle, such as exercise and smoking, affect intestinal processes like gut transit
time and gut microbiota composition and metabolism, which impact bacterial intesti-
nal colonization and proliferation (72, 73). The bacteria present within a host’s sur-
roundings determine which species contact the gut in the first place. For example,
mode of delivery at birth (e.g., vaginal birth versus Cesarean section) dictates whether
“seeding” gut bacterial populations are primarily maternal or environmental (74).
Moreover, the composition of the microbiota varies with age, whereby the community
rapidly expands and diversifies from birth through early childhood before reaching a
relatively stable state characteristic of adulthood (75, 76). However, as is true for host-
intrinsic and microbiota facets of the gut environment, there are several extrinsic fac-
tors with paramount roles in modulating which bacteria survive and thrive in the gut.
Diet and medications are two examples (Fig. 1).

Diet. Diet is one of the most important modulators of the intestinal environment; it
influences host intestinal physiology and function and controls which bacteria will be
“well fed” within the gut. Dietary constituents, such as fiber, protein, fat, vitamins, and
sugars, impact host intestinal function in different ways, including by regulating
immune responses and the integrity of the epithelial barrier (77). Moreover, diet affects
host digestive processes and metabolism. For example, increased bile secretion in
mice fed a high-fat diet promotes intestinal colonization by S. Typhimurium, which has
higher bile resistance than other gut bacterial colonizers (78). Thus, food can select for
bacteria that survive in the potentially hostile metabolic landscape of the intestine.

As discussed above, nutrient availability plays a major role in determining the composi-
tion of the gut microbiota. Notably, though microbiota composition is largely stable, daily
changes in diet can transiently alter community structure (79, 80). Such changes are par-
tially modulated by the community itself; the microbiota regulate host appetite (81) and
may influence dietary choices (82, 83) via the gut-brain axis, highlighting the cross talk
between host and microbiota in shaping the intestinal nutritional repertoire. Along these
lines, gut microbiota structure fluctuates in response to host circadian rhythms and feeding
patterns (84, 85), which likely reflects temporal variations in the nutritional landscape of
the gut. As such, diet serves to shape the competitive pressures on the microbial commu-
nity. For instance, low-fiber diets promote expansion of mucus-degrading bacteria and
subsequent susceptibility to mucosal pathogens (86). In contrast, high-fiber diets create a
nutritionally permissive environment for bacteria that degrade complex carbohydrates, like
those of the genus Bacteroides (e.g., Bacteroides thetaiotaomicron) (87). Interestingly, a diet
high in simple sugars (glucose and sucrose) inhibits B. thetaiotaomicron from colonizing
the mouse gut (88). These sugars suppress expression of colonization factors needed for B.
thetaiotaomicron to become established and persist within the gut, suggesting that dietary
components effect bacterial physiology beyond acting as a food source (88).

Drugs: antibiotics and beyond. Medications and other xenobiotics regulate the
composition and function of gut microbial populations. Antibiotics can affect the struc-
ture of the intestinal bacterial community by obliterating large swaths of the gut
microbiota, thus opening niches for bacteria that might normally be barred from the
gut. Nonantibiotic medications also influence bacterial survival and proliferation within
the intestine. Drugs, including proton pump inhibitors (PPIs; used to decrease stomach
acid), metformin (an antidiabetic), laxatives, and antipsychotics, among others, are
associated with structural and functional changes in the gut microbial community (89,
90). PPIs in particular are known for increasing risk for infection by enteric pathogens,
like C. difficile (50). While the mechanisms are relatively unclear, it is likely that such
drugs modulate the gut microbiota in both indirect and direct ways. For instance, PPI-
induced reduction in stomach acid may inadvertently select for bacterial species that
are normally suppressed (91). Similarly, drugs that target the host immune response,
such as biologic therapies and immunosuppressants, influence the inflammatory (and
thus antimicrobial) profile of the gut. Indeed, mice administered common immunosup-
pressants exhibit alterations in gut microbiota structure, as well as decreased expres-
sion of antimicrobial peptides within their small intestine (92). These changes are
accompanied by an increase in the abundance of endogenous Enterobacteriaceae and
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increased susceptibility to colonization by pathogenic E. coli, suggesting that condi-
tions are favorable for survival of these inflammation-associated microbes (92).

In terms of direct modulation, pantoprazole, a PPI, was recently shown to inhibit
the in vitro growth of various members of a defined bacterial community isolated
from human stool (93). On a broader scale, Maier and colleagues discovered that a
range of antipsychotics, antimetabolites, and calcium channel blockers, among other
drugs, inhibit the growth of representative gut bacterial colonizers in vitro (94).
Moreover, therapeutic drugs can bioaccumulate within gut bacterial cells and alter
their metabolism, ultimately leading to changes in community composition via for-
mation of new cross-feeding opportunities (95). Together, these findings support the
idea that drugs can alter bacterial community composition beyond their host-associ-
ated mechanisms of action.

REINTEGRATING THE GUT ECOSYSTEM

Investigations of host-intrinsic, microbiota, and host-extrinsic factors have yielded
essential insight into the elements shaping the structural and functional foundations
of the gut ecosystem and their role in bacterial colonization. However, while controlled
experimental systems provide the opportunity to study specific aspects of physiology,
they miss out on important interactions between system components. Therefore, the
challenge in research going forward is how to study specific mechanisms in the con-
text of these complex relationships.

