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Background. Tumormicroenvironment (TME) takes a vital effect on the occurrence and development of cancer. Radix Rhei Et Rhizome
(RRER, Da-Huang in pinyin), a classical Chinese herb, has been widely used in gastric cancer (GC) for many years in China. However,
inadequate systematic studies have focused on the anti-GC effect of RRER in TME.+is study intended to uncover the mechanism of it
by network pharmacology. Methods. We collected compounds and targets of RRER from traditional Chinese medicine system
pharmacology database and analysis platform (TCMSP) and SwissTargetPrediction. GC targets were obtained fromGeneCards. Protein-
protein interaction (PPI) network and RRER-GC-target network were built by STRING and Cytoscape 3.2.1. Furthermore, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed using Database for Annotation,
Visualization, and Integrated Discovery (DAVID). Results. We obtained 92 compounds of RRER. A total of 10 key compounds and 20
key targets were selected by “RRER-GC-target network” topological analysis. GO analysis showed that the biological process mainly
involved in response to the tumor necrosis factor, positive regulation of fibroblast proliferation, and DNA damage response, signal
transduction by p53 classmediator resulting in cell cycle arrest.Molecular functions included cyclin-dependent protein serine/threonine
kinase activity, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding, and transmembrane
receptor protein tyrosine kinase activity. Cellular components mainly were centrosome, cell surface, and membrane. KEGG pathway
enrichment results mainly involved in the p53 signaling pathway, estrogen signaling pathway, and regulation of lipolysis in adipocytes.
Conclusion.+is study explored the anti-GCmechanism of RRER from the perspective of TME based on network pharmacology, which
contributed to the development and application of RRER.

1. Introduction

Gastric cancer (GC) remains the world’s second most
common cause of cancer-related death [1].+ere are nearly 1
million new GC cases in the world each year [2]. Once
suffering from this disease, it will be followed by the patient’s
physical injury, mental pressure, and health expenditure,
which bring a heavy burden to both society and individuals.
At present, the main treatments of GC include surgery,
chemotherapy, chemoradiotherapy, and targeted and im-
mune therapies, among which surgery is the only chance to
cure, but recurrence is common.

In recent years, Radix Rhei Et Rhizome (RRER, Da-
huang in pinyin), a classic Chinese herb, has been widely
used in GC. For example, RRER-Zhechong pill and RRER-
Renshen decoction with chemotherapy are used in advanced
GC [3, 4], and RRER-Huanglian-Xiexin decoction is applied
to cure GC precancerous lesions [5]. Moreover, a single
RRER has been used in GC complicated with hemorrhage
[6]. Besides, the methanol extract of RRER has the anti-GC
effect by mediating cell death with an intrinsic apoptotic
pathway [7]. Its active compound, aloe-emodin, has growth
inhibitory effects in GC cells with an increase in S phase and
alkaline phosphatase activity repression [8].
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Notably, GC is not a simple mass of tumor cells. It is
located in a very complex system named tumor microen-
vironment (TME), which includes the tumor vasculature,
composition of the extracellular matrix, and stroma cells. A
compelling body of evidence has demonstrated that TME
takes a vital effect on the occurrence and development of GC
[9–11]. However, due to the diversity of traditional Chinese
medicine (TCM) compounds, inadequate systematic studies
have focused on the anti-GC effect of RRER in TME.

Network pharmacology, first proposed by Hopkins [12],
is a new discipline covering systems biology and network
analysis. It emphasizes that drugs are mainly obtained
through multitarget interaction to take the synergistic effect.
+is viewpoint is coincident with the TCM’s characteristic of
multicompounds and multitargets. At present, there have
been many studies [13–15] providing useful examples for
exploring the TCM mechanism by means of network
pharmacology at home and abroad. +erefore, this study
intended to use network pharmacology to uncover the
underlying anti-GC mechanism of RRER in TME.

2. Materials and Methods

2.1. Research Tools. +e traditional Chinese medicine system
pharmacology database and analysis platform [16] (TCMSP,
http://lsp.nwu.edu.cn/tcmsp.php, version: 2.3) and Swis-
sTargetPrediction [17] (http://www.swisstargetprediction.ch/,
updated in 2019) were used to collect RRER compounds and
targets. GeneCards [18] (https://www.genecards.org/, version:
5.0) was applied to get GC targets. UniProt [19] (https://www.
uniprot.org/) was selected to supplement the targets’ UniProt
ID. STRING [20] (http://string-db.org, version 11.0) was used
to establish the protein-protein interaction (PPI) network.
Cytoscape 3.2.1 [21] (http://www.cytoscape.org/) was applied
to construct the RRER-GC-target network and do network
topology analysis. Database for Annotation, Visualization, and
Integrated Discovery [22] (DAVID, http://david.ncifcrf.Gov,
version: 6.8) was used for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis.
OmicShare (https://www.Omicshare.com/) was selected to
visualize the GO and KEGG results.

