
Genomics Data 6 (2015) 130–135

Contents lists available at ScienceDirect

Genomics Data

j ou rna l homepage: ht tp : / /www. journa ls .e lsev ie r .com/genomics-data /
Candida albicans exhibits enhanced alkaline and temperature induction
of Efg1-regulated transcripts relative to Candida dubliniensis
Nicole Caplice, Gary P. Moran ⁎
a Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Dublin 2, Ireland
b Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Dublin 2, Ireland
⁎ Corresponding author.
E-mail address: gpmoran@dental.tcd.ie (G.P. Moran).

http://dx.doi.org/10.1016/j.gdata.2015.08.026
2213-5960/© 2015 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 19 August 2015
Accepted 27 August 2015
Available online 7 September 2015

Keywords:
Candida albicans
Candida dubliniensis
Transcription
Efg1
Filamentous growth is an important virulence trait of the human pathogenic fungi within the genus Candida, and
the greater propensity of C. albicans to formhyphae has been proposed to account for the greater virulence of this
species relative to the less pathogenic species C. dubliniensis. In thismeta-analysis, we compare the transcription-
al response of C. dubliniensis and C. albicans to the individual environmental stimuli that shape the gene
expression profiles during filamentation in 10% serum, namely alkaline pH, 37 °C and reduced cell density. We
could identify conserved core temperature and pH responses, however many signature Efg1-regulated, hypha-
induced transcripts (e.g. ECE1, HWP1) exhibited reduced or lack of induction in C. dubliniensis. Comparison of
the activity of the HWP1 and ECE1 promoters in both species using GFP fusions showed a lag in serum induced
fluorescence in C. dubliniensis relative to C. albicans and nutrient depletion was required for maximal expression
of these Efg1-regulated transcripts in C. dubliniensis.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Candida dubliniensis is an opportunistic fungal pathogen that was
first identified as a common cause of oral candidosis in HIV-infected
patients [1]. C. dubliniensis is closely related to Candida albicans, the
major fungal pathogen of humans [2]. However, C. albicans is far more
prevalent as a pathogen in the human population, particularly in the
case of systemic fungal infection where C. dubliniensis is responsible
for fewer than approximately 2% of infections [3]. Virulence studies
have associated the reduced capacity of C. dubliniensis to establish
infectionwith a reduced ability to undergo the yeast to hypha transition
[4–6]. Analysis of C. dubliniensis cells in the stomach and kidney of
infected mice revealed that they grow predominantly in the yeast
phase, whereas C. albicans could be recovered in both the yeast and
hyphal phases [5]. Models of in vitro infection support this finding;
C. dubliniensis remains in the yeast phase when inocluated on
reconstituted human epithelium (RHE) and filaments less efficiently
than C. albicans following phagocytosis by murine macrophages [6,7].
Coupled with this reduced filamentation, comparative genomics has
revealed that the C. dubliniensis genome does not contain orthologues
of the C. albicans hypha-specific virulence factors ALS3, HYR1, SAP4 and
SAP5 [2,8].

