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Abstract: Grapevine trunk diseases (GTD) are currently one of the most devastating and challenging
diseases in viticulture, leading to considerable yield losses and a remarkable decline in grapevine
quality. The identification of the causal agents is the cornerstone of an efficient approach to fighting
against fungal diseases in a sustainable, non-chemical manner. This review attempts to describe
and expose the symptoms of each pathology related to GTD, the modes of transmission, and the
harmfulness of recently reported agents. Special attention was given to new diagnostic tests and tech-
nologies, grapevine defense mechanisms, molecular mechanisms of endophytes fungal colonization,
and management strategies used to control these threats. The present extended review is, therefore,
an updated state-of-the-art report on the progress in the management of vineyards.

Keywords: vine; phytosanitary problems; fungus; biological control

1. Introduction

Viticulture is an agricultural practice that dates back over 7000 years [1]. It is practiced
on all continents except Antarctica. Overall, the world area under grapevines in 2020 is
estimated to be 7.3 million hectares (mha), which corresponds to the total surface area
planted with grapevines for all purposes (wine and juices, table grapes, and raisins),
including young grapevines not yet in production [2]. Originally from the Middle East and
the Mediterranean Basin, the history of viticulture is intimately linked to that of Morocco,
as the first vines were planted by the Phoenicians and Roman colonists [3]. This culture
took off at the beginning of the twentieth century with the protectorate and continues to
climb the ladder of the best vineyards in the world. Thus, Morocco is the second-largest
producer of wine in the Arab world, and also one of the cradles of the last wild vines.

In Morocco, the “Land of Vines”, historically known as the wine paradise of the Mediter-
ranean, plays a key socio-economic role. It occupies an area of more than 50,000 hectares
with an annual production of about 452,000 tons, divided into 346,656.26 tons of table
grape, which are concentrated in the regions of Doukkala, Tansies-EL Haouz, Benslimane,
Essaouira, Khémisset, and Rabat-Salé, while 104,501.25 tons of wine-grape are mainly
concentrated in the regions of El-Hajeb, Khémisset, Meknes, Gharb and Moulouya [4]. On
the social level, the vitivinicultural sector provides almost 7.2 million working days per
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year or 30,500 permanent jobs. Exports are a significant source of foreign currency of about
USD 10952902.00. However, this wine-producing activity is unfortunately threatened by a
series of phytosanitary problems, which could jeopardize this precious Moroccan floristic
heritage preserved for centuries [5].

The different vine varieties belong to a common systematic trunk: a dicotyledonous an-
giosperm plant of the Vitaceae family. The genus Vitis comprises two subgenera, Muscadinia
and Vitis, with distinct anatomical, morphological and cytological characteristics. The sub-
genus Vitis includes about sixty species of which Vitis vinifera L. is the most commercialized
in the world [6].

One of the major difficulties of grapevine cultivation is its susceptibility to a wide
range of microorganisms, such as viruses, bacteria, nematodes, and fungi [7], causing
varying degrees of damage in vineyards. The most common ones are downy mildew
(Plasmopara viticola), powdery mildew (Erysiphe necator), anthracnose (Elsinoe ampelina),
greenaria bitter rot (Greeneria uvicola) and black rot (Guignardia bidwellii). The damage
can range from simple reactions of the plant to devastating effects [8]. In recent years,
there has been a resurgence of emerging diseases affecting the vine. These biotic stresses
are commonly known as grapevine trunk diseases (GTD). In Morocco, these pathologies
are taking the forefront of winegrowers’ concerns, as they cause considerable damage in
vineyards not only quantitatively but also qualitatively [9]. As a result, it is critical to
properly identify the diseases present in the vineyard to prevent serious infections and
loss of yield or quality. To address this issue, winegrowers turned to the use of sodium
arsenite, which allowed them to contain the expression of these diseases and reduce field
losses. Since the ban of arsenite sodium in 2003 in Europe due to its adverse effects on
human health and the environment, no effective alternative curative replacement has been
proposed to the profession [10]. Therefore, the incidence of GTD symptoms has been
observed, especially in younger vineyards [11].

