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Abstract: The concanavalin A (Con A)-induced liver injury
mouse model is a typical animal model focusing on T cell-
dependent hepatic damage in the field of autoimmune
hepatitis (AIH). However, the underlying mechanism of
hepatic dysfunction due to cell activation or signaling
pathways triggered by Con A has not been fully clarified.
Therefore, the controversy on this model remains in the
academic community. In this article, we first summarized
the merit and demerit of this contentious model from the
perspectives of cell dysfunction,microcirculation disturbance,
involved signaling pathways, as well as the properties of Con
A. Then, we summed up the scientific implications of the
model in elucidating the pathogenesis of AIH, and the short-
comings of this model were also summarized to elucidate the
pathogenesis and application prospect of this classical liver
injury mouse model in the study of AIH.

Keywords: autoimmune hepatitis, concanavalin A, experi-
mental animal models, inflammation, pathogenesis

1 Introduction

Autoimmune hepatitis (AIH), originally named “active
chronic and lupoid hepatitis” by Ian R. Mackay and F.
Macfarlane Burnet in 1963, is a type of chronic progres-
sive inflammation of liver parenchyma mediated by auto-
immune response [1]. It is closely related to the abnormal
proliferation and activation of T lymphocytes and is dis-
tinguished by interfacial hepatitis in histology and by
elevation of immunoglobulin G level and presence of
autoantibodies in serology. Moreover, it eventually may
cause fibrosis and cirrhosis if the inflammation process
cannot be controlled [2]. AIH occurs globally in all ages
and ethnicities with a strong female predominance [3],
and its incidence and prevalence are still increasing in
recent years [4,5]. Establishing an ideal experimental
animal model to mimic the progress of human AIH in
the laboratory is thought to be helpful in better studying
the specific pathogenesis of this disorder and explor-
ing more effective clinical treatment methods. Many
researchers have devoted themselves to the evolution
of animal models related to AIH since the early 1970s
[6]. Notwithstanding a variety of animal models that
have been applied to the study on the etiopathogenesis
of AIH in different phases, the concanavalin A (Con A)-
induced liver injury mouse model is regarded as the
most important one [7,8]. It was successfully estab-
lished in 1992 by Tiegs G [9] and was commonly used
in such research fields from the 1990s to 2020s [10–13].
Not only this model is easy, convenient, inexpensive,
and repeatable to establish [14,15] but also its histo-
logical features (including periportal and intralobular
lymphocytes infiltrates as well as interface hepatitis)
and serological changes (i.e., high levels of transami-
nase) are similar to human AIH patients [16]. However,
this widely applicated mouse model is still debatable
with the deepening of research on the mechanisms
causing liver injury [17]. An in-depth summary of the
controversies over this model, together with its pros
and cons, will be conducive to illustrate its status and
meet the future challenge in the study of AIH.
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2 Multiple populations of cells
participating in the hepatic injury
in this model

Initially, the Con A-induced liver injury mouse model was
regarded as a well-established CD4+ T helper cell (Th)
activated model focusing merely on the dysfunctional
Th involved in the pathogenesis of AIH [9]. However,
as the research moved along, it was revealed that, except
for Th, a variety of other immunocytes and hepatic

nonparenchymal cells were related to the development
of hepatocellular injury, including cytotoxic CD8 + T lym-
phocyte (CTL) [18], natural killer T cell (NKT) [19,20],
neutrophil [21], kuffer cell (KC) [22,23], and sinusoid
endothelial cell (SEC) [24,25]. As shown in Figure 1, Con
A is capable of attaching not only to the major histocom-
patibility complex (MHC) class II expressed on KC [26]
but also to the mannose receptor (MR) located on the
surface of SEC [9], KC [27,28], and neutrophil [29]. We
have confirmed that the effect on macrophage induced by
Con A was related to the MRs by performing a series of

