
RESEARCH ARTICLE

Applications of machine learning in behavioral

ecology: Quantifying avian incubation

behavior and nest conditions in relation to

environmental temperature

Wayne D. HawkinsID
1,2,3, Sarah E. DuRant3*

1 Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America, 2 Department of

Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of

America, 3 Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States

of America

* sedurant@uark.edu

Abstract

In the age of machine learning, building programs that take advantage of the speed and

specificity of algorithm development can greatly aid efforts to quantify and interpret changes

in animal behavior in response to abiotic environmental factors, like temperature. For both

endotherms and ectotherms, temperature can affect everything from daily energy budgets

to nesting behaviors. For instance, in birds environmental temperature plays a key role in

shaping parental incubation behavior and temperatures experienced by embryos. Recent

research indicates that temperatures experienced by embryos affect viability and are impor-

tant in shaping fitness-related traits in young birds, sparking renewed interest in relation-

ships among environmental factors, parental incubation behavior, and incubation

temperature. Incubation behavior of birds can be monitored non-invasively by placing ther-

mal probes into the nest and analyzing temperature fluctuations that occur as parents attend

and leave the nest (on- and off-bouts, respectively). When other measures of temperature

(e.g., ambient air or operative temperature) are collected simultaneously with incubation

temperature it is possible to compare shifts in behavior with environmental changes. To

improve analysis of incubation behavior using these large thermal data sets we developed a

program, NestIQ, that uses machine learning to guide parameter optimization allowing it to

track the behavior of diverse species. NestIQ’s algorithm was tested using six species incu-

bating in lab or field scenarios, that exhibit unique incubation patterns. This stand-alone and

open source software is operated through a graphical user interface (i.e., no user program-

ming is required) that provides important behavioral and thermal output statistics. Further,

measures of environmental temperature can be imported alongside nest temperature into

the program, which then reports various attributes of environmental temperature during

shifts in parental behavior. This program will improve the ability of avian ecologists to inter-

pret a critical parental care behavior that can be used across diverse incubation scenarios

and species. Although specifically designed for quantifying avian incubation, NestIQ has the
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potential for broader applications, including basking and nesting behaviors of non-avian rep-

tiles in relation to ambient temperature.

Introduction

Animals continually make fine-tuned changes to their behavior based on environmental con-

ditions. Understanding how these decisions affect their survival, reproductive success, and

subsequent interactions with their environment are essential for aiding conservation efforts in

today’s rapidly changing environment and for appreciating the plasticity of and constraints

acting on animal behaviors. Among these rapid environmental changes include increases in

average and extreme temperatures across the globe [1], which will have a tremendous affect on

how animals interact with their environment [2–4]. Drastic changes in temperature averages

and extremes will affect most aspects of an animal’s biology, such as body temperature and

thermoregulatory behaviors of ectotherms [5–7], temperatures experienced by embryos of

egg-laying species [8–10], as well as behaviors in endotherms that are driven by environmental

temperature, like avian incubation behavior (e.g., [11,12]).

Egg incubation in birds is both critical for proper development of embryos and taxing for

the parents, necessitating a delicate balance of resource allocation to self-maintenance and off-

spring care. Incubation increases metabolic rates of parents while also reducing the time they

can allocate to acquiring food, reducing the overall condition of these birds [13,14]. However,

incubation is necessary for embryonic development and hatching success, since exposure to

high or low temperatures can result in embryonic mortality [8,15]. Additionally, it is increas-

ingly apparent that the effects of incubation temperature do not end upon hatching. In both

precocial and altricial species, incubation temperature affects a suite of post-hatching traits

critical to fitness of young birds (e.g., [16–21]), as well as secondary sex ratios [22,23]. These

findings suggest that incubation temperature plays an important role in ecological and evolu-

tionary processes in birds and should be an important factor considered in avian conservation

efforts [10,15,17,24]. Therefore, the ability to compare incubation behavior of parents under

various scenarios in relation to temperatures experienced by eggs can yield important insights

into factors shaping avian reproduction.

