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Growing evidence suggests a wide spectrum of potential cardiovascular

complications following cancer therapies, leading to an urgent need for

better risk-stratifying and disease screening in patients undergoing oncological

treatment. As many cancer patients undergo frequent surveillance through

imaging as well as other diagnostic testing, there is a wealth of information

that can be utilized to assess one’s risk for cardiovascular complications

of cancer therapies. Over the past decade, there have been remarkable

advances in applying artificial intelligence (AI) to analyze cardiovascular data

obtained from electrocardiograms, echocardiograms, computed tomography,

and cardiac magnetic resonance imaging to detect early signs or future

risk of cardiovascular diseases. Studies have shown AI-guided cardiovascular

image analysis can accurately, reliably and inexpensively identify and quantify

cardiovascular risk, leading to better detection of at-risk or disease features,

which may open preventive and therapeutic opportunities in cardio-oncology.

In this perspective, we discuss the potential for the use of AI in analyzing

cardiovascular data to identify cancer patients at risk for cardiovascular

complications early in treatment which would allow for rapid intervention to

prevent adverse cardiovascular outcomes.

KEYWORDS
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Introduction

Cardio-oncology is a new frontier in cardiology that aims to improve the prevention,

detection, and management of cardiovascular complications caused by cancer therapies

of various mechanisms (1). As complications of cancer therapies can both compromise

oncologic and cardiovascular outcomes, it is imperative to identify cohorts susceptible

to developing cardiotoxicity to oncologic treatments and detect cardiotoxicity at the

earliest possible time point to allow for alteration of treatments or implementation of

cardioprotective strategies (2).
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Recent advances in applying artificial intelligence (AI)

to routinely obtained cardiovascular data have demonstrated

the ability of these sophisticated algorithms to both risk-

stratify patients from simple sets of data as well as drastically

improve the detection for a variety of different conditions

(3). These promising studies raise the tantalizing potential

of AI to revolutionize the field of cardio-oncology and

facilitate the identification of and protection against unwanted

cancer therapy-associated cardiotoxicity. In this perspective, we

review currently available recent breakthroughs in using AI

in cardiovascular imaging and how this may be applied in

our cardio-oncology population to better monitor, assess, and

diagnose their underlying cardiovascular conditions, thereby

minimizing cardiovascular toxicity while maximizing cancer

therapeutic efficacy (Figure 1).

AI application in early detection of
myocardial toxicity

Cardiac dysfunction has been associated with a wide

spectrum of cancer therapies including but not limited to

anthracyclines, HER2 targeted therapies, select tyrosine

kinase inhibitors (TKIs), radiation therapy, and more

recently immunotherapies especially in association with

myocarditis (2). Clinical manifestations of cancer therapy-

related cardiac dysfunction can vary significantly ranging

from asymptomatic left ventricular (LV) dysfunction to heart

failure, and potentially fatal cardiogenic shock. Albeit with

conflicting data, numerous studies have suggested benefits

of early initiation of neurohormonal blockade to prevent LV

function deterioration (4). However, the implementation of

such strategies has been limited in part by rather modest

beneficiary effects seen in the studies. Early detection of

cardiac dysfunction may provide an opportunity to initiate

cardioprotective intervention in a timely manner to derive

a maximal benefit and optimize cardiovascular health and

screening strategy to minimize subsequent toxicity. AI-guided

analysis of routinely collected cardiovascular images may help

identify patients with early cardiotoxicity.