Primary regulation of filamentation in vivo and in liquid media
in vitro (e.g. serum) is via the cAMP–PKA pathway and the cognate
. This is an open access article under
transcription factor Efg1 [9]. Recent studies have shown that a variety
of additional stimuli can modulate the activity of this pathway such as
temperature (via interaction with Hsp90), farnesol, CO2 and bacterial
peptidoglycan [10–13]. In addition, the activity of Efg1 is regulated by
interactions with other transcription factors [14]. Filamentation is also
stimulated by additional alkaline pH regulated signals mediated via
the Rim101 pathway and the recently described pH regulator Mds3
[15]. The net result of this stimulation is activation of a transcriptional
response mediated by the transcription factors Efg1 and Ume6 and
activation of the hypha-specific cyclin Hgc1 [16,17]. Incubation of
C. dubliniensis in 10% serum at 37 °C results in abundant production of
true hyphae and activation of a conserved transcriptional response
[18]. However, true hypha production in serum is nutrient sensitive in
C. dubliniensis and addition of nutrients, in particular peptone, to
alkaline media greatly inhibits induction of UME6 transcription
and filamentation. This nutrient repression may involve the activity of
Tor1 kinase, as preliminary data suggests that rapamycin inhibition
of Tor1 enhances filamentous growth in nutrient rich media [19].
In this meta-analysis, we compare the transcriptional response of
C. dubliniensis and C. albicans to the individual environmental stimuli
that shape the gene expression profiles during filamentation in 10%
serum, namely alkaline pH, 37 °C and reduced cell density. We
could identify conserved core temperature and pH responses with
C. albicans, however many signature Efg1-regulated, hypha-induced
transcripts (e.g. ECE1, HWP1) exhibited reduced or lack of induction
under these conditions relative to C. albicans. In subsequent experi-
ments comparing the activity of HWP1 and ECE1 promoters in both
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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species using GFP fusions, a lag in serum induced fluorescence was
observed in C. dubliniensis relative to C. albicans and nutrient depletion
was required for maximal expression of these Efg1-regulated tran-
scripts in C. dubliniensis.

2. Methods

2.1. Strains and culture conditions

All C. albicans and C. dubliniensis strains and derivatives used in this
study are listed in Table 1. Candida strains were routinely maintained
on Yeast extract peptone dextrose (YPD) agar medium. Liquid culture
was also carried out in YPD broth and a nutrient depleted YPD broth
(i.e. YPD diluted to 10% [v/v] of the standard concentration). Buffering
of YPD to pH 5.0 or pH 7.2 was achieved with 0.1 M potassium
phosphate buffer. Liquid culture was also carried out in the liquid
medium of Lee et al. [20]. Lee's medium was adjusted to pH 4.5 or 7.2
as required. Hyphal induction was carried out in sterile Milli-Q H2O
supplemented with 10% (v/v) foetal calf serum with shaking at 200
r.p.m. at 37 °C. The proportion of germ-tubes or hyphae in each culture
was assessed at intervals by microscopic examination of an aliquot of
culture with a Nikon Eclipse 600 microscope (Nikon U.K., Surrey, U.K.).

2.2. Transcript profiling of C. dubliniensis

C. dubliniensis microarrays representing 5999 orfs from the CD36
genome were used as described by O'Connor et al. [18]. To examine
the effects of cell density changes, nutrient depletion, a shift to 37 °C
and a shift to alkaline pH, 18 h (early stationary phase) Lee's
medium cultures (pH 4.5, 30 °C) were washed and inoculated at
2 × 106 cells/ml in (i) fresh Lee's medium (pH 4.5) at 30 °C, (ii) 10%
(v/v) Lee's medium (pH 4.5) at 30 °C, (iii) Lee's medium (pH 4.5) at
37 °C and (iv) Lee's medium (pH 7.2) at 30 °C, respectively. RNA was
extracted from these cultures following 3 h incubation under each
condition. Poly A mRNA isolation, Cy3/Cy5-labelling and array process-
ing we carried out as described by O'Connor et al. [18]. For each
experiment, four biological replicate experiments were performed,
including two dye swap experiments. Data was normalized in
GeneSpring GX11 using Loess normalization. A t test was performed
on each data set using the variance derived from replicate spots. Those
genes with a p value ≤0.05 were selected for analysis and genes
exhibiting at least a 2-fold difference in expression are described
here. Categorization of gene ontology (GO) terms was carried out
using the “GO term finder” tool at the Candida Genome Database
(http://www.candidagenome.org/). Results from all microarrays have
been submitted to the GEO archive (Accession: GSE20537).

2.3. Creation of ECE1 and HWP1 promoter-GFP fusions

In order to create strains harbouring PECE1-GFP or PHWP1-GFP fusions,
we used the integrating vector pCDRI [6]. A derivative of this plasmid
was created by inserting yEGFP fused to the actin terminator on a
HindIII/MluI fragment to create pGM175. A HWP1 promoter fragment
Table 1
Strains used in this study and their genotypes.

