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Background: Acute kidney injury (AKI) is a severe clinical syndrome, and

ischemia–reperfusion injury is an important cause of acute kidney injury.

The aim of the present study was to investigate the related genes and

pathways in the mouse model of acute kidney injury induced by

ischemia–reperfusion injury (IRI-AKI).

Method: Two public datasets (GSE39548 and GSE131288) originating from the

NCBI Gene Expression Omnibus (GEO) database were analyzed using the R

software limma package, and differentially expressed genes (DEGs) were

identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genomes (KEGG)

and gene set enrichment analysis (GSEA) were performed using the differentially

expressed genes. Furthermore, a protein-protein interaction (PPI) network was

constructed to investigate hub genes, and transcription factor (TF)–hub gene

and miRNA–hub gene networks were constructed. Drugs and molecular

compounds that could interact with hub geneswere predicted using theDGIdb.

Result: A total of 323 common differentially expressed genes were identified in

the renal ischemia–reperfusion injury group compared with the control

group. Among these, 260 differentially expressed genes were upregulated

and 66 differentially expressed genes were downregulated. Gene Ontology

enrichment and Kyoto Encyclopedia of Genes and Genomes analysis results

showed that these common differentially expressed genes were enriched in

positive regulation of cytokine production, muscle tissue development, and

other biological processes, indicating that they were involved in mitogen-

activated protein kinase (MAPK), PI3K-Akt, TNF, apoptosis, and Epstein–Barr

virus infection signaling pathways. Protein-protein interaction analysis showed

10 hub genes, namely, Jun, Stat3, MYC, Cdkn1a, Hif1a, FOS, Atf3, Mdm2, Egr1,

and Ddit3. Using the STRUST database, starBase database, and DGIdb database,
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it was predicted that 34 transcription factors, 161 mi-RNAs, and 299 drugs or

molecular compounds might interact with hub genes.

Conclusion: Our findings may provide novel potential biomarkers and insights

into the pathogenesis of ischemia–reperfusion injury–acute kidney injury

through a comprehensive analysis of Gene Expression Omnibus data, which

may provide a reliable basis for early diagnosis and treatment of

ischemia–reperfusion injury–acute kidney injury.
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Introduction

Acute kidney injury (AKI) is a global public health challenge

in hospitalized patients admitted to hospitals (10–15% of all

hospitalizations) (Ronco et al., 2019) and in patients in the

intensive care unit (ICU) where its prevalence can sometimes

exceed 50% (Hoste et al., 2015). It was also linked to the increased

ICU stay length and, hence, considerable healthcare resource

consumption. Renal insufficiency, mesenteric vasoconstriction,

infection, sepsis, and other conditions may contribute to AKI.

Different causes indicate different pathogeneses. Accurate and

timely identification of the cause and pathogenesis of AKI is an

early basis for efficient targeted therapy in the current era of

individualized therapy. Extensive investigations of AKI in clinical

and basic studies have been conducted, mainly focusing on the

early AKI diagnosis, injury location, etiology identification, and

related mechanistic pathways (Peerapornratana et al., 2019; Jiang

et al., 2021). However, biomarkers that represent renal injury,

repair, and function are still being studied for improved diagnosis

and treatment. For example, for AKI with insufficient volume,

volume replacement is recommended, whereas for AKI with

heart failure, direct treatment of heart failure is recommended

without paying much attention to the increase in creatinine.

Hypoxia may be the only connection between these two causes.

Currently, specific biomarkers of renal hypoxia in urine or

plasma are not commonly used in the clinic (Endre and

Mehta, 2020).

Improving Global Outcomes Clinical Practice Guidelines

define AKI as an elevation in serum creatinine greater than

0.3 mg/dl above baseline or prolonged oliguria (greater than 6 h)

(Kellum et al., 2013), and both have several limitations. Acute

changes in the glomerular filtration rate (GFR) are not consistent

with changes in serum creatinine levels, as the balance between

production and elimination takes days to occur. Therefore,

serum creatinine underestimates the extent of renal function

loss, especially in the first 48 h after injury and tends to increase

when a substantial amount (~50%) of GFR is lost (Kellum et al.,

2021). Furthermore, serum creatinine levels are not only affected

by GFR but also by age, sex, muscle mass, muscle metabolism,

medication, and hydration status, further delaying the diagnosis

and treatment.

In recent years, much of the research on nephrology has

focused on identifying AKI biomarkers to address the limitations

of these traditional diagnostic indicators. Neutrophil gelatinase-

associated lipocalin (NGAL) is the most widely studied

biomarker for AKI. NGAL has been found to be the most

useful biomarker after cardiac surgery (especially in children)

and kidney transplants and in critically ill patients (Khawaja

et al., 2019; Robertson et al., 2019; Marcello, 2022). It is currently

used to predict and diagnose AKI, as well as to predict short- and

long-term outcomes and decision-making regarding AKI

treatment (such as renal replacement therapy (RRT)).