Early detection of cardiac dysfunction

Left ventricular ejection fraction (LVEF) changes have

been primarily used to diagnose cardiotoxicity of cancer

therapies. The American Society of Echocardiography and the

European Association of Cardiovascular Imaging guidelines

recommend averaging five consecutive beats to calculate LVEF

(5, 6). However in practice, as the measurement and calculation

can be time consuming, generally one representative beat

is used to estimate LVEF. This can lead to inaccuracies

and variation in quantifying LVEF as it can have significant

variability from beat to beat. Additionally, small changes in a

variety of technical factors frequently cause large changes in

the measurement of LVEF (7). Technical differences in image

acquisition, variability between operators performing cardiac

ultrasound, and subjective differences in appreciation of the

blood-tissue interface between readers collectively contribute

to variability in measurements of LVEF (8). Inter-reader

variability in reporting of LVEF has been reported as high as

10% (9). Incidentally, a reduction of 10% in ejection fraction

is the same magnitude of change that is used to define

significant cardiotoxicity, resulting in potential need to interrupt

chemotherapy. This level of inter-reader variability presents a

significant challenge in cardio-oncology. Furthermore, small

drops in LVEF are often attributed to measurement noise

rather than a true signal of toxicity, often leading to delayed

detection of cardiotoxicity. The answer to these challenges

lies in automation. While imaging software has improved in

the past several decades to include automated contouring of

the left ventricle, present software packages generally fail to

evaluate the endocardial border with sufficient accuracy in

technically difficult studies with suboptimal images. The most

promising solution to minimize inter-reader variability and

improve reproducibility of cardiac function assessments is the

evolution of AI. In a recent study, Ouyang and colleagues show

that through deep-learning, LVEF can be more accurately and

unbiasedly measured with variance that matches or is less than

that of human specialists (8). The use of AI allows for quicker

segmentation and beat to beat quantification, facilitating a more

efficient, consistent, and accurate quantification of LVEF. The

ability to obtain more precise LVEF measurements can allow

for meaningful detection of drop in LVEF earlier in the clinical

course in an unbiased fashion. These will then allow for more

efficient identification of those who will likely benefit from early

initiation of cardioprotective therapies.

Global longitudinal strain (GLS) has been proposed as a

more sensitive means for early detection of cardiac dysfunction

prior to a detectable drop in LVEF. A consistent measurement

of left ventricular GLS could be instrumental in guiding

chemotherapeutic regimen. However, the study by Farsalinos

and colleagues noted significant variability among various

ultrasound system vendors when measuring GLS (10). While

GLS may be more reproducible and relatively easier to obtain

compared to LVEF, these inter-vendor differences can influence

results and the applicability of GLS among different practices.

To address this, Kwan and colleagues demonstrated that an

automated deep-learning strain (DLS) pipeline could help to

reconcile these differences and result in better inter-vendor

agreement regardless of subjective image quality (11). Thus, the

use of AI can help facilitate the measurement of strain, resulting

in a more efficient, standardized, and vendor-blind method

across images of varying qualities. Additionally in a separate

study, Salte and colleagues demonstrated a similar result in

reducing measurement variation and providing a more efficient
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FIGURE 1

Artificial intelligence applications in cardio-oncology. AI-enabled analysis of routinely collected cardiovascular images such as MRI, CT,

echocardiography, and electrocardiogram may facilitate (1) accurate, e�cient, unbiased analysis of conventional measures such as LVEF and (2)

identification of new image features not previously recognized to correlate with cardiotoxicity. This will ultimately help physicians to detect early

signs of cardiotoxicity, identify at-risk cohorts, and implement cardioprotective strategies early on to optimize cardiovascular health of cancer

patients and thereby allow safe and e�ective cancer treatments. Figure created with Biorender.

way to quantify strain (12). AI-enabled, more universal and

consistent GLS measurement across vendors may help identify

subtle, early signs of cardiotoxicity by cancer therapies that may

be too early to detectably alter LVEF.

AI to decode cardiovascular image
features to correlate cardiotoxicity

Hughes and colleagues utilize AI in analyzing

echocardiographic images to detect abnormalities in a variety

of cardiac blood biomarkers such as B-type natriuretic peptide

(BNP), troponin I, and blood urea nitrogen (BUN) (13, 14).

Through analysis of the echocardiography videos, they were able

to show that their EchoNet-Labs model estimated biomarkers of

cardiac function with a high degree of specificity and sensitivity

across diverse racial and ethnic groups. Additionally, they show

that across two separate institutions, the model demonstrated

similar sensitivity and specificity for both patient populations.

This result further strengthens the idea that AI can be used

to standardize and accurately risk stratify patient populations

correlating blood markers for cardiovascular diseases and

complications across institutions and between physicians.

Similarly, AI can identify less obvious information contained

in EKG images to detect conditions like anemia which may

further assist in identifying risk cohorts (15). EKGs are

an imaging tool that is both inexpensive and ubiquitous

in healthcare settings. Beyond the conventional parameters

being measured such as PR/QT intervals, AI-guided EKG

image analysis may provide unrecognized patterns to predict

clinical phenotypes. As an example, anemia is usually difficult

to diagnose with patient histories and physical exams only,

necessitating blood draws. Kwon and colleagues demonstrate

that AI analysis of EKGs can provide an alternative less-

invasive and less-costly method of detecting anemia (15).