Currently, the increasing incidence of GTD is a serious threat to the economic viability
of the vineyards in some wine-growing regions, including Moroccan vineyards. The
type and severity of diseases in the wooded part of the vineyard vary according to the
prevailing climate, cultivars, and fungal species. The etiology of these pathologies is very
complex since numerous biotic, abiotic, and eco-physiological factors associated with
cultural practices could explain the vineyard decline [12]. The incubation time required
for the expression of GTD in the field complicates the assessment of suitable preventive
solutions under both controlled and natural conditions [8].

In the lack of precise information concerning GTD, certain confusions relating mainly
to the typical symptoms among these diseases, the biology of the causal agents, and the
means of their transmission, can hinder the protection efficiency of the vineyard. To ensure
holistic control and limit the impact of pathogens involved in GTD, it is essential to better
understand the conditions and factors associated with their emergence as well as the
biological and molecular mechanisms involved in the infection processes. The search for
innovative methods to control fungal diseases is now a necessity.

Despite the importance of the vine in some regions in Morocco and worldwide, the
production of grapes is not always guaranteed. Hence, few studies are carried out on GTDs
in Morocco. The present review is an update of scientific knowledge on GTD, by targeting
these fungal diseases in their entirety and diversity. We will also attempt to address the
symptoms related to each pathology, the mode of transmission of the causal agents, and
the harmfulness of recently reported pathogens. In addition, the new microbiological
and molecular tests and technologies that are used to diagnose these fungal diseases,
the grapevine defense mechanisms, the molecular mechanisms of endophytes fungal
colonization, and reports on the latest management techniques used in the GTD control
will be discussed.
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2. The Complexity of Grapevine Trunk Diseases

The grapevine can be subjected to many fungal diseases, and GTDs are amongst the
most common ones. Pascoe defined grapevine trunk diseases as, “all those diseases in
which the pathogen is primarily located in the trunk (or cordons) of the grapevine and in
which the main symptom is a slow decline as a result of interruption of xylem conductivity,
and/or toxin production”. These diseases are due to the infection of the xylem tissues of
mature wood by a pathogen and are, thus, permanent, deep-seated, difficult to diagnose,
and difficult to target with standard treatments [13]. GTDs are recognized as the main
identified cause of vine decline because they are detrimental to the sustainability of the
viticultural heritage. The causal agents of these diseases are responsible for the death of the
vine in the long term, requiring the renewal of plants that can reach more than 10% [14].

Because GTDs are more complex than other grapevine diseases such as powdery
and downy mildew, managing them presents a dilemma for winegrowers, nurserymen,
technicians, and scientists. One of the fascinating and controversial elements of GTD in
field trials is their undefined latency period (asymptomatic phase) [15]. Symptoms may
appear in year n and not in year n + 1 in the same vine due to environmental, climatic, and
cultural factors [16,17], leading to an underestimation of the true incidence in the vineyard
in any given year. During the many processes of plant production (hydration, cold storage,
grafting, callusing, etc.), infected asymptomatic cuttings might cross-contaminate GTD
pathogens), making latent infections harmful in the propagation process. If these infections
are not managed, an unnoticed spread of diseased plants may occur, first in the nursery
and subsequently throughout the vineyard [18].

GTDs, commonly known as decline diseases, include several disorders occurring
under different symptomatologies. Studies of these diseases, conducted in several wine-
growing areas worldwide, have shown the enormous number of fungal genera and species
related to the diseases which often vary based on climate and geographical areas [19].
These investigations have also shown that their life cycles are inextricably linked to specific
viticultural techniques, particularly dormant pruning. More specifically, pruning wounds
are the main entry point for GTD pathogens into vines. GTD pathogens can infect wounds
for up to four months, depending on the pathogen [20]. Because multiple viruses commonly
associated with distinct GTDs can infect the wood of diseased vines at the same time, the
internal and outward symptoms can intersect. Furthermore, even though neither cultivar
nor species in the genus Vitis have been identified to display complete resistance to GTD,
grapevine cultivars differ in their sensitivity to the development of foliar symptoms in
specific GTDs [21].