Tiranathanagul et al. (2013) performed a study to determine

the most appropriate cut-off value to predict the initiation of

RRT. A urine NGAL level of 2000 ng/ml and plasma NGAL level

of 1,000 ng/ml could predict AKI requiring RRT with AUCs of

0.81 for both, respectively. However, the expression of NGAL still

lacks specificity for AKI, and the diversity of test kits in the

market means that the cut-off value is not clear. The liver-type

fatty acid-binding protein (L-FABP) is often used to predict AKI.

L-FABP exists not only in the liver but also in many organs, such

as intestines, stomach, lungs, and kidneys.

L-FABP can be detected in urine and is linearly associated

with hypoperfusion markers (lactic acid) in a study of

249 patients with severe disease. This is considered an obvious

indicator of renal interstitial hypoxia. In critically ill patients,

compared with other biomarkers, including NGAL, IL-18, and

albumin, L-FABP has more advantages in predicting AKI

(Srisawat and Kellum, 2020). Recently, urinary L-FABP has

been approved as a biomarker of AKI in Japan. However, few

studies have explored the role of L-FABP in predicting short- or

long-term renal outcomes or mortality, and there is no standard

tipping point for AKI diagnosis. Insulin-like growth factor-

binding protein-7 (IGFBP-7) and tissue inhibitor of

metalloprotease-2 (TIMP-2) have been implicated in the early

stage of cellular stress in G1 cell cycle arrest by blocking the effect

of cyclin-dependent protein kinase complexes (Wang et al.,

2017). The scores of IGFBP-7×TIMP-2 can be used to

monitor the incidence and recovery of moderate to severe

AKI in patients undergoing cardiac surgery with

cardiopulmonary bypass (CPB) (Jia et al., 2022; Tao et al.,

2022). A study showed that urinary IGFBP-7 ×TIMP-2 at 2 h
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after CPB initiation showed an AUC of 0.76 for predicting the

severity of AKI. However, another study showed a poor

predictive value for low-risk inpatients in non-intensive care

units (ICUs), with a specificity of only 46% (Bihorac et al., 2014).

Thus, the current approach strives to find novel AKI

biomarkers for recognition of AKI in its early stages, and

early response is geared to prevent progression to more severe

stages. Novel biomarkers may also be used to probe into the

underlying mechanisms leading to renal damage, and recovery in

patients is essential.

Recent multiple experimental analyses indicated that

Rplp1 significantly upregulated display dramatically increased

in the kidneys of Cis-AKI and display dramatically increased

after 3 days and decreased after 7 days (Lin et al., 2021).

Moreover, a previous study focused on the relationship

between the expression of TIMP1 and the incidence of sepsis-

associated acute kidney injury (SAAKI). Tang et al. (2021) found

that the expression of serum TIMP1 was much higher in patients

with SAAKI than in those without SAAKI and in the control

group. An increasing number of studies have been performed on

AKI gene expression profiles. However, most studies have

focused on Cis-AKI and SAAKI, which is why the underlying

mechanisms of AKI in ischemia–reperfusion injury (IRI)-

induced acute kidney injury (IRI-AKI) remain largely unclear.

Another bioinformatics analysis based on the GEO database

identified several key genes associated with AKI, such as

Suchvcr1, Krt20, Sox9, Egr1, and Timp1 (Chen et al., 2020).

However, no more in-depth studies were conducted, i.e., there

are no studies of miRNA associated with differential gene

regulation and small molecules interacting with key genes,

which lacks theoretical support for clinical treatment.

Microarrays and high-throughput sequencing have been

widely used to explore the molecular mechanisms of a series

of AKI (Deng et al., 2021; Tang et al., 2021; Wang et al., 2021).

However, the results of these studies are inconsistent, including

differentially expressed genes (DEGs) and related pathways,

which may be related to the heterogeneity of each experiment.

Thus, single-cohort studies still have limitations that cannot be

ignored. Integrated analysis of data from different gene

expression profiles may be more reliable, and more reliable

and effective diagnostic biomarkers and therapeutic targets

may be identified.

The present study aimed to gain an in-depth understanding

of its mechanism and identify potential molecular markers for

prognosis and early detection, as well as drug targets for the

treatment of AKI. Two datasets [GSE39548 (Correa-Costa et al.,

2012) and GSE131288 (Aufhauser et al., 2021)] were downloaded

and analyzed from the Gene Expression Omnibus (GEO)

database to identify genes that are differentially expressed

(DEGs) in AKI caused by IRI. Functional enrichment analysis

and protein-protein interaction (PPI) network construction were

performed for the targeted genes. Differentially expressed

miRNAs were screened, followed by the predation of targeted

miRNAs and the construction of miRNA–hub gene networks.

Finally, we used the Drug–Gene Interaction Database (GGIdb

database) to predict drug molecules that could interact with hub

genes to identify potential drugs for the treatment of AKI. Our

study provides new insights into the molecular mechanisms

underlying AKI based on its pathophysiology, which could be

further utilized to explore novel diagnostic and therapeutic

strategies.