2.2. Collection and Screening of the RRER Active Compounds.
TCMSP is a systems pharmacology platform of Chinese
herbal medicines that collects chemicals, targets, and
pharmacokinetic properties of natural compounds involving
oral bioavailability (OB), drug-likeness (DL), intestinal ep-
ithelial permeability, blood-brain barrier, and aqueous
solubility. Among them, OB [23] is the rate and extent to
which the active ingredient is absorbed from a drug product
and becomes available at the site of action, and DL [24]
means that drugs and drug candidates tend to have similar
physicochemical properties. Both of them are important
references for evaluating whether a compound has the
potential to become a drug [25, 26]. In this study, we used
TCMSP to search the RRER compounds and canonical
SMILES and then took “OB≥ 30% and DL≥ 0.18” as the
screening standard to filter the active compounds.

2.3. Prediction of RRER and GC Targets. First, to predict
RRER’s targets, we uploaded canonical SMILES to the
SwissTargetPrediction database, saved targets’ full name,
abbreviation, and UniProt ID and then eliminated the re-
peated targets. When the results of the predicted targets were
0, we used TCMSP to supplement them. Second, we used
“gastric cancer” as the keyword to search disease targets in
the GeneCards database. After removing targets with rele-
vance score less than 20 and supplementing targets’ UniProt
ID in the UniProt database, we finally obtained GC-related
targets’ full names, abbreviations, and UniProt IDs.

2.4. Network Construction and Analysis. By mapping RRER
targets and GC targets, we obtained RRER and GC common
targets and then the constructed PPI network (combined
score ≥0.9) through the STRING database. Simultaneously,
the RRER-GC-common target network was built by Cyto-
scape 3.2.1. After that, network topological analysis was
carried out to find the pivotal nodes in the network.

2.5. GO and KEGG Analysis. Go is a gene function classi-
fication that describes the properties of genes and gene
products. +ere are 3 ontologies in GO, which include the
molecular function, cellular component, and biological
process. In this study, we used DAVID to carry out GO and
KEGG analysis by importing the key targets into “Functional
Annotation.” And then, the OmicShare tool was used to
visualize the analysis results.

3. Results

3.1. Collection and Screening the RRER Active Compounds.
We obtained 92 active compounds of RRER after searching in
the TCMSP database, among which 16 active compounds met
the screening criteria of “OB≥ 30%, DL≥ 0.18” (Table 1).

3.2. Prediction of RRER and GC Targets. We obtained 583
targets of RRER by SwissTargetPrediction. Because results of
the 2 active compounds (aloe-emodin and (-)-catechin) were
0 in SwissTargetPrediction, we used TCMSP to supplement
them and then added 34 targets. Finally, we totally collected
617 RRER’s targets (Table 1). A total of 11 842GC targets
were obtained in GeneCards. Furthermore, with the filtering
criteria of “relevance score ≥20,” a total of 448GC-related
targets were collected (Supplementary Table S1).

3.3. Construction and Analysis of Networks. After mapping
RRER targets and GC targets, a total of 99 common targets
were obtained. To better understand the interactions be-
tween common targets, a PPI network (combined score
≥0.9) was built by STRING (Figure 1). Based on the targets
(combined score ≥0.9) obtained in Figure 1, a RRER-GC-
common target network was constructed by Cytoscape 3.2.1
(Figure 2).+e network topology analysis showed that top 10
degree of RRER’s compounds included palmidin A, eupatin,
sennoside E_qt, aloe-emodin, toralactone, rhein, procyani-
din B-5,3′-O-gallate, daucosterol_qt, beta-sitosterol, and
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Table 1: Active compounds and targets of RRER.