Esca disease, Eutypa dieback, and Botryosphaeria dieback are the leading players
of these diseases [22], which are associated with the presence of different fungi able to
degrade woody tissues. These pathogenic fungi attack the vascular tissues, contaminating
the perennial organs of the vine, thus causing the dieback of the plant. It is important to
emphasize that the diversity of causal agents, the complexity of their biology, as well as
the perceptible lack of available tools and control methods, are enough to complicate the
linear association that occurs in other plant diseases. External symptoms are ineffective for
diagnosing GTD efficiently and precisely. Traditional, molecular, and serological diagnostic
approaches may lead to the identification of a group of related pathogens with varying
virulence levels according to species or even strains, and that may have different sensitivity
to a certain treatment. In this context, the lack of valid and simple control methods has
hindered the feasibility of effective GTD control, as previously stated. All those elements
combined, constitute a serious obstacle to developing the wine industry in Morocco and
elsewhere [12].

2.1. Eutypa Dieback

An accurate description of Eutypa dieback or eutypiosis was provided in 1823. The
nature of this disease was not entirely clarified until the end of the 19th century. Referred
to as folletage by Pierre Viala (1859–1936) in 1887, its fungal origin was recognized by Luis
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Ravaz (1863–1937) in 1898 [23,24]. Eutypa dieback (formerly Eutypa dead arm) has been
recognized for damage in various locations since the 1970s, including Australia, France,
and California [25]. The first isolation of the pathogen, Eutypa lata, was carried out in
1900 from the apricot tree in Scotland. Subsequently, the fungus was first identified on the
grapevine in 1978 [26]. At that time, it was called Eutypa armeniacae, but it was given the
official name E. lata in 1984 [27].

Eutypa dieback is recorded in 88 species of dicotyledonous perennial woody plants,
grouped in 52 genera and 27 families [28]. It has been observed on several plants species
including lemon [29], apple [30], peach, almond [31], pistachio, apricot, blackcurrant,
cherry, hazelnut, olive [32], tamarisk, and vine. The disease is present in almost all the
vineyards of the world including Africa (South Africa [33], Algeria [34], and Morocco [35]),
America (Mexico [36], Venezuela [37], Brazil [38], Canada [39], United States [40,41], and
Uruguay [42]), Europe (Austria [43], France [44], Germany [45], Greece [46], Italy [47],
Romania [48], Switzerland [49], Bulgaria [50], Croatia [51], Spain [52], Hungary [53], Portu-
gal [54], Serbia [55], Slovakia [56]), Oceania (Australia [40]), New Zealand [57], and Swe-
den [49]), Asia (China [58], Iran [59], Jordan [60], Lebanon [61], Syria ([62], and Turkey [63]).
The disease is absent in semi-desert areas (<250 mm rainfall per year) [31] (Figure 1).

Figure 1. Global distribution of grapevine trunk diseases.

This disease is caused by the ascomycete fungus E. lata. Two forms of the fungus
are distinguished including asexual (or imperfect form) and sexual (or perfect form) [64].
The asexual form, called Libertella blepharis, appears on the surface of infected wood when
humidity is high. It is characterized by the presence of subglobular pycnidia of 200 to 300 µm.
These blackish and globose pycnidia emit a yellowish mucilaginous cord which contains
a multitude of filiform conidia. Characteristic and arcuate stylospores (pycnidiospores),
measuring 18–25 µm, are embedded within these conidia. On the wood, these form usually in
areas where the perithecia appear later [47]. Those stylospores do not play a role in the spread
of the disease [47] due to their difficulty to germinate and develop mycelium.

On the other hand, the sexual form E. lata is a highly polyphagous ubiquitous fungus
living in both saprophytic and parasitic states, which ensures the spread of the disease.
It develops under the bark (deadwood) and ensures its survival by the mycelium and
the perithecia. The perithecia are sexual reproduction organs, which remain fertile up to
5 years after infection in the form of a blackish stroma with a bumpy appearance [65]. This
contains the fruiting bodies or perithecia, which can only develop in regions where the
annual rainfall exceeds 350 mm and constitute the source of infection [65].
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Two other species are associated with this disease. These include E. leptoplaca in
California [66] and E. maura in Jordan [67]. The pathogenicity of the first species is shown
by the appearance of detached twigs or shoots. The fungus causes necrosis similar to
those obtained with E. lata. However, no experimentation was carried out to determine
whether it was responsible for the stunting observed in the vineyard. Regarding E. maura,
no pathogenicity tests were performed. Another fungus, known as Eutypella vitis, is also
found in Michigan on a grapevine showing eutypiosis symptoms [68]. Pathogenicity tests
show that E. vitis can cause less severe symptoms on the herbaceous part and in the wood
than those induced by the E. lata isolates [64].