For example, the epithelial barrier continuously interacts with immune cells to mod-
ulate their response to intestinal microbes, essentially acting as a portal through which
immune-microbe communications are initiated and regulated (96) (Fig. 2). In addition,
the gut microbiota regulates epithelial and immune barrier functions, including secre-
tion of mucus, IgA, and antimicrobial peptides, via production of metabolites and other
products (97–99) (Fig. 2). The host, in turn, deploys these defenses to shape the com-
position and metabolic output of the microbiota, which determine the hostility of the
metabolic environment for colonizing microbes (Fig. 2). Finally, factors like diet and
medications modify host and microbial metabolic and antimicrobial defense mecha-
nisms (97, 98) (Fig. 2); in fact, it is impossible to discuss these factors without account-
ing for their relationships with the host and microbiota. Furthermore, it is impossible
to fully grasp emergent biological phenomena, like colonization resistance, without a
holistic view of the gut landscape.

Due to the development of technologies that allow examination of the gut in all its
complexity and nuance, investigators have begun adopting a systems biology approach to
studying the intestinal ecosystem. Many studies have centered on using integrative meth-
ods to mine the microbiome for features, like specific microbial taxa and metabolites, that
associate with particular host outcomes, including diseases like IBD, colorectal cancer, obe-
sity, and type 2 diabetes (100–105). There are studies, however, that have employed such
methods specifically to investigate bacterial intestinal colonization (106–112). Indeed, by
integrating microbiota and metabolomics data with machine learning, researchers pre-
dicted microbial and metabolic features associated with susceptibility to intestinal coloniza-
tion and persistence of C. difficile in antibiotic-treated mice (110). To this end, multiple stud-
ies have taken a modeling approach toward identifying bacterial taxa predictive of C.
difficile infection (109, 113) and disentangling how indigenous microbes modulate infec-
tion by the pathogen (114). Likewise, Midani and colleagues integrated 16S rRNA sequenc-
ing data and computational modeling to predict individuals’ susceptibility to V. cholerae
colonization after exposure to cholera patients, based on their microbiotas and other clini-
cal and epidemiologic factors (108). Beyond colonization by individual microbes, investiga-
tors have also applied systems biological techniques to understand microbial succession in
the intestine (112), as well as to determine factors governing successful engraftment of do-
nor bacteria in the gut of fecal microbiota transplant recipients (111).

Nevertheless, while progress has been made, many studies thus far have been par-
tially integrative, methodologically and in terms of how they view the gut landscape.
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From a methodological standpoint, omics have been extensively employed to profile
elements of the gut landscape and their association with bacteria (e.g., the use of
microbiota sequencing to identify taxa correlated with intestinal colonization by
diverse bacterial species, such as C. difficile, Salmonella enterica, and Lactobacillus reu-
teri) (115, 116). However, a relatively small number of studies use these data to con-
struct computational models that form the backbone of systems biology. Those that
do, including the examples above, tend to be narrow in their scope of the intestinal
landscape by focusing on one or a few facets of the environment (e.g., microbiota
composition/metabolic output) while leaving others (e.g., host-intrinsic/host-extrinsic
elements) out of the equation.

With this in mind, moving toward a comprehensive understanding of gut microbial
colonization will require incorporating elements of the gut ecosystem stemming from
the host, microbiota, and the external environment into analyses. Technically, it will
require adopting a bona fide systems biology framework. This means going beyond
omics to computationally integrate high-throughput data and develop models that
take all system elements and their interactions into account. These in silico efforts will
be informed by, and inform, experimentation in intestinal model systems, the number

FIG 2 Mechanisms by which the gut ecosystem modulates bacterial intestinal colonization. All facets of the gut
landscape are directly or indirectly linked with the others. The gut microbiota influences the success of
bacterial colonizers by regulating nutrient availability, producing metabolites that inhibit bacterial growth, and
secreting antimicrobial molecules. Microbiota-associated processes depend on host-extrinsic factors (e.g., diet
and medications). Moreover, the microbiota shapes the gut landscape via interactions with key host-intrinsic
gut environmental factors, like immune cells and the intestinal epithelium, both of which secrete products like
antibodies (e.g., IgA) and antimicrobial peptides and mucus, respectively, that further influence the hostility or
permissiveness of the gut. The functions of these host-intrinsic elements are also shaped by interactions with
one another, as well as other factors, like diet. Green arrows indicate functions that can support colonization,
depending on context.
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and diversity of which continue to increase as technology advances (e.g., development
of organotypic intestinal cell culture, gut-on-a-chip technologies, etc.). Benchmarking
biological and computational models will be necessary for delineating their strengths
and weaknesses in diverse experimental contexts (105). Moreover, collaborations
between bench and data scientists will be key for recognizing and meeting the chal-
lenges that come with such complex, multifactorial analyses.

CONCLUDING REMARKS

Understanding how bacteria integrate within the gut requires thorough, integrative
investigations of the intestinal ecosystem. This can be achieved via a systems biology
approach informed by new technologies; biological experimentation; advancements in
methods for generating, integrating, and analyzing high-throughput data sets; and the
increasingly collaborative nature of biological research. Given the demonstrated role of
bacteria in host health, there is interest in using bacteria to bolster health and prevent
disease. Ultimately, a holistic perspective of the intestinal environment could facilitate
the rational design of strategies to promote colonization by symbiotic organisms and
prevent colonization by potentially pathogenic ones.
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