Figure 1: The multicellular participation mechanism participated in establishing the Con A-induced liver injury mouse model. Con A was
capable of attaching to MHC class II, MR, and ICMA-1. Th0 cell differentiated into Th1, Th2, Th17, and Treg by the recognition of MHC class II-
Con A complex via TCR, and Th1 and Th17 induced the hepatocyte necrosis and apoptosis by secreting TNF-α, IFN-γ, IL-17, and IL-22, while
Th2 and Treg would induce tolerance toward Con A by secreting IL-10 or expressing CTLA. Th0 could also migrate to the inflamed tissue by
adhering to CXCLs via CXCR3. The NKT directly induced the death of hepatocytes or SECs by expressing TNF-α and IFN-γ after combining with
this lectin through TCR. The MRs, located on the surface of macrophages and neutrophils, contain multiple CTLD, and the N-acetylgluco-
samine of Con A can combinate to the MRs to induce the receptor-mediated endocytosis and phagocytosis to maintain the stability of the
internal environment. At the same time, Con A also can lead to the activation of macrophages and neutrophils via MRs, to increase the
release of superoxide anions and induce the synthesis of cytokines (including TNF-α, IFN-γ, IL-1β, MIP-2, and ROS). Con A promoted the
expression of β 2-integrin on neutrophils, which was essential for neutrophil recruitment. The attachment of SECs to Con via MR, MHC class
II, and ICAM-1 could give rise to their death, facilitating the adhesion of Con A to KCs. CTLs would activate by the Con A-mediated expression
of TNF-α and IFN-γ and infiltrate to the necrotic area by recognizing MHC class I expressed on the surface of damaged hepatocytes, which is
absent from the normal liver tissue. Both CTLs and NKTs contributed to the apoptosis of hepatic cells via the Fas/FasL pathway.
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in vivo experiments (the data have not been reported). The
MRs, which are located on the macrophage surface, con-
tain multiple C-type lectin-like domains (CTLD), and
the N-acetylglucosamine of Con A can combinate to the
MRs to induce receptor-mediated endocytosis and pha-
gocytosis to maintain the stability of the internal envir-
onment. At the same time, Con A also can lead to the
activation of macrophages via MRs, to increase the release
of superoxide anions and induce the synthesis of cyto-
kines. These cells participate in hepatic damage in direct
or indirect ways. For example, Th0 cells will be activated
by recognizing the MHC class II-Con A complex via T cell
receptor (TCR) and differentiated into Th1, Th2, Th17, and
regulatory T cell (Treg). Th1 and Th17 are characterized by
secreting tumor necrosis factor (TNF)-α, interferon (IFN)-γ,
and interleukins (IL)-17, IL-22 to induce hepatocyte necrosis
and apoptosis [30]. At the same time, Th2 and Treg are
featured by secreting IL-10 and expressing cytotoxic T lym-
phocyte antigen (CTLA)-4, which are supposed to induce
tolerance toward Con A-induced liver damage [31]. Th0 can
alsomigrate to the inflamed tissue by the recognition of CXC
chemokine ligands (CXCLs) expressed on the cytomem-
brane of injured hepatocytes via CXC chemokine receptor
motif 3 (CXCR3) [32,33]. Although CTL does not have an
immediate relationship with Con A, the activization of
CTL is deemed to be induced by the Con A-mediated expres-
sion of TNF-α and IFN-γ, and CTLswill infiltrate the necrotic
area by the recognition of MHC class I expressed on the
surface of damaged liver cells, which is absent from the
healthy liver tissue [34]. That is why CD4+ T cells are
reported to be particularly numerous in periportal areas,
while CTLs constitute the major cell type in the area of
interface lymphocytic infiltration [35], and the ratio of
CD4+ T cell to CTL in Con A-induced AIH mice model is
higher than in other liver diseases [36,37]. Both CTLs and
NKTs contribute to the apoptosis of hepatic cells via the
Fas/FasL pathway [34]. Unlike T cells, the KC, neutrophil,
and NKT are able to directly induce the death of hepatocytes
or SECs by expressing TNF-α, IFN-γ, IL-1β, macrophage
inflammatory protein (MIP)-2, and reactive oxygen species
(ROS) after being activated by this lectin through TCR or MR
[19]. Con A increases the expression of β 2-integrin on neu-
trophils as well, and the recruitment of neutrophils is a
β 2-integrin-dependent process [38]. Moreover, SECs are
capable of binding to Con A at 4 h after intravenous injec-
tion via MR, MHC II, and intracellular adhesion molecule
(ICAM)-1 on its surface. This attachment will lead to the
breakdown of the SEC’s membrane and bleb formation
and eventually give rise to their detachment, facilitating
the adhesion of Con A to KCs [14]. So numerous cells are
involved in constructing this model that it is like getting