In the spring, and due to the action of rain, the perithecia containing the asci burst and
release the ascospores. The spread of ascospores is ensured by the wind over very large
distances. Size wounds and frost injuries are the targets of ascospores that germinate in the
xylem vessels. Thereafter, the fungus progresses slowly through the wood. It gradually
colonizes wood vessels and adjacent tissues, developing sectorial necrosis. The plant
variably resists the progression of mycelium, depending on the sensitivity of the grape
variety [12].

E. lata produces toxins and virulence factors in the host plant. Spore entry sites
are wood injuries, mainly pruning wounds but also injuries caused by frost, hail, and
mechanical harvesting. The ascospores of E. lata can easily enter the wood vessels thanks
to their small size and sticky surface, which ensure a high adhesion capacity [69]. During
the fungal attack, the degradation of lignin, cellulose, and hemicellulose leads to the
formation of cavities in the walls and thus, makes the wood brittle [70]. In vitro studies
highlighted the strong lysis activity of plant cells (leaves or cell suspension) by fungal filtrate
proteins, including hydrolytic enzymes such as chitinases, β-1.3-glucanases, glycosidases,
and xylanases [71]. Some studies also revealed the presence of toxic molecules secreted
by the fungus under in vitro conditions, including acetylene and heterocyclic compounds.
The main one is Eutypin. It is composed of an aromatic part from the biosynthesis pathway
of shikimic acid and a side chain from mevalonic acid [72,73]. This acid causes a variety of
damage to plant cells. Once it penetrates the plant cells by passive diffusion, it is inserted
into membranes due to its lipophilic property. This causes cytoplasm acidification, a
decrease in leucine transport, hypertrophy of chloroplasts, an expansion of the thylakoids,
plasmalemma retraction, cytoplasm lysis, and vesiculation endomembranes [74]. This
secondary metabolite is absent in healthy vines but was found in the sap, leaves, stems, and
inflorescences of infected plants. Therefore, E. lata has an important arsenal for infecting,
occupying, and degrading vine wood, which made it difficult to control this pathogen [75].

Eutypa dieback can develop in the wood over years without any symptoms. Then, the
presence of the disease will be revealed only after the appearance of the first symptoms
characterized by leaf damping off, which are attributed to the production of fungal toxins.
This partly explains the difficulty of establishing a correct diagnosis in the early stages of the
infection [76]. Eutypiosis symptoms are most visible in spring [12]. They are characterized
by leaf chlorosis and drying, accompanied by dwarfing of the herbaceous organs, following
shortening of the internodes, and modification of the leaf structure. The tense and the
chlorotic aspect of the leaves lead to a photosynthetic decline giving the diseased arms a
bushy appearance with greyish or blackish areas. The latter correspond to the perithecia
that materialize the presence of the fungus [77] (Figure 2a). In the wood, these symptoms
appear as hard, brown, and sectorial necrosis with a dry appearance that develops from the
wound area and extends into the rest of the wood [12] (Figure 2b). These necroses are due
to enzymes that degrade the plant cell wall [65]. All these damages affect the production
and longevity of the vineyard, leading to substantial economic losses.
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Figure 2. (a) Perithecia materializing the presence of the fungus on the arm of the vine; (b) typ-
ical symptoms of eutypiosis on the wood (V-shaped necrotic zone); (c) ascospores of Eutypa lata;
(d) cottony white mycelium characteristic of E. lata.

2.2. Esca Disease

Esca disease is one of the most destructive diseases affecting grapevine crops in the
world [78]. The first references to Esca symptoms are mentioned in several ancient Greek
and Latin works. However, more precise descriptions date back to medieval times [79]. This
pathology has been described in its apoplectic form, and its origin was long undetermined
and attributed to a physiological disorder that was referred to as drying-out [80,81]. This
form was only assigned to a fungus and distinguished from the drying-out form at the end
of the 19th century [82]. In 1922, the term Esca was introduced to designate this disease
characterized by the presence of white rot and the apoplectic form [80]. Since the 1990s,
research on the Esca disease has increased along with the increase in the number of infested
vineyards in several European countries such as Germany, Italy, and Greece [83]. This
disease is mainly present in European countries (Germany [84], Austria [43], Bulgaria [85],
Croatia [86], Spain [87], France [88], Greece [89], Hungary [90], Italy [91], Montenegro [92],
Portugal [93], Romania [94], Serbia [95], Slovakia [96], Slovenia [97], Switzerland [98],
Czech Republic [99], and Ukraine [100]). It is also ubiquitous in America (USA [101],
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Canada [102], and Mexico [103]), Asia (Iran [104], Israël [105], and Turkey [106]), Africa
(South Africa [107], Algeria [34], and Morocco [108]), and Australia [13] (Figure 1).