Analyzing temperature fluctuations that eggs experience has become a standard method of

quantifying avian incubation behavior, as well as thermal conditions experienced by embryos

[11,16,25–27]. Using thermal data to assess parental incubation behavior provides valuable

insight into the factors shaping embryonic outcomes and parental care decisions, because it

provides details about the implications of an on- or off-bout, like cooling rate, relative to

numerous biotic and abiotic conditions, such as ambient temperature clutch size, nest loca-

tion, etc. These thermal data are relatively easy to collect; however, analyzing these data and

comparing incubation decisions with ambient environmental conditions and their combined

effects on nest thermal dynamics can be difficult and time-consuming. With this in mind we

developed NestIQ, a stand-alone and open-source program designed specifically to detect

incubation patterns while simultaneously relating these to measures of environmental temper-

ature. Specifically, NestIQ identifies and analyzes upward and downward trends in datasets

comprised of regularly interspaced values, such as thermal data collected at regular intervals.

Nesting conditions and behaviors vary across species, populations, years, clutches, and treat-

ments [9], necessitating unique algorithm settings for optimal on- and off-bout detection accu-

racy. NestIQ uses machine learning, a branch of artificial intelligence, to make parameter
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optimization of the algorithm easier and more flexible without the need for sustained user

instruction. NestIQ quickly yields a specialized algorithm tailored to the input data provided

from a particular species or incubation scenario. Importantly, because the software is operated

exclusively from a graphical user interface, its operation does not require scripting, or even

command line familiarity. The graphical interface also allows users to quickly identify missed

off-bouts to assess and refine the algorithm.

The program will also help yield insight into the connection between envirionmental condi-

tions and avian incubation behavior, because when two variables are collected at identical time

intervals, both of these variables can be analyzed by the program to provide various informa-

tion relating one variable to the other. For instance, if air and egg temperature data are col-

lected simultaneously, the program will provide information on ambient temperature at the

time a bird leaves the nest. This ability of the program greatly enhances a biologist’s ability to

relate changes in adult incubation behavior as it relates to ambient temperature and other fea-

tures of the clutch, nest, and parental condition. For instance, whether parental incubation

decisions relative to ambient temperature shift with clutch size to effect thermal properties of

the nest. To assess NestIQ’s accuracy for a given system, avian biologists should validate a sub-

set of software predictions with a more direct observation such as video recordings of incubat-

ing parents (e.g., [28]). New programs are now available that automate video analysis of

nesting behavior [29,30], and could easily be partnered with analyses of thermal characterisitcs

of the nest using NestIQ. Although NestIQ was designed specifically with the intent of quanti-

fying avian incubation behavior in relation to air temperature, the program has broad applica-

bility for other scenarios, including analyzing basking behavior in ectotherms, and assessing

relationships between air and egg temperature in the nests of non-avian reptiles.

Software/Algorithm structure

NestIQ was written in Python 3 [31] and uses a first-order hidden Markov model (HMM) to

derive incubation states. HMMs assume you have a sequence of observations (also known as

emissions) and that these observations are dependent on the status of an unobserved state. In

the case of NestIQ, temperature change from the previous measurement is the observation and

the two unobserved states are incubating and not incubating (on- and off-bout, respectively).

HMMs consist of a collection of probabilities. The initial probabilities describe the likelihood

of beginning in a given state. The transition probabilities define the likelihood of going from

one state to another e.g. going from on-bout status at data point i to off-bout status at data

point i+1 (Fig 1). Lastly, the observation probabilities of NestIQ’s model reflect the likelihood

of observing a given temperature change in a given state; in general, the more negative the

temperature change from previous, the more likely that point is to be classified as an off-bout.

Because temperature change values are continuous rather than discrete, two cumulative distri-

bution functions (one for each state) are used to calculate this probability (Fig 1). Mean and

standard deviation of temperature change define the shape of these functions. In total, there

are ten non-intuitive yet critical values that must be provided to the model for it to accurately

assign states to the input data: two initial probabilities, four transition probabilities, two obser-

vation means and two observation standard deviations. However, users are not required to

manually set any of these ten model parameters despite NestIQ giving them the ability to do so

on the “Advanced” tab.