Strain Parent Genotype Reference

C. albicans
SC5314 – WT [30]
CaHGFP SC5314 CDR1/cdr1::PHWP1-GFP This study
CaEGFP SC5314 CDR1/cdr1::PECE1-GFP [18]

C. dubliniensis
Wü284 – WT [31]
WüHGFP Wü284 CDR1/cdr1::PHWP1-GFP This study
WüEGFP Wü284 CDR1/cdr1::PECE1-GFP [18]
from bases −1 to −1535 to was amplified with primers HWP1AF
(GGCGGGCCCGTAAACAAACTCCCACAACCAATCG) and HWP1XR (CTAG
CTCGAGTATTGACGAAACTAAAAGCGAG) which included the ‘HCR’
regulatory region described by Kim et al. and cloned upstream of
yEGFP following digestion of both fragments with ApaI and XhoI [21].
Similarly, an ECE1 promoter fragment from bases−1 to−921 was am-
plified from C. albicans SC5314 with primers ECEAF (GTACGGGCCCAA
GAGTCTCATTCAGATAACG) and EXEXR (GCATCTCGAGTTTAACGAATGG
AAAATAGTTG) and cloned upstream of yEGFP in an identical fashion.
The resulting plasmids (pHWPGFP and pECEGFP) were linearised
within the CDR1 region and used to transform C. albicans SC5314
and C. dubliniensis Wü284 to create the strains CaHWPGFP and
CaEGFP and WüHWPGFP and WüEGFP, respectively (Table 1). Ectopic
integration in the CDR1 gene was confirmed by Southern hybridization.
Fluorescencewas examined using aNikon Eclipse 600microscope (Nikon
U.K., Surrey, U.K.) fitted with a GFP filter. Fluorescent micrographs were
taken with a Nikon Coolpix digital camera using a 2 s exposure time.
Micrographs in each panel were taken contemporaneously.

For temporal studies of GFP-induction during serum induction, flow
cytometry was used. Hyphal induction was carried out in sterile Milli-Q
H2O supplementedwith 10% (v/v) foetal calf serumwith shaking at 200
r.p.m. at 37 °C. An aliquot of each sample (1 ml) was removed at each
time point, cells were collected by centrifugation and washed ×3 in
PBS at 4 °C. Each sample was fixed with a solution of formaldehyde
(4%) and methanol (10%) before analysis by flow cytometry using a
Beckman Coulter EPICS XL machine. Mean fluorescence intensities of
10,000 events (cells) were calculated for each time point.

3. Results and discussion

3.1. Morphological response of C. dubliniensis to changes in environment

In C. albicans, a shift to alkaline pH and 37 °C is sufficient to induce
hypha formation in vitro in nutrient rich culture media [22]. Using
Lee's medium as a defined basal medium, we independently exam-
ined the role of temperature, pH and nutrient depletion in true
hypha formation in C. dubliniensis. Following a shift from Lee's medi-
um pH 4.5 at 30 °C to Lee's medium pH 7.2 at 37 °C, less than 50%
of C. dubliniensis cells had formed germ-tubes following 5 h incuba-
tion. In contrast, in nutrient depleted (10% v/v) Lee's pH 7.2 at 37 °C,
N95% of cells formed germ-tubes by 5 h. Shifts to 37 °C or pH 7.2
alone in nutrient depleted (10% v/v) Lee's resulted in transient germ-
tube formation by b50% of C. dubliniensis yeast cells (Fig. 1). Sustained
hypha formation up to 5 h required the combination of a temperature
and pH shift in nutrient depleted medium (Fig. 1).