blood from a stone to improve the hepatic injury by inter-
fering with the abnormal activation of a particular type of
cell. It is probably the main reason why this model’s etio-
pathogenesis is still obscure, and no appropriate and
acknowledged in vitro model was able to identically imi-
tate the pathogenetic process of this hepatitis model,
unlike other autoimmune diseases, such as rheumatoid
arthritis [39].

However, this model’s “unexpected” multicellular
participation mechanism opens a gate to closely mirror
most of the pathogenic properties in AIH human patients
[40]. On the other hand, it is because of the abundant “unin-
tended” hepatic nonparenchymal cells (such as SECs and
KCs) involved in the establishment of this model that the
binding of Con A to the liver seemed to be very specific [41].
It has been demonstrated that the organotropism of FITC-
labeled Con A for the liver was remarkable, while fluores-
cence in other tissues was so weak that it was undetectable,
including the lung (the organ that Con A passed first after
intravenous injection) and kidney (the organ has the largest
blood flow). The selective organ damage induced by Con A
results from theMRs significantly expressed on the SECs and
KCs, and Con A-inducible lesions were absent in macro-
phage-depleted animals [26,42]. Therefore, although it is
not consistent with the original purpose of establishing
this model, it is still widely used now.

3 Genetic background and gender
preference of animal deserving to
be taken into consideration

As more and more experiments were carried out in dif-
ferent mouse strains, including C57BL/6 [43], C3H [44],
BALB/c [45], NMRI [46], and FVB/N [47], it was demon-
strated that the dosage of Con A needed to trigger hepatic
injury varied significantly according to the genetic back-
ground of mice. Generally, Th1-biased C57BL/6 and C3H
mice are most susceptible to Con A and normally require
lower doses of Con A only around 15–20mg/kg body weight,
while mice with Th2-biased immune response, such as
BALB/c or NMRI mice, commonly need higher doses of
this lectin up to >30mg/kg body weight [48]. Therefore,
the genetic background of animals needs to be considered
when establishing this hepatitis model, due to that Con A is
prone to induce a Th1-biased immune response.

Though AIH shows the female preponderance with a
female-to-male ratio of 4:1 [49], it is preferable to implement
the Con A-induced liver injury experiment exclusively using
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male mice in order to minimize the number of animals
required for reaching statistically significant results. The
prime reason is that the immune response induced by
Con A is considerably dependent on the hormonal state of
the animal, and the female mice are more sensitive to Con A
than male ones and show a greater variation in the degree
of liver injury and level of cytokine production [50]. Never-
theless, it is helpful to study the gender-related differences
in the development of humanAIH patients by taking advan-
tage of the gender preference of the model.