Materials and methods

Data preprocessing

In order to identify potential molecular markers in IRI-AKI, we

used the keywords “IRI, AKI” to search on the GEO database

(https://www.ncbi.nlm.nih.gov/geo/), and the mRNA expression

profiles of two datasets were selected for the present study. Data

GSE39548 (Correa-Costa et al., 2012) used the GPL7202 platform

(Agilent-014868 Whole Mouse Genome Microarray) which

included four IRI-AKI and four control samples. Data

GSE131288 (Aufhauser et al., 2021) used the GPL16570 platform

(Affymetrix Mouse Gene 2.0 ST Array) which included three IRI-

AKI and three control samples. GEO databases were provided as the

raw data. Subsequently, the gene expression profile data of the two

datasets were obtained using filtered preprocessing, which included

the background correction and quantile normalization.

Identification of differentially expressed
genes

The classical Bayesian algorithm in the “limma” package

(Ritchie et al., 2015) was used to correctly identify differentially

expressed genes (DEGs) in IRI-AKI samples compared with the

non-injured renal samples in two datasets (GSE39548 and

GES131288). Criteria for the statistical significance difference

of DEGs were | log2 fold change (FC) | ≥ 1 in expression and an

adjusted p-value (false discovery rate, FDR) < 0.05. Volcano plots

of the expression of all DEGs were generated using the

ggplot2 package in R, and heatmaps were generated using the

pheatmap package (Khomtchouk et al., 2014). The Venn diagram

was drawn using the ggplot2 package, and the intersection of

DEGs of the two datasets was used to obtain the genes with

common differential expression.

GeneOntology and Kyoto Encyclopedia of
Genes and Genomes pathway enrichment
analyses of differentially expressed genes

Gene Ontology (GO; http://geneontology.org) provides

structured, computable knowledge regarding the functions of
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genes for identifying molecular function (MF), biological

process (BP), and cellular component (CC) attributes for

high-throughput genome or transcriptome data (The Gene

Ontology, 2019). The Kyoto Encyclopedia of Genes and

Genomes (KEGG; https://www.kegg.jp/) is a manually

curated resource that integrates 18 databases categorized

into systems, genomic, chemical, and health information,

for systematic analysis of gene functions and associating

related gene sets with their pathways (Kanehisa et al.,

2021). GO annotation and KEGG pathway enrichment

analyses were conducted for DEGs in R using the

clusterProfiler package (Yu et al., 2012). The adjusted p <
0.05 and count number of enriched genes more than five were

the threshold for screening the main enrichment functions

and pathways of differential genes.

Gene set enrichment analysis (GSEA)

In this study, gene set enrichment analysis (GSEA),

performed using the clusterProfiler (3.14) R package (Wu

et al., 2021), was used to elucidate the significant function and

pathway differences between the IRI-AKI groups and control

groups. The number of gene set permutations was 1,000 times for

each analysis. Pathways enriched for each phenotype were

obtained from the CP gene sets of the C2 subset (c2.

cp.all.v7.0. symbols.gmt) as the preset gene sets for

enrichment analysis and classified by the adjusted p-value

(<0.05), FDR q-value (<0.25), and normalized enrichment

score (|NES| > 1).

Protein–protein interaction network
construction and identification of hub
genes

To further explore the interaction among the common

differentially expressed genes (co-DEGs), a protein–protein

interaction network (PPI) of co-DEGs was identified using the

Search Tool for the Retrieval of Interacting Genes (STRING)

(http://string-db.org/) database (Szklarczyk et al., 2019), which is

an online biological resource database. This database has a

comprehensive score for each PPI relationship pair that is

distributed between 0 and 1; the higher the total score, the

more reliable is the PPI relationship. The commonly used

combined score threshold is 0.4. In this study, an interaction

with a combined score>0.4 was considered statistically

significant. The PPI network was visualized using Cytoscape

software (Kohl et al., 2011), and its plug-in NetworkAnalyzer was

used to analyze the relevant properties of the nodes in the

network. cytoHubba was used to identify the hub genes in the

PPI network of co-DEGs, and the shade of color corresponds to

its criticality.

Transcription factor (TF)–hub gene
network and miRNA–hub gene network
construction

TRRUST (https://www.grnpedia.org/trrust/) is a reliable and

intuitive tool for human and mouse transcriptional regulatory

networks (Han et al., 2018). Containing 8444 TF-target

regulatory relationships of 800 human TFs, the TRRUST

database can provide the key TFs for multiple genes and

information on how these interactions are regulated. We

predicted the TFs capable of regulating hub genes using the

STRUST database. The starBase V2.0 database (http://starbase.

sysu.edu.cn/) contains data from five databases: TargetScan,

PicTar, PITA, miRanda/mirSVR, and RNA22 which

constructed the most comprehensive miRNA–lncRNA,

miRNA–pseudogene, miRNA–circRNA, miRNA–mRNA, and

protein–RNA interaction networks (Li et al., 2014). We used

the starBase database to predict the miRNAs that can target and

bind to the hub genes. The screening standard was that there

were predicted results in at least three databases. Finally, we used

Cytoscape software (Shannon et al., 2003) to map the two

regulatory networks of TF–hub genes and miRNA–hub genes.