3.2. C. dubliniensis response to alkaline pH is highly conserved

As the above data indicated that the alkaline pH shift plays an impor-
tant role in inducing filamentation in C. dubliniensis, we analysed the
Fig. 1.Hypha formation by C. dubliniensisWü284 in Lee's medium. Cells grown overnight
in YPD broth at 30 °Cwere inoculated in 2ml Lee's medium (1 × 106 cells) in the well of a
6-well tissue culture dish. The proportion of germ-tube forming cells was assessed hourly
using an inverted microscope. Lee's medium was used at standard concentration or
diluted to 10% (v/v) standard concentration to induce nutrient depletion.
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transcriptional response of C. dubliniensis following a transition
from acidic to alkaline pH. A total of 425 genes exhibited 2-fold up-
regulation during a shift from pH 4.5 to 7.2 in Lee's medium (t-test p b

0.05). This group included genes associated with the cell surface
(orthologues of PHR1, EAP1, IFF11, SUN41), metal ion transport
(orthologues of CFL11, CFL4, ENA22, PHO84, PHO89) filamentous growth
(orthologues of SFL1, UME6, RAS1, RFG1, TEC1) and amino acid metabo-
lism (orthologues of ARO4, HIS3, SAM4). We observed strong conserva-
tion between the pH responses of C. albicans and C. dubliniensis, with 81
of the C. albicans alkaline up regulated genes described by Bensen et al.
up regulated at least 2-fold in C. dubliniensis (t-test p b 0.05) at pH 7.2.
(Fig. 2a) [23]. This group includedmany of the signature pH responsive
genes such as PHR1, ENA22, RIM101 and several ferric reductases
(Table S1). However, unlike C. albicans, significant (i.e. N2-fold)
induction of the orthologues of the Efg1-regulated genes EED1, SAP6,
ECE1 and HWP1 was not observed at alkaline pH in C. dubliniensis.
C. albicans also exhibited approximately 10-fold higher levels of
induction of the Efg1-regulated transcripts CSA1 and RBT1.

In order to identify genes in C. dubliniensis that were exclusively
alkaline induced, we used ANOVA to identify a group of 8 genes
upregulated by alkaline pH, but not affected by a shift in temperature
or cell density in C. dubliniensis. We used the motif finding tool MEME
to identify conserved elements in the promoters of these alkaline regu-
lated genes (Table S2).We could identify a conserved C[C/A]AAGAmotif
within the promoters of each of these genes, similar to the predicted
Rim101 binding site described in C. albicans (GCCAAG) suggesting that
the C. dubliniensis RIM101 orthologue is important for the alkaline pH
response (Fig. 2b). Two elements were present in the SKN1 promoter
and three elements in the PHR1 and ENA22 promoters, respectively
(Fig. 2c) Conversely, a search for the CCAAGA motif in the promoter
regions of the top 25 NRG1-regulated genes in C. dubliniensis revealed
that only 6 genes contained this motif (data not shown).
Fig. 2. (a) Venn diagram showing the similarity of the alkaline induced response (≥2-fold) in C
generatedwithMEME showing themotif identified in the promoters of pH-regulated genes in C
the height of each individual letter at that position multiplied by the total height of the ‘stack’ a
promoters of pH-regulated genes identified by ANOVA (see text). The line represents the promo
tive ORF (not to scale). Black triangles represent to location of motifs with a 5′ ‘CC’ and grey tri
lower symbols indicate antisense motifs. Exact positions of motifs are given in Table S1.
Genes repressed by alkalinepH in both species included RIM8, sever-
al heat shock proteins (HSP30, HSP70, HSP78 and HSP104) and several
hexose transporters (HXT5, HGT17, HGT19; Table S3).