Beyond anemia, as we accumulate more data to correlate

with other disease biomarkers of cardiac complications (e.g.,

inflammatory complication such as myocarditis) (16), there may
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be unprecedented opportunities to utilize these studies to predict

disease course and guide our management.

Furthermore, AI in EKG may help identify early signs of

myocardial dysfunction caused by cancer therapies. Attia et al.

reported that AI-guided analysis of EKG accurately and reliably

identified asymptomatic LV dysfunction defined as ejection

fraction ≤ 35% with sensitivity and specificity of 86.3 and

85.7% respectively (17). In a separate study, Adedinsewo and

colleagues demonstrated the efficacy of using AI to identify

dyspneic patients at risk of systolic heart failure in the emergency

department (18). They showed that AI analysis of EKGs allowed

accurate identification of LV systolic dysfunction and even

outperformed N-terminal pro-B-type natriuretic peptide (NT-

proBNP) measurements. Additionally, they showed that their

AI-enabled EKG algorithm is both inexpensive and efficient

in recognizing dyspneic ED patients with LVSD compared

to existing diagnostic methods like echocardiography, which

is operator-dependent and requires trained specialists, and

the measurement of NT-proBNP alone (18). Identification

of cancer patients similarly at risk of LV dysfunction using

this algorithm that simply leverages already obtained EKG

images can expedite subsequent testing and additional medical

interventions. As EKGs can be recorded and obtained in the

office in a convenient manner, compared to other imaging

modalities, it may also be used as a convenient screening tool

for those being treated with cancer therapy to identify early

signs of myocardial dysfunction. These patients could then be

initiated on cardioprotective therapies to minimize their risk of

LV function deterioration (19).

AI applications in predicting
drug-induced arrhythmia

Just as EKGs are useful in identifying those at risk for

LV dysfunction, paired with AI analysis, they can have the

potential to provide low cost and non-invasive screening for

atrial fibrillation (AF) as shown by Attia and colleagues (20).

AF is often under-detected, associated with an increased risk

of cardiovascular events like stroke and heart failure, and can

significantly complicate the management of cardio-oncology

patients (21, 22). Attia and colleagues have shown that AI

can accurately identify patients with a history of AF from

their EKGs obtained in normal sinus rhythm (20). Similarly,

Tang et al. also demonstrated that EKGs obtained in sinus

rhythm analyzed with AI can accurately predict patients who

would have favorable outcomes following AF ablation (23).

These studies suggest potential signatures of rhythm disorders

such as AF in EKGs obtained in normal sinus rhythm, that

are not apparent and easily analyzable by traditional signal

processing and statistical methods. They also bring along

the possibility of screening cancer patients with EKGs to

determine who may be at higher risk of AF, and may benefit

from frequent screening to help manage and minimize AF

related complications.

In addition to identifying those who might be at risk for AF,

deep learning analysis of EKGs can be used to assess patients at

risk for drug-induced QT prolongation (24). QT prolongations

may lead to fatal arrhythmias like torsade de pointes (TdP)

that can lead to sudden cardiac death. Through identifying

a patient at risk for drug-induced QT prolongation and

subsequent TdP, immediate intervention can be implemented

to prevent a fatal outcome. Prifti and colleagues have shown

that use of convolutional neural network models to analyze

EKGs more accurately screen for risk of drug-induced TdP

than the current standard of measuring QT interval corrected

for heart rate (25). In the field of cardio-oncology, screening

for those at risk of developing QT prolongation and fatal

arrhythmias before they develop is critical as many cancer

treatments such as tyrosine kinase inhibitors are associated with

QT prolongation (26).

AI applications in identifying at-risk
cohort for cardiotoxicity

Preexisting cardiovascular diseases (CVD) and risk factors

have been associated with an increased likelihood of subsequent

cardiotoxicity following cancer therapies (27). Therefore,

precise assessment of one’s pre-existing CVD and relevant

risk factors is critical in assessing one’s future CV risk

following cancer therapies. Cardiovascular disease screening

prior to cancer therapies can be done through using many

metrics such as laboratory biomarkers, coronary artery calcium

(CAC) scoring from CT imaging for CAD assessment, LVEF

by echocardiogram, and EKG. Additionally, recent research

suggests that deep-learning analysis of other routinely collected

image studies during cancer diagnosis can be leveraged for

further evaluation.