4 Intricate signal transduction
pathways involved in the
pathogenesis of this model

Along with the deepening of the research, a complicated
network of signal transduction pathways referring to pro-
voking or exacerbating the impairment of liver function
in this model was gradually disclosed, including “Toll
like receptor (TLR) signaling pathway” [51,52], “MAPK
signaling pathway” [53], “PI3K/Akt signaling pathway”
[54,55], “Ferroptosis” [56], “Notch signaling pathway”
[57], “Wnt signaling pathway” [58,59], “Endocytosis” [60],
and so on. The data in one of our earlier experiments also
showed that the differentially expressed mRNAs (DEMs)
filtered out by microarray with this model were significantly
enriched in these pathways [61]. Furthermore, many new
therapeutic antibodies, drugs, or monomers targeting these
validated pathways have been increasingly developed to
attenuate hepatic damage. For instance, fucosterol and
nobiletin were confirmed to alleviate the acute liver lesion
through regulating the “MAPK signaling pathway” [62,63],
ghrelin and salidroside were deemed to improve liver func-
tion in this model via “PI3K/Akt signaling pathway” [64,65],
while Hu23C3 (a humanized murine monoclonal antibody
against human osteopontin) and CpG-containing oligo-
deoxynucleotides were supposed to mitigate the hepatic
injury and enhance the survival rate of mice by interfering
with “NF-κB signaling pathway” [66,67]. Nevertheless, the
complexity of the interaction of these pathways exceeded
the expectation so that the nosogenesis of this model
became more and more incomprehensible, and there is still
no specific drug that is able to thoroughly improve the
inflammatory damage to liver.

According to the published literature, we found that
NF-κB is a vital hub gene associated with the setting up of
this hepatitis model because this transcription factor is
likely to be the intersection of numerous signal transduction

pathways [68–70]. Parts of the pathways probably related
to NF-κB were exhibited in Figure 2. NF-κB was initially
reported as a B-cell-specific transcription factor that binds
the κB site in the Igκ light chain enhancer [71]. It can be
activated by a variety of inflammatory signals. Pro-inflam-
matory cytokines and pathogen-associated molecular pat-
terns, working through different receptors, including TNF
receptor (TNFR), TLR, and IL-1 receptor (IL-1R) superfami-
lies, cause the activation of inhibitory κB kinase (IKK) com-
plex and translocation of NF-κB dimers from the cytoplasm
to the nucleus, resulting in synergistic expression of mul-
tiple inflammatory and innate immune genes eventually.
The IL-1β, IL-6, and TNF-α activate NF-κB. Meanwhile,
expressions of these pro-inflammatory cytokines are also
modulated in response to the activation of NF-κB, thus
forming an amplifying feed-forward loop [72,73]. Therefore,
drug development targeting this hub gene may be more
promising.

5 Acute inflammation process and
no detectable autoantibodies

Admittedly, AIH starts with an episode of acute hepatitis
in some cases. However, most of the patients are typical
of progressive chronic hepatitis, and hepatic fibrosis or
cirrhosis will ultimately be caused if the autoimmune
process is not well-controlled [2,74]. Whereas Con A-
induced liver inflammation is typical acute hepatitis.
The hepatocyte apoptosis and elevated transaminase levels
in serum can be detected as early as 5 h after administra-
tion, and it is sufficient to investigate the inflammatory
phenotype at 8–12 h after receiving an injection [48]. In
addition, it is not feasible to perform long-term follow-up
experiments or mimic a chronic inflammatory process
through a repetitive application of Con A because mice
are able to develop protective immune tolerance against
hepatitis induced by this lectin, and IL-10 plays an impor-
tant role in this course [31]. As time goes by, once Con A is
metabolized, the self-repair of the liver will initiate, which
can be manifested by declined transaminase levels in ser-
ology and hepatocyte regeneration in histology. At last, the
pathological process of AIH terminates, and liver damage
will be restored. Con A-induced liver damage is transient
and unsustainable, so it is not suitable for exploring the
pathogenic mechanism of chronic hepatitis.

The presence of specific antibodies to particular liver
autoantigens in serum is regarded as one of the core
diagnostic criteria of AIH [75,76], including anti-nuclear
antibody, anti-smooth muscle antibody, anti-liver-kidney
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microsomal antibody, and anti-liver cytosol type 1 anti-
body [77,78]. Nonetheless, no circulating autoantibody is
produced in the Con A-induced liver injury mice model.
For one thing, it is a lack of requirement for antigen spe-
cificity in this model, owing to that Con A is the unique
agent to activate and recruit T lymphocytes into the liver
tissue [9]. For another, the low levels of IL-4, IL-10, and IL-
13 also contribute to the shortage of autoimmune antibo-
dies. Because these cytokines, which are mainly secreted
by Th2 cells, are essential for B cells maturation to plasma