3.3. C. albicans has a unique response to cell density and temperature shifts
in vitro

Analysis of the data set of Kadosh and Johnson showed that
following a switch to 37 °C, C. albicans mounted a transcriptional
response consisting of 419 genes whose expression was regulated N2-
fold (t-test p b 0.05). The list of temperature-induced genes (223
genes) was enriched for genes involved in ribosome biogenesis
(39 genes), amino acid biosynthesis (15 genes) and lipid biosynthesis
(18 genes). When the effects of cell density and temperature shifts on
global gene expression were investigated in C. dubliniensis, it was re-
vealed that this response was largely conserved in and is likely a re-
sponse to inoculation in fresh nutrient rich media (Fig. 3). However,
our analysis identified a specific response in C. albicans that included
several genes normally associated with filamentation at 37 °C. As
previously reported, temperature shifts to 37 °C induced expression of
ECE1 and HWP1 in C. albicans [24,25]. Indeed, even in the absence of a
temperature shift, a change in cell density was sufficient to induce
expression of ECE1 and HWP1 in C. albicans [24]. In C. dubliniensis, the
orthologues of ECE1 and HWP1 exhibited weak (b2-fold) or no induc-
tion in response to 37 °C, respectively (Fig. 3a). An additional cluster
of C. albicans highly induced genes exhibited down-regulation in
C. dubliniensis, including the C. dubliniensis orthologue of EED1, an
activator of UME6 expression (Fig. 3b). Additional genes encoding
factors with roles in the cell cycle (CCN1, GIN4) cytoskeleton organisa-
tion (CDC12, ARF3, CCT3, TCP2), maintenance of hyphal growth (CLA4)
and DNA replication (POL30, CDC47) that were induced N2-fold in
C. albicans at 37 °C exhibited no induction in C. dubliniensis (Fig. 3c).
. dubliniensis and C. albicans from Bensen et al. [3]. (b) Position-specific probability matrix
. dubliniensis. The probability of each nucleotide appearing at each position corresponds to
t that position. (c) Cartoon showing the relative position and frequency of themotif in the
ter length (up to−2000 bases or to the next chromosomal feature) relative to the respec-
angles those with a 5′ ‘CA’. Triangles on top of the line indicate motifs on the sense strand,



Fig. 3. A comparison of the transcriptional responses of C. albicans (Ca) and C. dubliniensis
(Cd) to dilution at 30 °C and 37 °C. The ‘heat-map’ on the left shows the expression pat-
terns for 419 genes identified as N2-fold regulated (t-test p b 0.05) in C. albicans following
a switch to 37 °C (from (10). Expression following dilution to medium at 30 °C is also
shown. On the right, the expression of the orthologous gene inC. dubliniensisunder similar
conditions is shown. Expression refers to fold-change relative to the preculture conditions
(30 °C) and is denoted by the colour according to the legend. Certain sections are
expanded in panels (a), (b) and (c) for clarity, as detailed in the text.

Fig. 4. Expression of selected genes in C. dubliniensis from microarray experiments.
(a) Expression of UME6 following inoculation of cells from overnight Lee's medium
pH 4.5 cultures to fresh medium at 30 °C, 37 °C, nutrient depleted Lee's medium or Lee's
buffered to pH 7.2, respectively. Data from previously reported experiments where Lee's
grown cells were inoculated to 10% (v/v) bovine serum and grown for 1 h, 3 h and 5 h
are also shown for comparison. (b) Heat map showing the expression patterns of selected
Efg1-regulated and hypha-induced transcripts in C. dubliniensis.
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Like ECE1 andHWP1, themajority of these temperature (37 °C) induced
genes in C. albicans also exhibited induction following culture dilution at
30 °C (e.g. EED1, CLA4, RNR1; Fig. 3). The similarity of the species-
specific response of C. albicans to culture dilution and the shift to 37 °C
is likely due to the similar affects of these stimuli on the cAMP-PKA
pathway. Culture dilution is thought to remove farnesol-mediated
repression of the cAMP-PKA pathway, perhaps at the level of adenylate
cyclase [24]. Temperature shifts are thought to act by relieving Hsp90
mediated repression of the cAMP-PKA pathway [12]. However, the
level of induction was generally highest following the temperature
shift, indicating that either this stimulus has a stronger effect on the
cAMP-PKA pathway or that the effects of dilution and temperature are
cumulative.