Esca disease groups several syndromes caused mainly by vascular fungi that can
invade the vine plants, either during injuries or during handling in the nursery. At
present, numerous studies have shown that three fungal species are associated with Esca.
Phaeomoniella chlamydospora, Phaeoacremonium minimum, and Fomitiporia mediterranea are a
few examples [109]. Several more trunk pathogenic fungi have been isolated from vines
exhibiting Esca symptoms in addition to these three, but their role and interaction with
other fungi have yet to be elucidated [110].

Phaeomoniella chlamydospora: P. chlamydospora is one of the pioneers of Esca syn-
drome [64]. This anamorphic pathogen is also associated with Petri dish disease, which
is reported in South Africa, Europe, the USA, and Australia [111]. It belongs to the As-
comycetes class of the Herpotrichiaceae family [112]. Its sexual form is unknown. The
fungus is airborne. It penetrates through pruning wounds during the winter period. Its
propagation can also take place during the vegetative period of the vine [113]. Moreover, P.
chlamydospora spreads through rootstocks and grafts in nurseries. It has also been pointed
out that green operations such as disbudding, leaf removal, thinning, and pruning are
undeniable ways for the fungi to penetrate [64]. P. chlamydospora is classified as a blue stain
fungus because it does not degrade cell walls [114]. The enzymes produced and identified
are polygalacturonases, polymethylgalacturonases [115], β-glucosidases, and endo-β 1,4
glucanases. Extracellular polysaccharides have also been identified [116].

Phaeoacremonium minimum: P. minimum, named previously P. aleophilum, is one of the
predominant Phaeoacremonium species found on vines [79]. This species is described as an
intermediate genus between Phialophora and Acremonium [117]. More than 25 species of
Phaeoacremonium genus have been isolated from vines affected by Esca [118]. These include
P. aleophilum, P. angustius, P. inflatipes, P. mortoniae, P. rubrigenum, P. viticola, and P. parasiticum.
It should be noted that P. aleophilum is generally present in an asexual form in vineyards.
Sexual forms of different species of Phaeoacremonium have been found on the vine. This is
the case for the example of P. minimum [19]. This fungus spreads by air and contaminates
pruning wounds during the vegetative period. The excoriated trunk and arms are the
source of inoculum [64]. According to Gubler et al. (2004), P. minimum is classified as a soft
rot fungus because it grows inside the secondary walls forming cavities [119]. Its enzymatic
background consists mainly of xylanases, β-glucosidases, and endo-β 1,4 glucanases, as
well as seven other metabolites identified as potential toxins (naphthalenones).

Fomitiporia mediterranea: F. mediterranea is a basidiomycete of the Russulales order and
Hymenochaetacae family. This pathogen is involved in the Esca syndrome [120]. It is classified
as a white-rot fungus because it completely degrades cell walls. The biological life cycle of
this fungus has remained elusive. F. mediterranea only propagates if temperatures are above
10 ◦C and the hygrometry rate exceeds 80% [121]. In addition, it is conducted with an
arsenal of enzymes, namely xylanases, cellulases, β-1,3 glucanases, laccases, peroxidases,
and phenoloxidases. Other phydroxybenzaldehyde-like metabolites are produced by the
fungus [122].

F. mediterranea, P. minimum, and P. chlamydospora penetrate inside the trunk and twigs
of the vine through moist and recent pruning wounds. This is accomplished by the basid-
iospores that germinate on the surface of the wounds, or through the mycelial fragments
that can be carried by the pruning instruments. Inside the vine, the fungi disorganize the
cells. This disorder can descend all along the vine. The fungi destroy the wood by killing
first the infected parts, following the development of the mycelium inside the deadwood.
The fungi may produce potential ligninolytic enzymes capable of degrading the lining in-
side [123]. The wood becomes soft and friable, forming a spongy and yellowish tissue [124].
According to Larignon et al. [9], the fungi Phaeoacremonium spp. and P. chlamydospora serve
as pioneers of the Esca that can attack, digest, and transform the wood into tinder [9]. By
contrast, E. lata causes hard brown necrosis in the lower part of the trunk [44] (Figure 3).
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Figure 3. The life cycle of the fungus causing grapevine trunk disease.