Both unsupervised and supervised approaches can be taken to automatically set NestIQ’s

model parameters with both having advantages in certain situations. Unsupervised learning is

accomplished through the Baum-Welch algorithm. This algorithm predicts the hidden states

for each data point provided, assigns a probability or score to this prediction, adjust the model
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Fig 1. Diagram of NestIQ’s hidden Markov model. A. There are two hidden states (on- and off-bout) resulting in four possible state transitions,

counting transitions to the same state. Each of these is assigned a probability. B. The values set for the mean and standard deviation of
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parameters and repeats this process until the score no longer improves to a significant degree

(convergence is reached). To use unsupervised learning, the user simply uploads their data

and clicks the “Unsupervised Leaning” button on the “Advanced” tab. Because this approach

is unsupervised, no guidance or description of the states whatsoever must be provided, only an

input file containing temperature readings. When using unsupervised learning the user can set

a critical threshold change in temperature and duration of change in temperature to define

what constitutes an off-bout, which is input on the “Main” tab. This feature of the program is

similar to programs like Rhythm [32]. This workflow is convenient but may not be as accurate

as the supervised workflow and may be appropriate in special circumstances, for instance,

when off-bouts are fairly similar throughout incubation.

In many cases, a supervised approach to parameter optimization is more appropriate. The

supervised approach can be accessed through the “Advanced” tab. The “Select vertices” button

generates a plot of the provided input data. From here the user (for a small subset of the input

data) manually selects where it appears a bird is leaving or returning to the nest based on

changes in nest temperature relative to ambient temperature and feeds this HTML plot file

back to the software so that it may derive model parameters from the selections made. The

user easily can view how well the algorithm predicted on- and off-bouts using the graphical

interface where thermal data is overlaid with the algorithms defined incubation patterns. If the

algorithm has underperformed it can easily be retrained. Once the algorithm meets the users

standards, its parameters can then be used to analyze the rest of the provided input file as well

as any other input files displaying similar incubation behavior. This approach gives the user

much more control over the algorithm’s behavior in assigning states. The full contents of the

“Advanced” tab can be seen in Fig 2.

Optionally, the “Main” tab allows the user to “smooth” their input data. This causes NestIQ

to use a rolling mean of the input data for all operations thus reducing the effect of minor fluc-

tuation in temperature due to instrument inaccuracy or minor shifts in animal position. Lastly,

NestIQ has the capability of using either raw egg temperature or the difference between egg

and air temperature (adjusted egg temperature) for parameter optimization and incubation

state assignment. Adjusted egg temperatures can also be plotted in place or along-side raw egg

and air temperatures, offering a unique view of incubation behavior that will be useful in visu-

alizing how egg temperature and incubation decisions relate to environmental temperature

(Fig 3B).

Input and output

A simple graphical user interface (Fig 2) was developed for NestIQ. The program takes as

input one or more comma separated value (CSV) files containing columns corresponding to a

data point number (e.g., 1st, 2nd, 3rd data point), date/time, egg temperature, and optionally,

environmental temperature (e.g., ambient air temperature; Fig 4). NestIQ supports the selec-

tion of multiple input files, in other words, the program can analyze thermal data acquired

from multiple nests simultaneously. This ability allows the user to generate individual plots

and statistics summaries for each nest and, importantly, enables the automatic calculation of

numerous compiled statistics to aid the identification of incubation patterns across all nests

(discussed in detail below).

temperature changes in each state dictate the nature of the cumulative distribution functions. Generally, the more positive the temperature

change, the higher the on-bout probability and the lower the off-bout probability. C. These functions are applied to a given temperature changes

to yield observation probabilities that will factor into the final state assignment. Exaggerated values are used here for demonstration purposes.

https://doi.org/10.1371/journal.pone.0236925.g001
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NestIQ offers multiple output options for visualizing the algorithm-generated on- and off-

bout predictions and creating files that report relevant statistics. For each thermal profile pro-

vided, the “Generate plot” option creates an interactive plot (Figs 3 and 5) through the Python

module, Bokeh [33]. The “Plot Options” tab was implemented to allow for configurability in

the plot’s appearance. NestIQ-generated plots also have several functions that allow for easy

maneuverability of large thermal datasets from single nests, including panning via dragging

with the mouse, box zoom, and hover info (Fig 5). The “Output statistics” option provides

Fig 2. NestIQ’s graphical user interface. A. The Main tab allows for changing input/output settings and file names as well as a few important program parameters. B.