Despite the specific nature of the response to growth at 37 °C in
C. albicans, a conserved temperature response could be identified be-
tween the two species (Table S4). This consisted of 115 genes induced
N2.0-fold in both species and was enriched for genes involved in
ribosome biogenesis (33 genes) and amino metabolism (15 genes).
Few genes associated with filamentous growth could be identified
from this group, however induction of IHD1 was observed in both
C. albicans and C. dubliniensis (6.5 and 8-fold respectively). A common
core of 116 genes down regulated N2.0-fold in both species could also
be identified, including cell wall proteins (PIR1, ALS2, ALS4, RBT5, RBT6,
RBT8, RBE1, RBR1) and genes involved in carbohydrate and lipid metab-
olism (Table S5). The specific response of C. dubliniensis to 37 °C includ-
ed many additional genes involved in amino acid metabolism and
transport (16/79 genes) and the transcription factors CPH1 (induced
3.3-fold) and UME6 (induced 4-fold; Table S6). CPH1 is required for
filamentous growth on solid media and mating, and its induction here
is unexpected as neither process would be expected to occur under
the current conditions. Induction of UME6 implicates this transcription
factor in filamentation at 37 °C. Unexpectedly, UME6 was induced in
the absence of significant induction of other Efg1-regulated transcripts,
suggesting an alternative mechanism of induction.



Fig. 5. Analysis of fluorescence in C. albicans SC5314 (CaPHWP1-GFP) and C. dubliniensisWü284 (CdPHWP1-GFP) harbouring a PHWP1-GFP fusion construct. (a) Photomicrographs showing
fluorescent intensity in CaPHWP1-GFP and CdPHWP1-GFP during growth in YPD buffered to pH 7.2 at 37 °C and 10% (v/v) YPD pH 7.2 at 37 °C. (b & c) Temporal analysis of fluorescence in
(a) CaPHWP1-GFP and CdPHWP1-GFP fusion strains and (b) CaPECE1-GFP and CdPECE1-GFP fusion strains. Fluorescence was measured by flow cytometry and mean fluorescence per 10,000
cells was measured and expressed in arbritrary fluorescent units.
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3.4. Nutrient depletion activates a starvation response and UME6 in
C. dubliniesis

As nutrient depletion has a strong effect on filamentous growth in
C. dubliniensis, we examined the transcript profile of strain Wü284
following dilution to 10% (v/v) Lee's medium (pH 4.5). Genes that
exhibited a significant change in expression relative to dilution alone
were examined (Tables S7 and S8). This group of genes was found to
be enriched for those involved in carbohydratemetabolism, particularly
mobilisation of glycogen stores (GLC1, GSY3) and phosphorylation of
glucose for entry to glycolysis (GLK1, GLK4, PGM2). Catabolism of
alternative sugars was also induced (ARA1, GRE3, XYL1, XYL2). Nitrogen
starvation was suggested by increased expression of genes involved
in amino acid degradation (CAR1, PNG2), protein degradation
(PRC2, LAP3) and scavenging of nitrogen from the environment (DAL7,
GAP2, DUR3). These data provide a link between the response to
nutrient depletion and filamentation as a 4.3-fold induction of
UME6 transcription was observed. Previously, we have observed
induction of UME6 in nutrient poor, alkaline, hypha inducing conditions
(water plus 10% serum), and this induction was repressed by the
addition of peptone [18]. The data presented here demonstrate that
the nutrient depletedmedia, in the absence of temperature or pH shifts,
can contribute to UME6 induction. Previous microarray and QRT-PCR
studies have shown that the level of UME6 induction in C. dubliniensis
is of the order of ~100-fold following inoculation in water plus 10%
serum (Fig. 4a). The microarray data presented here indicate that this
level of induction may involve the integration of several different
stimuli including temperature, nutrient depletion and alkaline pH
(Fig. 4a). The level of UME6 induction has previously been shown
to dictate the level of hyphal elongation and these data provide
further evidence that efficient filamentation in C. dubliniensis re-
quires multiple environmental stimuli, including nutrient depletion
[26].
3.5. Analysis of the intensity and kinetics of hypha-specific gene expression