No. Active compounds OB
(%) DL Targets

1 Eupatin 50.8 0.41

XDH, CYP1B1, AKR1B1, PLG, OPRD1, MAPT, KDM4E, GPR35, AVPR2,
TOP2A, CYP19A1, DRD4, GLO1, MPO, PIK3R1, DAPK1, PYGL, CA3, ABCC1,
PLK1, CA6, PKN1, CSNK2A1, NEK2, CAMK2B, ALK, AKT1, NEK6, PLA2G1B,
APEX1, NUAK1, AKR1C2, AKR1C1, AKR1C3, AKR1C4, AKR1A1, CA2, CA12,
ALOX5, GSK3B, HSD17B2, ABCG2, CCNB1, CCNB3, CCNB2, CDK1, CDK6,
ARG1, ADORA3, BACE1, APP, CA7, ADORA1, MMP3, MMP2, NOX4, EGFR,
PIK3CG, MAOA, TYR, AHR, ESRRA, MET, FLT3, ADORA2A, KDR, IGF1R,
INSR, SRC, PTK2, CA1, CA13, MMP13, CA4, MMP9, ALOX12, AURKB,
ST6GAL1, CDK2, HSD17B1, CA9, PTPRS, MPG, SLC22A12, AXL, ABCB1,
ODC1, PFKFB3, F2, CA14, CA5A, CD38, AKR1B10, TNKS2, TNKS, TOP1,

MYLK, ALOX15, PIM1, CXCR1, PLA2G2A, ACHE, SYK
2 Mutatochrome 48.64 0.61 ALOX5

3 Physciondiglucoside 41.65 0.63
ESR1, TNNC1, TNNT2, TNNI3, EPHX2, SLC5A1, CA14, LGALS3, LGALS9,
SLC5A2, CHIA, SLC29A1, ADORA2A, CYP19A1, ADORA3, MME, ECE1,

LGALS4, LGALS8, SLC5A4, ACE, HRAS, ADORA2B, TYR

4 Procyanidin B-5,3′-O-gallate 31.99 0.32

MMP2, MAPT, DYRK1A, KCNH2, MAPK14, TERT, PGD, ST3GAL3, FUT7,
BCL2, FUT4, STAT1, SQLE, BACE1, APP, MMP14, MET, ABCB1, DNMT1,
MMP9, GABRA1, GABRB2, GABRG2, MMP12, PGF, VEGFA, HIF1A, CA2,
CA1, CA9, ABCC1, ABCG2, PTGS1, CYP19A1, KLK1, KLK2, POLB, PLA2G2A,

PLA2G5, PLA2G10, CYP1B1

5 Rhein 47.07 0.28

FTO, CYP19A1, ELANE, FNTA, FNTB, PTP4A3, CSNK2A1, ESR2, PIM1,
CASP3, LDHA, LDHB, ERN1, ESR1, CDC25 B, BCL2, MCL1, AMPD3, ECE1,
LIMK1, F2, SLC13A5, LCK, IGFBP3, GRK6, EGLN1, MME, CDK2, HNF4A,
MAPK8, OGA, GPR35, ADA, ACLY, CASP6, CASP7, CASP8, CASP1, CASP2,

NOX4, CAMKK2, ERBB2, SLC6A3, EGFR

6 Sennoside E_qt 50.69 0.61

FTO, ELANE, AKR1B1, CYP19A1, PIM1, CA2, CA1, TOP1, SELL, SELE, SELP,
PTP4A3, CSNK2A1, BMP1, AMPD3, HSP90AB1, ACE, MME, PDE5A, MMP9,
MMP1, MMP2, MMP8, ESR1, ESR2, HSP90AA1, KDM4C, PTGDR2, ECE1,

PTGER1, PTGER2, IKBKB, PTGER3, AMPD2, PIK3CA, FNTA, FNTB, KDM3A,
HCAR2, ITGB1, AGTR1, LTA4H, ITGB7, ITGA4, HTR2B, RAF1, SLC5A2,

BRAF, EGLN1, TTL, MAPK8, PTGFR, MMP10, MMP12, TKT, FOLH1, RXRA,
HNF4A, FLT1, KDM4A, MMP14, CXCR2, PYGL, PNP, CASP3, PTGER4,

IGFBP3, MKNK2, EGFR, ITGAV, ITGB3, ADAMTS4, CASP6, CASP7, CASP8,
CASP1, F7, CREBBP, FYN, OPRM1, IGFBP5, TTR, CHEK1, WEE1, KIT, CTSD,
DYRK2, GSK3B, DPP4, GSK3A, AKR1B10, PDE4B, AMPD1, PDE4D, ROCK1,

SCN9A, PTGIR, P2RX3, KCNH2, ACLY, CDK5, BCL2L2

7 Torachrysone-8-O-beta-D-(6′-
oxayl)-glucoside 43.02 0.74

EPHX2, TYR, SRD5A1, TDP1, SLC5A2, PTPN1, SLC5A1, SLC5A4, CA14,
ADORA2A, SLC29A1, HK2, HK1, AKR1B1, PYGL, ADORA3, EIF4H, PABPC1,