Identification of potential drugs

The Drug–Gene Interaction Database (DGIdb, www.dgidb.org)

is a web resource that provides information on drug–gene

interactions and druggable genes from publications, databases,

and other web-based sources and can be used to identify drugs

that interact with these genes (Freshour et al., 2021). We used the

DGIdb to predict the drugs and molecular compounds that can

interact with the hub genes. The drug–hub gene interaction network

was plotted using Cytoscape software (Shannon et al., 2003).

Results

Identification of differentially expressed
genes

A flow chart of the study is shown in Figure 1. Before the next

analysis, we performed quality control for the two datasets

(GSE39548 and GES131288). The boxplot results before and after

normalization are shown in Figure 2. The gene expression in each

sample of the two datasets was uniform after normalization, and the

qualified data were reliable and could be used for further analyses.

Based on the cutoff criteria (adjust p-value < 0.05 and |logFC| >2), a
total of 1,580 DEGs were screened from the GSE39548 dataset, of

which 784 were upregulated and 796 were downregulated in the IRI

group. In the GSE131288 dataset, a total of 992DEGs were screened,

among which 686 were upregulated in the IRI group and 306 were

downregulated in the IRI group. A heatmap was constructed to
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FIGURE 1
Flowchart of this study.
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visually present the expression change of the upregulated and

downregulated DEGs in each dataset and reveal the distribution

of the gene expression data of each subset (Figures 3A,C), which are

marked in different colors in the volcano map (Figures 3B,D). To

further explain our data, the upregulated and downregulated DEGs

ofGSE39548 andGSE131288 expressed in the heatmap are shown in

our Supplementary Tables S1, S2, and the DEGs expressed in the

volcano map are shown in the Supplementary Tables S3, S4, In

addition, after taking the intersection of DEGs of the two datasets,

323 genes with common DEGs (co-DEGs) were obtained, of which

260 were upregulated and 63 downregulated in the IRI group, which

were visualized by the Venn diagram (Figures 3E,F); Venn diagrams

for upregulated and downregulated DEGs are shown in

Supplementary Tables S5–S6.

We performed differential expression analysis through

GSE39548 and GSE131288 datasets to obtain differentially

expressed genes (DEGs) and then performed GO/KEGG/

GSEA enrichment analysis, respectively. We screened hub

genes through PPI interaction network analysis. Then, hub

genes were used to predict transcription factors, miRNA, and

drug small molecules, and the differences in the expression of

Hub genes were verified in the two datasets.

GO and KEGG pathway enrichment
analyses of 323 DEGs

The DAVID database was used to determine the potential

functions of DEGs and identify the overrepresented GO

categories in the biological processes of these 323 DEGs. As

shown in Figures 4A–C and Supplementary Table S1, for

biological process (BP), DEGs were mainly enriched in cell

components such as membrane raft, membrane microdomain,

membrane region, extracellular matrix, and actin cytoskeleton

component (CC), response to ritz, ameboidal-type cell migration,

response to extracellular stimulus, positive regulation of cytokine

production, and muscle tissue development); for molecular function

(MF), DEGsweremainly enriched in cell components such asDNA-

binding transcription activator activity, RNA polymerase II-specific,

protein serine/threonine kinase activity, ubiquitin-like protein ligase

binding, ubiquitin protein ligase binding, and guanyl nucleotide

binding. KEGG pathway analysis was conducted to ascertain which

323 common DEGs participated. A total of 20 significantly enriched

pathways were identified with an adjusted p-value of <0.05, and
20 significantly enriched pathways were obtained. DEGs were

mainly enriched in the mitogen-activated protein kinase (MAPK),

FIGURE 2
Boxplots of GEO dataset samples before and after correction. (A–B) GSE39548 dataset before and after correction; (C–D) GSE131288 dataset
before and after correction.
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phosphatidylinositol 3 kinase/protein kinase B (PI3K-Akt), tumor

necrosis factor (TNF), apoptosis, and Epstein–Barr virus infection

signaling pathways (Figure 4D and Supplementary Table S2).

Gene set enrichment analysis (GSEA)

After GSEA which used the CP gene sets of subsets of C2 as the

predefined gene set, we found that the NOD-like receptor signaling

pathway, Toll-like receptor signaling pathway, MAPK signaling

pathway, TGF-β signaling pathway, JAK-STAT signaling pathway,

apoptosis signaling pathway, T-cell receptor signaling pathway, cell

adhesionmolecules (CAMs), cytokine–cytokine receptor interaction,

and cell cycle were positively correlated with IRI gene expression

patterns (Figure 5 and Supplementary Table S3). In addition, we

plotted four signaling pathways associatedwith ischemia–reperfusion

injury (Figure 6), including theNOD-like receptor signaling pathway,

MAPK signaling pathway, apoptosis signaling pathway, and cell cycle

signaling pathway, using the KEGG-MAP database.

