
Complete Genome Sequence of Spiroplasma phoeniceum
Strain P40T, a Plant Pathogen Isolated from Diseased Plants of
Madagascar Periwinkle [Catharanthus roseus (L.) G. Don]

Robert E. Davis,a Jonathan Shao,a Yan Zhao,a Wei Wei,a Kristi Bottner-Parker,a Aliyah Silver,a Zoey Stump,a Gail E. Gasparich,b

Nicole Donofrioc

aMolecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland, USA
bBiology Department, Salem State University, Salem, Massachusetts, USA
cDepartment of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA

ABSTRACT The phytopathogen Spiroplasma phoeniceum was isolated from diseased
plants of Madagascar periwinkle [Catharanthus roseus (L.) G. Don]. Here, we report
the nucleotide sequence of the 1,791,576-bp circular chromosome and three plas-
mids of strain P40T. This information serves as a resource for comparative analyses
of spiroplasmal adaptations to diverse ecological niches.

Spiroplasmas are helical and motile members of the class Mollicutes (1). Following
discovery of spiroplasma in diseased plants (2–6) and subsequent erection of the

genus Spiroplasma (7), nearly 40 Spiroplasma spp. have been described. Three phyto-
pathogenic Spiroplasma spp. are known, S. citri, S. kunkelii, and S. phoeniceum (7–9).
Complete genome sequences have been reported for S. kunkelii CR2-3X (10) and S. citri
R8-A2T (11).

Here, we report the complete genome sequence of S. phoeniceum strain P40T (ATCC
43115T). Strain P40T was isolated in culture from plants of Madagascar periwinkle
[Catharanthus roseus (L.) G. Don] in Syria (8). Genomic DNA was extracted from S.
phoeniceum P40T, grown as previously described at 30°C in M1D broth (1), using a
PowerMicrobial Maxi DNA isolation kit (Mo Bio Laboratories, Inc., Carlsbad, CA). A
primer-annealed 20-kb SMRTbell library was prepared, and nucleotide sequencing was
carried out using a Pacific Biosciences (PacBio) single-molecule real-time (SMRT) se-
quencing system, in which 14,859 reads were obtained, totaling 210,862,768 nucleo-
tides (nt). The N50 read length was 21,682 nt, the mean read length was 14,190 nt, and
the average reference consensus concordance was 99.99%. Using R_HGAP_Assembly.3
with preassembler filter parameters, the minimum subread length was 500 nt, the
minimum polymerase read quality was 0.80, and the minimum polymerase read length
was 100 nt. The genome was assembled using SMRT Portal 2.3.0.140893. Within SMRT
Portal, de novo assembly was performed with the R_HGAP_Assembly.3 pipeline (default
parameters). The overlap was removed and the reads were remapped to the consensus
using the RS_Resequencing.1 pipeline, also contained within the SMRT portal, to join
the 5= and 3= ends of the nascent assembly of the chromosome.

The assembled 1,791,576-bp circular chromosome has an overall base composition
of 25.25 mol% G�C; average coverage per base position was 110.5�. The plasmids
were 24,478, 38,732, and 53,490 bp in size and had base compositions of 28.40, 28.77,
and 26.74 mol% G�C, respectively. The chromosome and plasmids were put through
GeneMark.hmm (12) annotation. The programs tRNAscan-SE 1.21 and RNAmmer (13)
predicted 43 tRNA genes and 1 set of rRNA genes. The chromosome has 1,573
protein-coding regions; BLASTN searches against a library of plectroviruses down-
loaded from the NCBI database and BLASTP searches against the NCBI protein database

Citation Davis RE, Shao J, Zhao Y, Wei W,
Bottner-Parker K, Silver A, Stump Z, Gasparich
GE, Donofrio N. 2019. Complete genome
sequence of Spiroplasma phoeniceum strain
P40T, a plant pathogen isolated from diseased
plants of Madagascar periwinkle [Catharanthus
roseus (L.) G. Don]. Microbiol Resour Announc
8:e01612-18. https://doi.org/10.1128/MRA
.01612-18.

Editor John J. Dennehy, Queens College

This is a work of the U.S. Government and is
not subject to copyright protection in the
United States. Foreign copyrights may apply.

Address correspondence to Robert E. Davis,
robert.davis@ars.usda.gov.

Received 27 November 2018
Accepted 19 February 2019
Published 21 March 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 12 e01612-18 mra.asm.org 1

https://doi.org/10.1128/MRA.01612-18
https://doi.org/10.1128/MRA.01612-18
mailto:robert.davis@ars.usda.gov
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.01612-18&domain=pdf&date_stamp=2019-3-21
https://mra.asm.org


revealed chromosomal insertions of plectrovirus sequences and a tailed prophage,
respectively.

Spiroplasmas are now known as part of the internal and external microbiomes of
plants, and as symbionts of insects, ticks, and crustaceans (14–18). Suspected spiro-
plasmas have been reported in jellyfish, a deep-sea chiton, and a hadopelagic zone sea
cucumber (19–22). Certain spiroplasmas can present a risk of human infection (23–25).
Together with the complete genome sequences of related S. kunkelii and S. citri strains
(26, 27), the complete genome sequence of S. phoeniceum P40T presents a valuable
resource for elucidating the evolutionary biology of plant-infecting spiroplasmas.

Data availability. This complete genome project has been deposited in GenBank
under BioProject accession number PRJNA435429, SRA accession number SRX5075236,
and BioSample accession number SAMN08579949 for Spiroplasma phoeniceum P40T

(taxonomy ID 1276259), and accession numbers CP031088 (chromosome), CP031089
(plasmid pSPh535), CP031090 (plasmid pSPh387), and CP031091 (plasmid pSPh245).
The sequence versions described in this paper are CP031088.1, CP031089.1,
CP031090.1, and CP031091.1.
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