Despite past research efforts, the information regarding the disease epidemiology
remains unknown. In 2000, a survey was carried out in Tuscany, Italy to study the epi-
demiology of Esca. The findings of the survey confirmed that in all the studied vineyards,
disease incidence varied from year to year, perhaps about the amount of summer rainfall
and/or the air temperature. The data revealed that it is very difficult to predict the occur-
rence of external Esca symptoms in a given year. Infected plants operate in a way that
seems completely erratic. Plants that are strongly symptomatic one year may grow and
produce almost normally the next, and plants that outwardly seem normal in one year
(although the wood of the trunk is always more or less rotted) will not vegetate at all the
following year [125].

The external symptoms of Esca can appear in different forms, slow and lightning or
apoplectic forms of the herbaceous organs at the beginning of the summer period [9]. This
expression varies from one year to another.

The slow form: This pathology, characterized by very specific functional signs, is
the most frequent form. The disease is accompanied by the appearance of yellow spots
on the limb, thus causing discolorations on the interveinal area and the edges of the
leaves. Reddish colors appear in the centers of these discolorations, develop and then
fuse, therefore creating larger patches. The red leaf blade is then separated from the
green veins by a light yellow border. The leaves show, therefore, a characteristic tiger-like
appearance [9]. Symptoms onset is preceded by a decrease in photosynthetic activity, a
change in oxidative metabolism, and the expression of defense genes in the leaves [126].
Accordingly, the leaves eventually perish and fall off. This symptomatic manifestation can
affect either the whole plant, a single arm, or a few twigs (Figure 4a). The manifestation
of symptoms is particularly observed during mild and rainy summers. It is important to
mention that the leaves from the lower part of the twigs are affected first [127,128].



J. Fungi 2022, 8, 595 9 of 27

Figure 4. (a) Leaf symptoms of esca on grapevine; (b) necrosis observed in affected vines (A. white rot;
L. interaction zone (border) located between white rot and healthy wood; P. black spots; S. sectorial
necrosis; B. healthy wood); (c) morphological characteristics of Phaeomoniella chlamydospora; (d) globu-
lar chlamydospores formed within the mycelium; (e) morphological characteristic of Phaeoacremonium
minimum; (f) conidiophore and hyaline conidia, oblong-ellipsoid to an allantoid characteristic of
P. minimum.

The apoplectic form: Usually occurring in dry climates and in midsummer, the apoplec-
tic form is most often similar to lightning or apoplectic appearance and is much more
spectacular in the vineyard. Within a few days, there is a sudden loss of leaf turgidity,
resulting in a greyish-green coloration that indicates the wilting of the entire plant or a
branch [129]. This lightning form is characterized by a drop in the photosynthetic activity
of the leaves one week before its expression [130]. A cross-section shows two types of
necrosis characteristic of the Esca differing in their position and the number of zones in
which they colonized [113]. The first is clear and soft necrosis in a central position. This
necrosis, which contains several zones, is characterized by a black border surrounding a
white rot and is separated from healthy wood by a pinkish-brown zone. At the periphery
of the necrosis, black punctuations are regularly observed. Brown necrosis can also be
noted in the central position consisting of blackish and pinkish-brown zones. This necrosis,
also called pre-Esca necrosis, always precedes the light and tender necrosis in the central
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position. As the second type of necrosis, it is clear and tender in a sectorial position. It
contains two zones: a chamois-brown zone, limiting the white rot. This necrosis is preceded
by another necrosis of a brownish buff color located in a sectorial position, characterizing
the eutypiosis disease [131] (Figure 4b).

2.3. Botryosphaeria Dieback

Botryosphaeria dieback, previously named Black Dead Arm (BDA), has been known
as slow apoplexy. The term BDA was coined by Lehoczky in 1988 to make a distinction
between this disease and the “Dead Arm Disease” caused by Phomopsis viticola [132]. The
name comes from the fact that the phloem and xylem tissues of infected woody areas show
a black coloration [133]. This disease attacks the framework of the strain, causing long-term
death. This dieback was often attributed to Esca, given the similarity of symptoms in the
vegetation [134].