The data presented here indicate that pH and temperature shifts
alone have little effect on the induction of several hypha-specific
transcripts in C. dubliniensis. In order to characterise this in more
detail, we carried out qualitative and quantitative analysis of an Efg1-
regulated promoter in C. albicans and C. dubliniensis using a GFP fusion.
Induction of GFP expression from the HWP1 promoter (PHWP1-GFP) was
observed in C. albicans in response to a shift in both temperature (37 °C)
and pH 7.2 (Fig. 5a). A shift in temperature or pH alone was also
sufficient to induce visible fluorescence in C. albicans (data not
shown). In C. dubliniensis, temperature or pH shifts in YPD medium
induced lower levels of fluorescence from the HWP1 promoter relative
to that observed in C. albicans, which concurs with the expression data
generated bymicroarray analysis (Fig. 5a). However, nutrient depletion
(10% v/v YPD) increased the fluorescence intensity at pH 7.2 and 37 °C
(Fig. 5a). Even in the presence of combined temperature and pH shifts
nutrient depletion was required to visualise fluorescence and for the
formation of filaments, mainly pseudohyphae.

We also examined the kinetics hypha-specific gene expression in
C. albicans and C. dubliniensis by flow cytometry using the PHWP1-GFP
and PECE1-GFP fusions (Fig. 5b & c). In human serum (10% v/v) induction
of fluorescence from the PHWP1-GFP and PECE1-GFP fusions was more
rapid in C. albicans, occurringwithin 15min of induction (Fig. 5b & c). In-
duced fluorescence was not detected in C. dubliniensis until 60 min,
which approximates to the slower rate of germ-tube formation in this
species. By 60 min, C. albicans hyphae had clumped to such an extent
that measurements could no longer be taken. Maximal fluorescence
in C. dubliniensis at 2–3 h was similar to that observed in C. albicans at
1 h (Fig. 5b & c). These data support previous findings that C. dubliniensis
expresses hypha-specific genes under nutrient depleted conditions, but
indicate that even under permissive conditions, there appears to be a sig-
nificant lag in expression relative to C. albicans.
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4. Conclusions

The combination of microarray analysis and promoter fusions
examined here demonstrate that many Efg1-regulated, hypha-specific
genes of C. dubliniensis are poorly expressed in response to elevated
temperature and alkaline pH relative to the orthologous genes in
C. albicans. Although C. dubliniensis exhibited a robust Rim101mediated
response to alkaline pH, activation of Efg1-regulated genes in response
to pH was weak. Similarly, growth at 37 °C in YPD medium did not
yield significant induction of ECE1 or HWP1. The overall weakness of
pH and temperature induction of Efg1-regulated transcripts in
C. dubliniensis suggested that additional stimulation was required for
full activation of Efg1-regulated transcripts. This may be due to either
lower activity of the cAMP-PKA pathway in C. dubliniensis or tight
repression of Efg1 activity. Alternatively, repression of these transcripts
may be due to another factor such as Nrg1. Transcript profiling has
confirmed that the C. dubliniensis orthologue of Nrg1 represses ECE1 and
HWP1 and we have previously noted differential expression of this tran-
scriptional repressor under hypha-inducing conditions in C. dubliniensis
[6,27]. Maximal fluorescence from the PHWP1-GFP and PECE1-GFP pro-
moters fusions in C. dubliniensis required nutrient depletion. It is apparent
from these studies thatmaximal induction of these transcripts and hypha
formation in C. dubliniensis requires a combination of stimuli and in this
regard nutrient depletion appears to be as important as temperature
shifts and alkaline pH. This concurs with the study of Grumaz et al. who
examined the transcript profile of C. dubliniensis using RNA-seq in YEPD
plus serum [28]. Grumaz and colleagues noted weak induction of
many hypha-induced genes in these conditions, likely due to the nutrient
richmedium used to examine their induction [28]. Previous studies dem-
onstrated that UME6 expression in C. dubliniensis was directly repressed
by peptone [18]. These findings suggest that the increased levels of
filamentation and virulence exhibited by C. albicans are linked to the abil-
ity of this species to form hyphae and express hypha-associated virulence
genes at alkaline pH irrespective of local nutrient availability. This is
manifested in C. albicans by increased levels of UME6 expression and
enhanced expression of virulence factors such as HWP1, SOD5 and SAP6.
Recent studies have implicated the large TLO gene family of C. albicans
in the regulation of filamentous growth and studies are underway to
determine whether this gene family plays a role in conferring increased
morphological flexibility in C. albicans [29].
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