The Advanced tab is where machine learning functionalities and core model parameters are housed.

https://doi.org/10.1371/journal.pone.0236925.g002

PLOS ONE Using machine learning to quantify avian incubation behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0236925 August 28, 2020 6 / 13

https://doi.org/10.1371/journal.pone.0236925.g002
https://doi.org/10.1371/journal.pone.0236925


PLOS ONE Using machine learning to quantify avian incubation behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0236925 August 28, 2020 7 / 13

https://doi.org/10.1371/journal.pone.0236925


information about each individual bout such as duration, mean egg temperature, mean air

temperature, and egg temperature change during on- and off-bouts. Additionally, at the top of

this file is a summary providing an array of information and statistics for individual days of

incubation as well as the entire period of incubation (i.e., the entire input file). These summary

statistics allow the user to assess temporal patterns in incubation behaviors (e.g. do off-bouts

increase in duration as incubation progresses?) and characteristics of a nesting attempt as a

whole. These characteristics can then be compared against incubation patterns of other birds.

Lastly, the “Compile statistics” option outputs the same summary described above; however, if

multiple input files are uploaded, statistical summaries are provided for each input file and all

input files compiled. This allows for the identification of broader incubation patterns across

populations or treatments. For instance, the incubation statistics for a multi-nest treatment

group can be easily compiled and compared to the nesting pattern of a different treatment

group (e.g., average off-bout duration of parents in disturbed vs. undisturbed habitat). This

feature would also be useful for generating incubation statistics for a single female over several

nesting attempts. A full list of the statistics/information reported by NestIQ can be seen in

Table 1.

Materials and methods

This software was developed to quantify avian incubation behavior, and thus was tested with

and designed around datasets acquired from placing egg-resembling temperature probes in

the nests of actively incubating birds following the methods of Coe et al. [12]. Initial thermal

data used for testing were collected from canary nests using a modified HOBO Pro v2 2x

External Temperature Data Logger (Part # U23-003). The thermal probe was modified with a

Fig 3. Bout prediction results for incubation data from three species. NestIQ was used to analyze and plot data from Tree Swallow

(Tachycineta bicolor), Great Tit (Parus major), and Bobwhite Quail (Colinus virginianus). Vertical lines in each plot mark 7:00 AM.

Temperature measurements were collected every 30 seconds for great tits and tree swallows and every two minutes for bobwhite quail. For each

plot, a rolling mean was used to smooth the data. A. Raw egg and air temperatures are plotted with predicted on-bouts shown in red and off-

bouts in gray. The light gray line shows air temperature. Note, air temperature cannot be seen in the tree swallow and great tit plots because it

was much lower than nest temperature. Zooming out would have obscured minor fluctuations in incubation patterns. The input files and

corresponding configuration files are included with NestIQ distributions as examples. B. Adjusted egg temperatures (egg temperature minus

air temperature) are plotted for the same bobwhite quail data shown in Fig 3A. Bout predictions were also unchanged between these two plots.

https://doi.org/10.1371/journal.pone.0236925.g003

Fig 4. Example input file.

https://doi.org/10.1371/journal.pone.0236925.g004
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thermal sensor that slips inside a clay-molded egg of canary dimensions (see [12]) and was

inserted up into the nest cup by feeding it through the bottom of the nest. This allows wires to

run underneath the nest and outside of the cage and keeps them out of the way of incubating

parents. Installment of the probes was performed on the day the first egg was laid. Loggers

Fig 5. Interactive plot produced from the “Generate plot” option. A. Plot of Great Tit nest temperature fluctuation over roughly ten days

with predicted on- and off-bouts. B. Result of zoom selection box shown in 4A.

https://doi.org/10.1371/journal.pone.0236925.g005
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were programmed to record every 30 seconds, necessitating data collection once a week,

which was done wirelessly via a HOBO waterproof shuttle. The 20 canary thermal profiles

used for initial alpha-testing were yielded from probes installed in one or more nesting

attempts of ten females. Once the major components of the software were developed, we fine-

tuned the program to ensure its effectiveness across diverse species, both altricial and preco-

cial, using thermal profiles collected as described above for Great Tits (Parus major), Scaled

Quail (Callipepla squamata), Bobwhite Quail (Colinus virginianus), Wood Ducks (Aix sponsa),

and Tree Swallows (Tachycineta bicolor) nesting in natural settings. Thermal loggers were pro-

grammed to log data every 2 minutes in Wood Ducks and the two quail species. Thermal pro-

files from the five species were tested extensively and drove several subtle changes in the bout

detection algorithm to make the program relevant for a wide range of species and incubation

scenarios (Fig 3). Data used in making this program were from research approved by the

IACUC committees of Virginia Tech, Oklahoma State University, and University of Arkansas.