PIM1, FUCA1, ADORA2B, NR4A1, IGFBP3

8 Toralactone 46.46 0.24

PTGS2, GUSB, SERPINE1, FADS1, CA1, CA12, CA9, IMPDH2, RET, QPCT,
TYMS, PLAU, PDE5A, PTK2B, ABCB1, MTOR, PIK3CD, PIK3CB, HCK,

PIK3CA, DYRK1B, JAK3, PLA2G7, ILK, TUBB1, TUBB3, RPS6KA3, AKR1B1,
EGLN1, FLT1, DHFR, EPHB2, MDM2, MAOA, RAF1, FGFR1, CXCR2, MAOB,

LNPEP

9 Emodin-1-O-beta-D-
glucopyranoside 44.81 0.8 ESR1, TNNC1, TNNT2, TNNI3, EPHX2, SLC5A4, SLC5A2, SLC5A1, CA7, CA4,

ELANE, SLC29A1, SLC28A3, ACHE, NQO2, PTPN1
10 Sennoside D_qt 61.06 0.61 TNNC1, TNNT2, TNNI3, ESR1

11 Daucosterol_qt 35.89 0.7
IL2, STAT3, APH1B, PSEN1, APH1A, NCSTN, PSENEN, PSEN2, PTAFR, MET,
S1PR3, S1PR1, FLT1, RBP4, PPM1B, PPP1CC, PPP2CA, PPP2R5A, HSD11B2,

S1PR5, S1PR4

12 Palmidin A 32.45 0.65

PTP4A3, PIM1, CSNK2A1, FTO, ESR1, ESR2, MAP3K14, MAP3K7, HSP90AA1,
HDAC6, HDAC2, HDAC1, HMGCR, CXCR2, CXCR1, RXRA, TOP1, PARP1,
PDK1, HNF4A, PDE5A, KIT, FLT3, KDR, MAP2K2, MAPKAPK5, TYK2,

MAPK1, ALK, MMP9, MMP1, MMP2, MMP8, ACVRL1, ADORA3, MMP13,
MMP3, ADAM17, CTSV, PLK4, CDK5, MKNK2, AXL, SORD, CDK2, CCND1,

CDK4, SYK, GSK3B, GSK3A, MCL1, MMP7, MMP12, ELANE, ADCY1,
MAP2K7, MAP2K1, RELA, FLT1, PDGFRB, FLT4, PDGFRA, MAPK3, PLG,
APH1B, PSEN1, APH1A, NCSTN, PSENEN, PSEN2, PLAU, IRAK4, PRKCB,
CCNB2, CCNB1, CDK1, CCNB3, CCNA2, CCNA1, RPS6KA3, AKR1B1, PDE4B,
PIK3CD, PIK3CB, PIK3CG, MAP3K1, PIK3CA, IMPDH1, AURKA, P2RX7,

CA2, OPRK1, CA1, CA12, CA9, JUN, P2RX3, PRKCD, NTRK1, GYS1, BACE1,
LCK, CA4, WEE1, CCNE1, BCHE, CCNH, CDK7, CCNT1, CDK9, DYRK1A
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Table 1: Continued.

No. Active compounds OB
(%) DL Targets

13 Beta-sitosterol 36.91 0.75

AR, HMGCR, CYP51A1, NPC1L1, NR1H3, CYP19A1, CYP17A1, RORC, ESR1,
ESR2, SREBF2, SHBG, SLC6A2, CYP2C19, RORA, PTPN1, BCHE, SERPINA6,
SERPINA6, SLC6A4, CHRM2, VDR, ACHE, G6PD, NR1H2, GLRA1, CES2,
PTGER1, PTGER2, HSD11B1, PTGES, CDC25A, PPARA, PPARD, DHCR7,
SQLE, PTPN6, NR1I3, FDFT1, SIGMAR1, NOS2, NR3C1, PPARG, CDC25B,

UGT2B7, HSD11B2, POLB

14 Aloe-emodin 83.38 0.24
PTGS1, PTGS2, HSP90AB1, HSP90AA1, PIK3CG, NCOA2, PKIA, AKR1B1,
IGHG1, CDKN1A, EIF6, BAX, TNF, CASP3, TP53, FASN, PRKCA, PRKCE,