cells to secrete autoantibodies [2,79]. Under the healthy
condition, the ratio of Th1 to Th2 is in dynamic equilibrium
and controlled by the transcription factor T-bet and GATA-
binding factor type 3 (GATA3) [80]. Con A promotes the
skewing of Th1 by increasing the expression of T-bet and
suppressing the differentiation of Th2 via decreasing the
expression of GATA3 [81]. As mentioned before, the Th1-
biased C57BL/6 and C3H mice are most susceptible to Con
A-induced liver injury. In contrast, mice with a Th2-biased
immune response, such as BALB/c or NMRI mice, require

Figure 2: The signal transduction pathways targeting NF-κB are involved in building the Con A-induced AIH mouse model. Numerous inflammatory
signals (such as IL-1β, IL-6, TNF-α, and some other pro-inflammatory cytokines) could give rise to the activation of IKKs and translocation of NF-κB
dimers from the cytoplasm to the nucleus, through multiple signal transduction pathways, including “TLR signaling pathway”, “MAPK signaling
pathway”, and “PI3K/Akt signaling pathway”. The nuclear translocation of NF-κB resulted in the synergistic expression of multiple inflammatory
and innate immune genes eventually, involving IL-1β, IL-6, and TNF-α as well. Thus, IL-1β, IL-6, TNF-α, and NF-κB formed an amplifying feed-forward
loop. (1) PI3K/Akt signaling pathway, (2) TLR-2 and 4 signaling pathway, (3) TNF-α signaling pathway, and (4) MAPK signaling pathway.

Concanavalin A-induced AIH model in mice: Mechanisms and future outlook  95



higher doses of Con A. Without the participation of B cells
and no generation of autoantibodies are deemed to be the
biggest obstacle in translating this model into the investi-
gation on human AIH.

6 The side-effect for Con A as a
lectin

6.1 Microcirculation disturbance

As previously mentioned, the original intention on the
foundation of this hepatitis mouse model was to investi-
gate the T cell-dependent mechanisms of liver injury.
Nevertheless, as a lectin with coagulation activity, if
administered intravenously, Con A will first cause a sig-
nificant decrease in blood flow in the hepatic sinusoid
rather than hepatocellular injury [82]. After that, SECs,
KCs, and abnormally activated T cells will work in coordi-
nation to lead to the formation of numerous microthrombi

and bring about the necrosis of hepatocytes [83]. The
microcirculation disturbance mechanism induced by Con
Awas visualized in Figure 3, which would explain why it is
different to fully interrupt the immunologic injury induced
by Con A only depending on the immunosuppressor, and
heparin, an important anti-clotting agent with no immu-
nomodulatory function, has significant protective effects
on hepatic injury induced by this lectin without reducing
the production of IFN-γ and TNF-α [84]. Hence, microcir-
culation disturbances induced by Con A is an unintended
mechanism on the liver damage, and to some extent, it will
interfere with the judgment on the outcome of new drugs
associated with the immunologic mechanism.

6.2 Environmental sensitivity

Since Con A is a water-soluble tetrameric protein complex
purified from the crude extract of Canavalia ensiformis
seeds, its biological activity shows batch-dependent var-
iations [85]. It is sensitive to environmental decay once