Protein–protein interaction network
construction and identification of hub
genes

In total, 323 common differentially expressed genes (co-DEGs)

obtained from the aforementioned analysis were input into the

STRING database to screen the proteins interacting with them,

and the obtained results were imported into Cytoscape software

to build a PPI network. The NetworkAnalyzer plug-in was used to

FIGURE 3
Differentially expressed genes. (A) Heatmap of the GSE39548 dataset; (B) heatmap of the GSE131288 dataset; (C) volcano map of the
GSE39548 dataset; (D) volcano map of the GSE131288 dataset; (E) Venn diagram of the intersection of upregulated differentially expressed genes in
GSE39548 and GSE131288;(F) intersection of downregulated differentially genes in the two datasets.
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calculate the directionless scores for each node in the PPI network.

The degree value of each node was obtained. The node size and color

represents the degree value, and the edge thickness represents the

edge-combined score value (Figure 7A). In addition, the top 10 genes

were identified as core genes by calculating the tightness of the

connection of the node using the cytoHubba plug-in, namely, Jun,

Stat3, Myc, Cdkn1a, Hif1a, Fos, Atf3, Mdm2, Egr1, and Ddit3

(Figure 7B). There were strong interactions among these hub

genes, which may have an effect on the pathophysiological

process of AKI.

Transcription factor–hub gene network
and miRNA–hub gene network
construction

We aimed to better understand the regulatory roles of hub genes

in the pathogenesis of AKI. We predicted 34 TFs capable of

interacting with 10 hub genes using the STRUST database and

built a TF–hub gene regulatory network (Figure 8A). We also

predicted miRNAs that could interact with 10 hub genes through

the starBase database and constructed an miRNA–hub gene

interaction network (Figure 8B), and 161 miRNA–hub gene

interaction networks were constructed. It can be noted that the

10 hub genes we screened had binding sites for multiple TFs and

miRNAs, which can guide us to further mechanistic research.

Identification of potential drugs that
interact with hub genes

Figure 9 shows that drugs or molecular compounds that may

interact with hub genes were predicted by the DGIdb database, and a

total of 299 drugs ormolecular compounds that may have regulatory

relationships with hub genes were screened, among which the drugs

that interact with HIF1A were the most in number.

FIGURE 4
GO/KEGG enrichment analyses of common differential genes.
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Expression level of core genes in IRI-AKI
disease

We used a boxplot to show the expression levels of the 10 hub

genes in IRI-AKI mouse kidney tissue. In the GSE39548 dataset,

10 hub genes were significantly more expressed in the IRI-AKI

group than in the control group (Figure 10). Similarly, in the

GSE131288 dataset, 10 hub genes were significantly more

expressed in the IRI-AKI group, with statistically significant

differences (Figure 11).

Discussion

AKI is a global public health concern associated with high

morbidity, mortality, and healthcare costs (Ronco et al., 2019),

and early diagnosis, appropriate classification, and timely

treatments in the initial stage of AKI play a crucial role in

reducing mortality. However, its pathogenesis is extremely

complex and not fully understood. Bioinformatics analyses

have enabled us to understand the molecular mechanisms of

AKI occurrence and development and have been used to explore

potential targets for AKI diagnosis and treatment. Previous

microarray studies have often focused on the role of a single

molecule and are largely based on a sepsis-induced AKI model

(Tang et al., 2021; Ji et al., 2022). However, the vast majority of

AKI in clinical work is associated with ischemic–reperfusion

injury, and there have been some studies on the gene expression

of IRI-AKI (Wu et al., 2016; Wu et al., 2019). Regardless, at

present, there is still not enough clarity on its potential

pathogenesis and related targets, and there is a lack of clear

biomarkers to determine its diagnosis, development, and

eventual outcome. To date, there has been no timely and

accurate diagnosis or effective treatment for IRI-AKI.

Hence, we aimed to identify the novel key genes that are

involved in the pathogenesis of IRI-AKI. We performed a

systematic analysis of two expression profiles from the GEO

database using bioinformatics analysis. In total, 323 co-DEGs

were identified in the IRI-AKI group, including 260 upregulated

and 63 downregulated genes. In the GO and KEGG analyses, we

found that the most enriched BP and MF terms were mostly

associated with the response to wounding, and DNA-binding

transcription activator activity, MAPK signaling pathway, and

PI3K-Akt signaling pathway were related to their mechanism of

occurrence. Moreover, GSEA suggested that the MAPK pathway

was the most closely correlated with the gene expression patterns.

Furthermore, 10 hub genes were extracted from the PPI network

of the co-DEGs, and we predicted the TFs, mi-RNAs, and small

molecules of the drug interacting with 10 hub genes. Finally, we

showed through the boxplot view that the expression of ten hub

genes in different groups proved the accuracy of our analysis.