CDK1, PCNA, MYC, IL1B, PRKCD, CCNB1

15 Gallic acid-3-O-(6′-O-galloyl)-
glucoside 30.25 0.67 TDP1, SERPINE1, PTPN2, BACE1, ADORA1, AKR1B1, ASNS, AMY1A

16 (-)-Catechin 49.68 0.24 PTGS1, ESR1, PTGS2, HSP90AB1, HSP90AA1, DPEP1, NCOA2, FASN, PPARG,
KLF7

Figure 1: PPI network (combined score ≥0.9) of common targets. Nodes represent proteins. Edges represent interactions between protein
and protein.
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Figure 2: RRER-GC-common target network. +e nodes’ color and size are determined by degree. +e larger and the redder the node, the
higher the degree it is.

Table 2: Network topology analysis of compounds (top 10 of degree).

No. Effective compounds Degree Average shortest path length Closeness centrality Neighborhood connectivity Radiality
1 Palmidin A 27 2.18309859 0.45806452 2.07407407 0.8028169
2 Eupatin 12 2.85915493 0.34975369 1.91666667 0.69014085
3 Sennoside E_qt 12 2.6056338 0.38378378 2.91666667 0.73239437
4 Aloe-emodin 9 3.16901408 0.31555556 1.77777778 0.63849765
5 Toralactone 8 3.42253521 0.29218107 8 0.57276995
6 Rhein 7 3.05633803 0.32718894 8 0.57276995
7 Procyanidin B-5,3′-O-gallate 5 3.95774648 0.25266904 4.66666667 0.61502347
8 Daucosterol_qt 4 3.1971831 0.31277533 4.5 0.57746479
9 Beta-sitosterol 4 3.47887324 0.28744939 1.875 0.59624413
10 (-)-Catechin 3 3.30985915 0.30212766 3.28571429 0.657277

Table 3: Network topology analysis of key targets (top 20 of degree).

No. Targets Degree Average shortest path length Closeness centrality Neighborhood connectivity Radiality
1 ESR1 8 2.57746479 0.38797814 7.125 0.7370892
2 ESR2 4 2.71830986 0.36787565 12.5 0.71361502
3 HSP90AA1 4 2.74647887 0.36410256 12.75 0.70892019
4 FLT1 4 2.63380282 0.37967914 12.75 0.72769953
5 CCNB1 3 2.6056338 0.38378378 16 0.73239437
6 CDK1 3 2.6056338 0.38378378 16 0.73239437
7 EGFR 3 3.02816901 0.33023256 10.33333333 0.66197183
8 MET 3 3.45070423 0.28979592 7 0.5915493
9 CDK2 3 2.71830986 0.36787565 15.33333333 0.71361502
10 PIK3CA 3 2.85915493 0.34975369 15.66666667 0.69014085
11 KDR 2 2.8028169 0.35678392 19.5 0.69953052
12 BCL2 2 3.81690141 0.26199262 6 0.53051643
13 MCL1 2 2.94366197 0.33971292 17 0.67605634
14 RAF1 2 3.42253521 0.29218107 10 0.59624413
15 RXRA 2 3 0.33333333 19.5 0.66666667
16 KIT 2 3 0.33333333 19.5 0.66666667
17 PIK3CB 2 3 0.33333333 17.5 0.66666667
18 PPARG 2 4.21126761 0.23745819 3.5 0.46478873
19 PIK3R1 1 3.84507042 0.26007326 12 0.5258216
20 PLK1 1 3.84507042 0.26007326 12 0.5258216
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(-)-catechin (Table 2). Top 20 degree of common targets
were ESR1, ESR2, HSP90AA1, FLT1, CCNB1, CDK1, EGFR,
MET, CDK2, PIK3CA, KDR, BCL2, MCL1, RAF1, RXRA,
KIT, PIK3CB, PPARG, PIK3R1, and PLK1 (Table 3).

3.4. GO and KEGG Analysis. GO analysis showed that the
biological process mainly involved in response to the tumor
necrosis factor, positive regulation of fibroblast prolifera-
tion, and DNA damage response, signal transduction by p53

class mediator resulting in cell cycle arrest. Molecular
functions included the cyclin-dependent protein serine/
threonine kinase activity, RNA polymerase II transcription
factor activity, ligand-activated sequence-specific DNA
binding, and transmembrane receptor protein tyrosine ki-
nase activity. Cellular components mainly were centrosome,
cell surface, and membrane (Figure 3).