Limitations

Like most biological behaviors, incubation can be highly variable. Consequently, NestIQ will

not always perfectly predict animal behavior. It would be ideal for users of NestIQ to validate

prediction accuracy by comparing a subset of software predictions with a more direct observa-

tion such as video recordings of incubating parents (e.g., [28]). In fact, NestIQ’s usefulness

may be greatest when used in conjunction with other programs designed to understand incu-

bation in birds. For instance, BirdBox and a deep learning program can be used to analyze

video observations of incubation patterns [29,30]. Like NestIQ, these programs make it possi-

ble to easily interpret large datasets of incubation behavior and could be used to verify timing

and duration of on- and off-bouts, while Nest IQ provides a comprehensive view of the ther-

mal implications of parental decisions for developing embryos and the plasticity of parental

behavior to ambient air temperatures.

Table 1. Statistics and other information reported by NestIQ.

Individual Bout Individual Day/File Multiple files

Date Bout number (on/off) Bout number (on/off)

Bout type Mean bout duration (on/off, stdev) Mean bout duration (on/off, stdev)

Start time Mean egg temperature change (on/off,

stdev)

Mean egg temperature change (on/off,

stdev)

End time Sum of bout type time (on/off) Number of full days

Start data point Time above critical egg temperature Mean egg temperature (stdev, day/night)

End data point Time below critical egg temperature Minimum egg temperature

Duration Bouts discarded Maximum egg temperature

Egg temperature change Mean egg temperature (stdev, day/night) Mean air temperature

Starting egg

temperature

Median egg temperature (day/night) Minimum air temperature

Ending egg temperature Minimum egg temperature (day/night) Maximum air temperature

Mean egg temperature Maximum egg temperature (day/night)

Starting air

temperature

Mean air temperature (day/night)

Ending air temperature Minimum air temperature

Mean air temperature Maximum air temperature

On/off: this information is reported individually for both on- and off-bouts, stdev: the standard deviation of this

value is also reported, day/night: this information is reported individually for daytime, nighttime, and combined.

https://doi.org/10.1371/journal.pone.0236925.t001
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We had visual observations from 3 bobwhite or scaled quail nests (observations made every

thirty minutes) and our program accurately detected all of the off-bouts at these nests (n = 5

off-bouts; Carroll unpub data) and the duration of the off-bouts fit within the crude bout-

lengths identified by nest observations. We did not have video or observer recorded off-bouts

for any of the other species.

Conclusions

NestIQ offers numerous features that will improve our ability to relate changes in incubation

behavior with its effects on nest thermal dynamics and offspring outcomes. The program will

also help researchers predict behavioral changes in animals that will occur as a result of chang-

ing environmental conditions. Useful features include output statistics on characteristics of

individual bouts, like the air temperature at which birds leave and return to the nest, as well as

a summary of the total time eggs were above or below a given temperature. The program also

reports statistics within a user-defined time range to compare, for instance, overnight versus

daytime characteristics of nests, and can process multiple input files simultaneously to calcu-

late cumulative statistics about groups of incubating birds. Finally, the maneuverable interac-

tive plot makes it easy to visualize and refine how well the algorithm fits an incubation profile.

Although, this software was developed around avian incubation data, the use of NestIQ likely

extends to many other scenarios where animal behavior and physiology are responding to

environmental cues, such as analyzing fluctuations in body temperature of ectotherms.

The importance of incubation behavior and temperature to the phenotype of young birds

continues to yield exciting new research avenues. Research in this area indicates that slight

changes in incubation patterns could have consequences for avian reproductive success that

manifest at post-hatch life stages [10,17]. Therefore, better understanding the factors that

shape and disrupt normal incubation patterns will contribute to avian conservation efforts. It

is critical that the tools ecologist use to assess animal behavior are continually updated to

include the latest advancements in technology to better meet the evolving needs of researchers.

Nest IQ hopes to meet some of these needs by improving techniques to explore the relation-

ships between ambient temperature, parental behavior, clutch and nest attributes, and thermal

dynamics of the nest.
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