Signal transducer and activator of transcription 3 (STAT3)

belongs to a protein family composed of seven members (STAT

1, 2, 3, 4, 5a, 5b, and 6) (Rah et al., 2022). STAT3 proteins are key

downstream TFs induced by IL-6 cytokines involved in the

pathogenesis of kidney disease (Dube et al., 2017; Zhou et al.,

FIGURE 5
GSEA of common differential genes. (A) Toll-like receptor signaling pathway, (B)MAPK signaling pathway, (C)TGF-β signaling pathway, (D) JAK-
STAT signaling pathway, (E) apoptosis signaling pathway, (F) T-cell receptor signaling pathway, (G) cell adhesion molecules (CAMs) signaling
pathway, (H)cytokine–cytokine receptor interaction signaling pathway, (I) mTOR signaling pathway, and (J) cell cycle signaling pathway. Note: all
these pathways were mainly enriched in AKI caused by ischemia–reperfusion.
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2019) that can be activated by binding to phosphorylated

tyrosine residues on the cytoplasmic tails of activated cytokine

receptors. STAT3 is closely related to the regulation of multiple

biological pathways such as proliferation, survival, angiogenesis,

and apoptosis. Park et al. (2022) found that STAT3 expression in

IRI-AKI murine kidneys was significantly increased compared

with that in the normal group and was closely related to the

degree of kidney injury in mice. It can downregulate

inflammation through the JAK2 pathway to improve renal

tubule injury and inflammatory cell infiltration and reduce

mortality in mice with renal IRI. In a hypoxia-induced human

cell injury model using primary cultured human tubular

epithelial cells (TECs), Stat3 significantly inhibited the

inflammatory response and decreased the expression of P53,

which is a signature protein representing apoptosis. In addition,

the expression of pSTAT3 increases in human renal

tubulointerstitial and glomerular areas, and with the

progression of the disease, the level of pSTAT3 expression

increases accordingly in patients who transitioned from AKI

to chronic kidney disease (CKD). A recent study on COVID-19-

induced AKI pathways may contribute to kidney injury in some

patients with COVID-19 (Salem et al., 2022). The

STAT3 inhibitor Stattic® treatment attenuated IRI-induced

tubular damage and inflammatory cytokine/chemokine

expression while decreasing macrophage infiltration and

fibrosis in mouse unilateral IRI models. Similarly, in vitro

STAT3 inhibition downregulated fibrosis and apoptosis in

human tubular epithelial cells (TECs) exposed to hypoxia for

72 h and reduced the expression of inflammatory cytokines IL-6

and IL-8. STAT3 activation is associated with IRI progression

and may be a significant contributor (Park et al., 2022). Hence,

here, we suggested a novel strategy for AKI management using

STAT3 inhibitors as the inhibition of STAT3 signaling alleviated

the progression of acute kidney injury to chronic kidney disease

FIGURE 6
KEGG pathway enriched by common differential genes. (A) NOD-like receptor signaling pathway, (B) MAPK signaling pathway, (C) apoptosis
signaling pathway, and (D) cell cycle signaling pathway. Note: genes marked in red in signaling pathways are expressed as differentially expressed
genes in this study.
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FIGURE 7
PPI network and core gene screening (A) using the NetworkAnalyzer plug-in to modify the PPI network; the larger the node, the greater the
degree of connectivity (degree), and the thicker the line, the greater the combined_score value; (B) top 10 core gene interaction networks; the darker
the color, the more powerful the critical degree.

FIGURE 8
TF–hub gene interaction network and miRNA–hub gene interaction network. (A) TF–hub gene network; (B) miRNA–hub gene network.
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through anti-apoptosis. In line with previous studies, our study

also revealed that STAT3 is associated with the IRI-AKI

progression and serves as an early diagnostic marker and

therapeutic target of IRI-AKI. In line with previous studies,

our research also revealed that STAT3 is associated with

progression and an early diagnostic marker and therapeutic

target of IRI-AKI.

Myc belongs to the superfamily of basic helix–loop–helix

leucine zipper (bHLHLZ) DNA-binding proteins. It is a major

TF (Beaulieu et al., 2020). Myc is believed to regulate more than

15% of human genes and is sometimes described as a “master

gene regulator.” It is involved in the regulation of several cellular

processes, including cell growth, cell cycle, differentiation,

apoptosis, angiogenesis, DNA repair, and stem cell formation

(Carroll et al., 2018; Beaulieu et al., 2020). The Myc family

comprises three members: C-Myc, L-Myc, and N-Myc.