+ere were 36 KEGG pathways obtained by DAVID,
among which 32 pathways’ P values were less than 0.05
(Supplementary Table S2). As shown in Figure 4, pathways
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with high rich factors include the p53 signaling pathway,
estrogen signaling pathway, regulation of lipolysis in adi-
pocytes, epithelial cell signaling in Helicobacter pylori in-
fection, TNF signaling pathway, proteoglycans in cancer,
HIF-1 signaling pathway, FoxO signaling pathway, thyroid
hormone signaling pathway, MicroRNAs in cancer, and
PI3K-Akt signaling pathway.

4. Discussion

RRER has been widely applied in gastrointestinal diseases for
many years. In TCM’s theory, it is a bitter, cold dry herb used
to “clear heat” from the liver, stomach, and blood [27]. Based
on network pharmacology, this study was to uncover the
targets and molecular mechanisms exerted by RRER in the
TME of GC. In “RRER-GC-common target network,” one
active compound could act on several targets, and the same
target could be linked to different active compounds, in-
dicating the multitarget and synergistic strategy of RRER. In
the top 10 degree of compounds, three of them have been
verified to have anti-GC effects. For example, aloe-emodin
could arrest the cell cycle of MKN45 human GC cells in G0/
G1 phase or G0/G1 and G2/M phases [28]. Rhein could
induce apoptosis of human GC SGC-7901 cells [29]. Beta-
sitosterol has an antitumor effect in AGS human gastric
adenocarcinoma cells and xenograft mouse models [30].
+ese results are consistent with our predictions, suggesting

that high-degree compounds might play an important role
in the treatment of GC.

+e occurrence and development of the tumor is not only
related to its ownmalignant proliferation but also closely related
to TME [31]. TME is a highly dynamic and heterogeneous
composition of immune cells, fibroblasts, precursor cells, en-
dothelial cells, signaling molecules, and extracellular matrix
components [32]. COX-2 (also known as PTGS2), released by
cancer-associated fibroblasts (CAFs) [33] and macrophage type
2 cells [34], is one of the key markers predicting worse cancer
prognosis and stimulates cancer via multiple ways in the TME
[35]. Study has shown that COX-2 inhibitors have the potential
to decrease the risk of tumorigenesis [36]. RRER’s main com-
pounds, aloe-emodin and (-)-catechin, can suppress the level of
PTGS2 [37, 38]. Interestingly, rhein can inhibit EGFR [39], the
upstreammodulator of COX-2 in cancer cells [40]. Accordingly,
we speculate that rhein might play an important role in TME by
targeting EGFR and its downstream target COX-2.

+e result of GO analysis is also consistent with our
prediction. For example, the biological process of RRER in-
cludes fibroblast proliferation, which is verified to play an
important role in TME [41]. KEGG pathway analysis shows
that RRER involves various pathways closely related to TME.
(1) Epithelial cell signaling in Helicobacter pylori infection
pathway: H. pylori exposure results in a chronic inflammation
microenvironment which is strongly linked to GC [31]. Study
has shown that the extract of RRERhas the antibacterial activity
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Figure 4: Top 15 KEGG pathway enrichments. Node color is displayed in a gradient from red to green in descending order of the P value.
+e size of the nodes is arranged in ascending order according to the number of genes. RichFactor is the ratio of genes in the current study
versus the total genes in the term.
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against H. pylori both in vitro and in vivo. And the in vivo
studies prove that RRER is highly efficient in terms of dosage,
tolerability, and curing activeH. pylori infection [27]. (2) PI3K-
Akt signaling pathway: activation of the PI3K-Akt signaling
pathway induces the process of EMT [42] and causes immune
suppression and evasion in the TME [43]. It is reported that
emodin can inhibit the PI3K-Akt signaling pathway and de-
crease tumor growth [44]. (3) HIF-1 signaling pathway: low
oxygen tension (hypoxia) is an important component of TME
as it alters the extracellular matrix, modulates the tumour
immune response, and increases angiogenesis [45]. Emodin
and rhein can decreaseHIF-1α expression and attenuate cancer
cachexia in athymic mice carrying cancer cells [46].

In conclusion, increasing evidence supports the reli-
ability of the network pharmacology method, which may be
an effective way to study the pharmacological mechanisms of
Chinese herbs. +is study explored the anti-GC mechanism
of RRER from the perspective of TME based on network
pharmacology, which might contribute to the development
and application of RRER. However, some results of our
study have not been fully confirmed at present. Future in
vitro and in vivo studies will help to give more insight into
unveiling the molecular mechanisms of RRER in TME.
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