The geographical distribution of this pathology is often linked and confused with the
slow form of Esca disease. It is described in Chile [135], Spain [136], France [9], Hungary [132],
Iran [137], Italy [138], Lebanon [139], Portugal [140], and Turkey [141] (Figure 1).

Very little is currently known about the epidemiology of Botryosphaeria diseases of
grapevines. The enormous and increasing number of Botryosphaeria species found on
grapevines makes epidemiological research of this pathogen more difficult. Species of
Botryosphaeriaceae can differ in their epidemiology, the disease symptoms they cause, and
their relative importance. Úrbez-Torres highlighted the importance of understanding the
epidemiology of Botryosphaeriaceae species by studying sources of inoculum, conditions that
endorse spore release, seasonal spore release patterns, seasonal susceptibility of pruning
wounds, and factors that favor infection [142].

According to research, varied species require different climatic conditions to create
fruiting structures. As a result, Botryosphaeria infection could occur in a variety of climatic
conditions [143]. Moreover, the longer the period of wetness and high relative humidity
extends, the more spores are produced and released, hence creating a much higher inoculum
load and increasing the severity of infection [144]. According to several authors, an increase
in wetness duration combined with high inoculum levels led to an increase in severe
pistachio and peach tree infections [145,146].

The period of the pruning woods being susceptible to infection has not been thoroughly
investigated. In the past, studies have shown that wounds are susceptible to infection
for up to 4 months after pruning [20], but that susceptibility diminishes as the interval
increases between pruning and infection [142]. Botyosphaeriaceae species have been found
overwintering on dormant canes, in diseased wood, and on pruning debris on the vineyard
floor mainly as pycnidia [132,147], which has been recognized as one of the most important
inoculum sources in the field [142].

Botryosphaeriaceae species develop over many years in a vineyard, leading to a general
loss in vigor and productivity of the grapevines, with symptoms rarely seen in one-year-old
canes. Nonetheless, Larignon and Dubos (2001) discovered dark lesions on 1-year-old
canes that were artificially inoculated with two Botryosphaeriaceae species [148]. In addition,
Botryosphaeriaceae species have also been isolated from propagation material (young vines),
rootstock mother vines, and failed graft unions of young plants in nurseries [149,150]. A
recent study has reported that conidia of two species of Botryosphaeriaceae can be dispersed
up to 2 m from the inoculum point in a single rainfall event [151].

In the herbaceous part, the first symptoms appear early and are present throughout
the vegetative period. They can appear on one or more parts of the plant. The leaves of
the lower part of the plant are most often affected first. Symptoms can evolve very rapidly
(severe form) or pass through different phases (slow form), leading to premature leaf fall
(Figure 5a). The slow form results in delayed grape ripening and a thinning of the foliage,
which can give a tiger-like appearance to the leaves. Consequently, a set of reddish (black
grape varieties) or yellow (white grape varieties) spots can be developed. The severe form
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is characterized by a drying of the inflorescence or clusters or rapid defoliation of the
branches [14,152–154].

Figure 5. (a) Characteristic symptoms of Botryosphaeria dieback leading to leaf fall; (b) detail brown
band and vessels obstructed by yellowish material; (c) grey sectorial necrosis; (d–f) appearance of
the mycelia of Botryosphaeria dothidea, Botryosphaeria stevensii and Neofusicoccum parvum after 7 days
incubation; (g–i) aspects of conidia of Botryosphaeria dothidea, Botryosphaeria stevensii and Neofusicoccum
parvum, respectively.

As for the wood, the bark peeling shows a brown strip a few centimeters wide, which
starts from the twig and reaches the weld or even the rootstock. A cross-section made in
the wood shows, at the edge of the brown band, a yellow to orange zone, limited to a few
millimeters deep, in which the vessels are obstructed. These brown bands are most often
in association with sectorial necroses, which are different from those of Eutypa dieback,
not only by their color but also by their texture. The color is rather gray for the canker
observed in plants affected by Botryosphaeriacae, and buff-brown for those affected by
Eutypa dieback [155] (Figure 5b,c).