Overexpression of c-Myc leads to cell proliferation and may

be involved in the regulation of renal tubular cell death in AKI

(Bao et al., 2014). Recent studies have also shown that Myc

activation plays an important role in renal fibrosis and in the

progression of AKI to CKD (Hultström et al., 2018). Myc

expression is positively correlated with collagen I, a major

component of the extracellular matrix, and is a well-

established indicator of fibrogenesis. In the advanced stage of

AKI, Myc is distinctly highly expressed. Oral administration of

an Myc inhibitor can significantly reduce KIM-1 expression,

which is a sensitive indicator of renal tubular injury, the

accumulation of inflammation in mice, and fibrosis, while

ultimately slowing the progression of AKI to CKD (Lemos

et al., 2018). However, in a study by Wang et al. (2021), Myc

FIGURE 9
Construction of the drug–hub gene interaction network.
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was screened as hub genes in AKI damage caused by CIS but not

in I/R injury. This is inconsistent with our conclusions, possibly

due to the different animal models used in different studies and

inconsistent ischemia–reperfusion times. In addition, Liu et al.

(2021) found that Myc promotes MEG3 transcription in HK-2

cells after IRI. Mitophagy was activated and apoptosis was

promoted, aggravating acute kidney injury caused by IRI and

triggering the Wnt/β-catenin pathway by promoting PTKN

overexpression. In our study, Myc was also found to be a hub

gene of IRI-AKI, which is closely related to other co-DEGs, and

may provide a novel theory and target for the treatment of IRI-

AKI in the future.

Fos is a subunit of the activator protein-1 (AP-1) TF. AP-1

consists of various combinations of Fos (c-Fos, FosB, Fra-1, and

Fra-2) and Jun (c-Jun, Jun B, and Jun D) proteins (Rodríguez-

Berdini and Caputto, 2019). They all belong to the basic leucine

FIGURE 10
Expression levels of 10 hub genes in the GSE39548 dataset. Jun(A), Stat3(B),Myc(C), Cdkn1a(D), Hif1a(E), Fos(F), Atf3(G),Mdm2(H), Egr1(I), and
Ddit3(J). Differential expression analysis in the IRI-AKI group vs. control group in the GSE39548 dataset. Note: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

FIGURE 11
Expression levels of 10 hub genes in the GSE131288 dataset. Jun(A), Stat3(B),Myc(C),Cdkn1a(D),Hif1a(E), Fos(F), Atf3(G),Mdm2(H), Egr1(I), and
Ddit3(J). Differential expression analysis in the IRI-AKI group vs. control group in the GSE131288 dataset. Note: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Frontiers in Physiology frontiersin.org13

He et al. 10.3389/fphys.2022.951855

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.951855


zipper TF superfamily and bind the target DNA double-stranded

sites with homodimer or heterodimer (Glover and Harrison,

1995). Fos has been shown to be involved in various cellular

activities, such as proliferation, differentiation, survival,

metabolism, hypoxia, angiogenesis, sterogenesis, and

prostaglandin production (Li et al., 2016; Choi et al., 2021).

Multiple studies have demonstrated that the expression of Fos in

the AKI group is significantly higher than that in the control

group (Zhang et al., 2019; Xu and Xu, 2022). Furthermore, the

PPI network analysis showed that Fos was the hub gene with the

highest degree of tight connection. Fos directly interferes with the

transcription of inflammatory cytokines, such as TNF-α, IL-6,
and IL-1β, and induces their high expression to boost the

occurrence of AKI by binding to promoters of inflammatory

cytokines (Zhang et al., 2019). In addition to its high expression

in animal AKI models, Fos expression has also been

demonstrated to be upregulated in severely damaged human

kidney tissues compared to that in normal kidney tissues. It was

further found that Fos in the IR group was also upregulated in

HK-2 cells in vitro (Ke et al., 2021). The conclusions of these

studies all support our current research that Fos is more likely to

be involved in biological regulation and interconnected with IRI-

AKI and could act as a biomarker, which might be used to assess

the severity of IRI and verify the effectiveness of treatments.

Renal IR is a common cause of AKI due to an imbalance in

tissue oxygen supply and demand, which can lead to the

overproduction of reactive oxygen species and inflammatory

mediators and directly or indirectly activate the apoptotic

pathway (Han and Lee, 2019). Specifically, IR injury leads to

the death of renal tubular epithelial cells and eventually leads to

an irreversible loss of renal function. The mitogen-activated

protein kinase (MAPK) cascade is a key signaling pathway

that regulates a variety of cell biological processes such as

proliferation, differentiation, apoptosis, and stress response

under normal and pathological conditions (Guo et al., 2020).

Sun et al. (2022) found that in mice with acute kidney injury

induced by ischemia–reperfusion, various proinflammatory

cytokines (such as TNF-α and IL-1β) were released in the

kidney tissue, which promoted kidney injury; phosphorylation

of MAPK (P-JNK, P-ERK, and P-p38) was also significantly

increased; and the number of apoptotic cells in renal tubules was

significantly increased. In addition, different studies have shown

that inflammation and the MAPK signaling pathway play key

roles in renal injury induced by ischemia–reperfusion (Su et al.,

2019; Li et al., 2020). These results indicate that the MARK

pathway is one of the key pathways in AKI. The PI3K-Akt

signaling pathway is involved in the regulation of multiple

cellular physiological processes by activating downstream

effector molecules, which play an important role in the cell

cycle, growth, and proliferation (Shi et al., 2019). A previous

study observed that IRI gave rise to phosphorylation of AKT in

WT mice; subsequently, they utilized the inhibitors of AKT

(MK2206) to reconfirm the signaling pathways involved in

apoptosis regulation in hypoxia-reoxygenated human TECs. In

agreement with IRI, it was observed that the phosphorylation of

AKT was dramatically reduced (Hou et al., 2021). These results

are consistent with our research results, indicating that the TNF,

PI3K-Akt, and MAPK signaling pathways are critical in the

mechanism of AKI induced by ischemia–reperfusion.