Coronary artery disease (CAD) and cancer are both diseases

found more frequently in the elderly. Presence of significant

CAD increases the risk of treatment-associated complications,

and the evaluations and treatment of these CAD, such as stress

testing and angiograms frequently create delays for definitive

therapy. A rapid evaluation of a patient’s CAD risk at the time

of cancer diagnosis has the potential to streamline the process

and deliver timely care. One commonality among oncological

patients is routinely performed cross-sectional imaging such as

CT for cancer staging. Staging CT scans are traditionally not felt

to be sufficient to evaluate one’s risk of CAD as they are not

cardiac-gated. The application of AI to non-gated imaging has

recently been shown to be able to generate accurate CAC score

predictions (28, 29). This approach will allow for CAD diagnosis

and risk stratification to be performed at no additional cost or
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radiation. It is likely, in fact, further algorithms can be developed

to utilize serial staging CTs to closely monitor and predict

patient’s risk for cardiovascular complications. Furthermore,

AI has been shown to rapidly and accurately assess CAD

progression and prognosis through analysis of plaque volume

and stenosis severity acquired from coronary CT angiography

(CCTA) images, and these assessments closely align with those

of expert readers (28). These findings could have an important

implication in identifying risk for future cardiovascular diseases

like myocardial infarctions, which would help to direct future

treatments and screening.

In another study, Poplin and colleagues used deep-

learning models to analyze retinal fundus images and predict

cardiovascular risk factors that were not previously thought to

be quantifiable or manifested in retinal images, like age, gender,

blood pressure, and ethnicity (13). Currently, information from

a patient’s history or blood tests are used as the standard

for assessing cardiovascular risk (30). Poplin and colleagues’

model achieved similar precision in identifying cardiovascular

risk as the Systemic Coronary Risk Evaluation calculator and

their results suggest a promising role for deep learning in

assessing cardiovascular risk factors and monitoring how well

one’s hypertension or diabetes is controlled through less invasive

imaging and analysis.

Finally, Attia and colleagues have shown that AI-guided

analysis of EKGs could identify patients who had normal LVEF

and were at a four-fold risk of developing left ventricular

dysfunction over the next 5 years and before apparent left

ventricular dysfunction could manifest symptomatically (17).

Furthermore, it was found that the AI performed better

across all ages and sexes. Thus with the identification of

at risk populations, one can take preventative measures

and monitor patients more closely to encourage better

health outcomes.

Limitations and specifical
consideration

Although the prospect of utilizing AI and deep learning to

predict patients’ risks of developing cardiotoxicity from cancer

treatments is exciting and promising, there are practical hurdles

and methodological limitations that currently prevent these

techniques to reach their full potential. Prospective validation

of the utility of incorporating the AI-mediated clinical decision-

making tool into routine clinical practice is needed prior to

the implementation of these promising avenues into cardio-

oncology practice. For this, our institutions are collaboratively

working toward building a prospective, well-labeled database

with predefined variables to employ available AI-based tools in

analyzing cardiovascular data to predict future cardiovascular

outcomes. However, there remain challenges due to the

heterogeneity of treatment regimen, diverse patient populations,

differences in mechanism of toxicities, and relatively small

cohorts. Such challenges may preclude effective development

and validations of these AI tools, and must be overcome in

order for these powerful tools to reach their full potential.

International, multi-center collaborations to build well-curated

patient data registry, such as the recent initiative by International

CardioOncology Society, may help overcome these hurdles

to identify meaningful signals among these heterogeneous

populations (31). Finally, intentional efforts to educate and

engage broader cardio-oncology communities early on and

disseminate these tools, once validated, would be critical

to derive maximal benefits of these advances in managing

cardiovascular health of cancer patients.

Conclusion and future directions

The use of AI in detecting vulnerable populations for

cardiovascular complications due to cancer treatment is

extremely important and timely in the field of cardio-

oncology and has the potential to greatly improve patient

care. Leveraging recent advances in AI to analyze patient

images and data standardizes the procedure, generating more

consistent results that don’t vary from physician to physician

and reduce human error. The use of AI would not only

improve the accuracy of measurements such as LVEF, but

it would also identify noble imaging features correlated with

cardiotoxicity. With better identification of at-risk populations

or patients with early signs of cardiotoxicity, clinical care can

be optimized for each patient to implement cardioprotective

strategies early on in treatment to achieve better cardiac and

oncologic outcomes.
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