Figure 3: The microcirculation disturbance mechanism related to the foundation of Con A-induced AIH mouse model. Con A first caused a
significant decrease in blood flow in the hepatic sinusoid after being administrated. Thereafter, abnormally activated T cells immediately
produce a large amount of IFN-γ and TNF-α, and then the STAT1 signaling pathway is activated to promote the SECs and KCs to synergistically
express tissue factor (TF). TF facilitated the fibrinogen agglutinating into fibrin clots as a type of starting factor of coagulation reaction. TNF-α
triggered the production of plasminogen activator inhibitor type 1 to inhibit the anticoagulant pathway by suppressing the degradation of fibrin
clots into fibrinogen degradation product. SECs and KCs could also express TF after adhering to Con A directly. All of them worked together to
result in hypercoagulation and form numerous microthrombi, which would eventually contribute to the necrosis of hepatocytes. The anti-
clotting agent, such as heparin, has significant protective effects on the hepatic injury induced by lectin through inhibiting the clotting activity.
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not stored under protected conditions, so repeated freeze-
thaw cycles should be avoided to circumvent protein
degradation [86]. Meanwhile, serving as the sole inducer
in this model, the levels of transaminase and pro-inflam-
matory cytokine, considered as the valid index of the
severity of the liver injury, change in a Con A-dose-depen-
dent manner [87]. If the intake of Con A is too high, liver
damage will be irreversible so that somemice will have the
symptom of acute liver failures such as encephalopathy or
ascites and die in a short time. Therefore, the dose of Con A
needed to induce liver injury has to be tested for each
batch before an experimental series, and it is necessary
to titrate the Con A dosage accurately to minimize the
number of animals succumbing to hypohepatia. Ordina-
rily, 5–10mg/kg dose of Con A for 18 h are safe for mice,
while 15, 20, and 25mg/kg will induce 20, 40, and 60%
death of mice, respectively [88].

7 Application prospect and
possible improvements

Although there are some deficiencies in the Con A-
induced liver injury mouse model to completely mimic
the pathogenesis and pathological process of AIH in human
patients, it is still a well-established and easy to replicate
animal model focusing on T cell-mediated hepatic damage
(Table 1). In addition, this model is also of great significance
to develop new therapeutic drugs or other treatment mea-
sures just targeting T cell activation. To cover the model

shortage, the following improvements could be taken into
account to implement.

First, high-throughput detection techniques on screening
the differentially expressed genes (involving the coding RNA
and non-coding RNA) can be applied to this model, just like
the research we are doing, to further explain the interaction
between signal transduction pathways [61,89,90]. In parti-
cular,muchmore attention should be paid to the differentially
expressed genes enriched in signaling pathways associated
with T cell activation and NF-κB transcription.

Second, some kinds of in vitro models could be con-
sidered to verify the experimental results obtained from
this Con A related in vivo model. For example, the Con A-
mediated macrophage activation model is conducive to
further interpret the role of KCs in the pathogenesis of
AIH, which are primarily found in mice experiments
[91,92]. Due to the dominant role in the development of
AIH played by Th1-biased immune response, the Th1 cell
in vitro model established in accordance with the Th1-
skewing condition will serve the purpose of investigating
the effects of Th1 cells on liver injury [93,94].

Third, it seems that the utilization of transgenic ani-
mals will make up its defects to some extent and is
helpful in the discovery of novel biomarkers and poten-
tially new therapeutic targets [95–99].

Furthermore, in view of the agglutination activity of
Con A as a lectin, certain kinds of anticoagulant drugs,
such as heparin, can be considered to prophylactically
administrate to as far as possible mitigate the effects of
microcirculation disturbance on the experiments principally
aiming at exploring the mechanism of immune disorders.

To sum up, parts of the mechanisms of hepatotoxicity
by Con A have been revealed in this article, i.e., Con A, as
a kind of lectin, can lead to the activation of macrophage
and neutrophil via MRs to increase the release of super-
oxide anions and induce the synthesis of cytokines, as
well as activate Th0 cell via TCR by forming the MHC
class II-Con A complex. Con A can also promote the for-
mation of hypercoagulation and form numerous micro-
thrombi in the hepatic sinusoid, which would eventually
contribute to hepatocyte necrosis. Moreover, numerous
inflammatory signals can be activated after the adminis-
tration of Con A. Therefore, there is a reasonable prospect
that, with continuous improvement and optimization, the
research related to the Con A-induced liver injury mouse
model will achieve a significant breakthrough and inno-
vation, which will be conducive to a further study in the
field of AIH in the future.
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