Many genes undergo robust changes in the early stages of

disease occurrence, including many TFs. TFs are the main

regulatory factors in basic biological processes that can

regulate the expression of multiple gene targets and form

feedback loops. Transcription and post-translational

mechanisms interact with their expression and function. It is

well known that many TFs are strongly upregulated during the

pathogenesis of AKI with variable timing, duration, and

magnitude. Some of these include Fos, Stat3 (Bienaimé et al.,

2016), Nfkb2 (Sanz et al., 2010), JUN, and P53 (Cippà et al.,

2018). In a recent study, Piret and Mallipattu, (2020) found that

in mice with unilateral ischemia–reperfusion kidney injury,

Foxm1 was vigorously upregulated after 2 days and returned

to baseline levels after 14 days. This is consistent with the trend

observed in human AKI samples, which is consistent with the

findings of our study. In mouse kidneys with fibrosis and

inflammatory infiltration, sample sequencing to a depth of

30 million reads and network analysis showed that the top

TFs, such as Irf1, Nfkb1, and Stat3, are important drivers of

renal fibrosis progression (Wu et al., 2020). These TFs were also

found to be important in IRI-AKI in our study. In addition, we

also examined previously unrecognized TFs, such as Smad4,

E2f1, Foxo1, Nfe2l2, and Ets1. These may be new candidate

genes for future research on the regulation of the physiological

and pathological processes in IRI-AKI. Furthermore, an

miRNA–hub gene network was constructed in a recent study,

which consisted of 287 mi-RNAs that might interact with hub

genes, for example, miR-15a-5p, miR-15b-5p, miR-29b-3p, mir-

144–3p, and miR-16–5p. A study of sepsis-induced AKI

mechanism showed that miR-15a-5p, miR-15b-5p, and miR-

16-5p were involved in the mTOR signaling pathway, and miR-

16-5p and miR-29b-3p are involved in the PI3K-Akt signaling

pathway (Xu et al., 2019).

Finally, we predicted that 318 drugs or molecular

compounds might be involved in the regulation of hub

genes which may be a potential drug to protect against

IRI-AKI. Many studies have confirmed the effects of drugs

and molecular compounds on AKI. For example,

intravenously glutamine administration alleviates

inflammation in obese mice with sepsis, thereby improving

AKI, and this regimen is recommended for abdominal surgery

in obese patients to reduce the risk of infection (Su et al.,

2021). In coronary artery bypass surgery, taking aspirin

within 24 h before surgery reduced the incidence of AKI

after surgery by 36% and was independently associated

(Aboul-Hassan et al., 2020). In contrast, ibuprofen,

celecoxib, indomethacin, insulin, cefotaxin, and alogliptin
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were primarily associated with an increased incidence of AKI

(Shen et al., 2021). These drugs or molecular compounds were

mentioned in our study and could be potential drugs for the

treatment of IRI-AKI in the future.

A number of measures were taken, such as all datasets from

the same species, the same interventions, and normalization of

the data before further analysis, to ensure the reliability of the

study. However, this study had some limitations. First, the

number of samples used for bioinformatics analysis was small,

which may have reduced the accuracy of the result; therefore,

large sample size experiments need to be considered in the future

to confirm these findings. Second, our study was only used for

bioinformatics analysis and lacked in vitro and in vivo

experiments for verification. Next, we will carry out relevant

animal and cell experiments and use experimental methods such

as qPCR, Western blotting, and immunohistochemistry to study

the functional mechanism in detail. Third, hub genes were

identified in AKI mouse models instead of human specimens,

which might restrict the clinical application of hub genes. Some

clinical specimens should be collected to validate our conclusion,

and further studies may better elucidate their clinical

biological role.

Conclusion

In summary, a comprehensive bioinformatics analysis of

two IRI-AKI models was conducted, and it was found that

several hub genes, such as Jun, Stat3,Myc, Cdkn1a, Hif1a, Fos,

Atf3,Mdm2, Egr1, and Ddit3, as well as the MAPK, PI3K-Akt,

and TNF signaling pathways, may play a pivotal role in the

physiological and pathological processes of IRI-AKI. The

analysis also revealed some TFs, mi-RNAs, and some drugs

that may regulate hub genes. The findings of this study may

provide potential therapeutic targets and a deeper

understanding of the genetic mechanisms underlying

IRI-AKI.
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