In the Botryosphaeriaceae, 21 different species were declared presently associated with
Botryosphaeria dieback, the most frequent species isolated from these different necroses
are Diplodia seriata, Diplodia mutila, and Neofusicoccum parvum. They are found on different
plants and can cause a large number of dieback events [128,156]. Little information is
given on the type of decay they cause in wood and on their enzymatic equipment. D. seri-
ata secretes tyrosol, melleins, mellein derivatives, and 4-hydroxybenzaldehyde [157–159].
However, no relationship between pathogenicity and the level of toxins produced has been
demonstrated. The life cycle of fungi on the grapevine is poorly known. Sporulation takes
place during the vegetative period and seems to be independent of rainfall [160]. The way
of entry of these pathogens is uncertain; however, infection via pruning wounds is strongly



J. Fungi 2022, 8, 595 12 of 27

suspected [9]. They are preserved in the form of pycnidia that are localized either on the
vine (trunk, arms, and pruning wounds) or pruning left on the ground [64].

3. Identification of Pathogens
3.1. Diagnosis of the Disease and Molecular Identification

In the absence of curative treatment against GTD, one of the most effective strategies
to prevent its spread is to be able to early detect infected vines. Several research studies are
thus focused on the development of diagnostic methods [8].

The identification of fungal species has undergone a spectacular evolution over time,
from classical identification to identification via different tools such as conventional poly-
merase chain reaction (PCR), random amplified polymorphic DNA (RAPD), restriction
fragment length polymorphism (RFLP), etc. In the case of grapevine decline, different
studies have been conducted for PCR diagnosis either directly with DNA extracted from
the necrotic wood or indirectly with DNA extracted from the mycelium re-cultured from
the necrotic wood fragment [77,161–163].

Conventional PCR is a tool that targets in vitro replication techniques to obtain large
quantities of a specific DNA fragment of defined length [134]. This is achieved by targeting
specific regions in the fungal genome. The majority of wood disease diagnostics by PCR tar-
get internal transcribed spacer (ITS) sequences of fungal ribosomal ribonucleic acid (rDNA),
or other gene sequences encoding for actin or β-tubulin [19,164]. The RAPD technique help
construct genetic maps [165], as the generated PCR products from RAPD give a unique
profile on the gel, making it possible to identify the desired fungus by comparing the pro-
files of the studied fungi to the profiles of other reference fungi. This amplification allowed
the development of primers specific to amplified Sequence characterized amplified region
(SCAR). However, in the case of GTD, several primers were used for the identification of F.
mediterranea and P. chlamydospora associated with Esca disease [166], E. lata responsible for
Eutypa dieback [162], and D. seriata linked to the Botryosphaeria dieback [167] (Table 1).

Table 1. Specific primers to detect different fungal species involved in vine wood diseases.

Fungus Primer Sequence Length Reference

Eutypa lata Eut02
Eut02

5′TGGTGGACGGGTAGGGTTAG3′

5′GGCCTTACCGAAATAGACCAA3′ 643 bp [162,168]

Phaeoacremonium minimum PAL1
PAL2

5′-AGGTCGGGGGCCAAC-3′

5′-AGGTGTAAACTACTGCGC-3′ 415 bp [169]

Phaeomoniella chlamydospora Pch1
Pch2

5′-CTCCAACCCTTTGTTTATC-3′

5′-TGAAAGTTGATATGGACCC-3′ 360 bp [169]

Fomitiporia mediterranea Fmed1
Fmed2

5′-GCAGTAGTAATAATAACAATC-3′

5′-GGTCAAAGGAGTCAAATGGT-3′ 550 bp [170]

Botryosphaeriaceae spp. Bot-BtF1
Bot-BtR1

5′-GTATGGCAATCTTCTGAACG-3′

5′-CAGTTGTTACCGGCRCCAGA-3′ 410 bp [171]

3.2. Real-Time PCR

Real-time PCR platforms are at the cutting edge of diagnostics, combining PCR chem-
istry with fluorescent probes/dyes to detect amplicons in a single closed reaction, reducing
the risk of contamination. Fluorescence is generated in proportion to the amount of am-
plified DNA, which provides quantitative results in “real-time” without post-amplification
analysis. Major detection formats include fluorescence resonance energy transfer (FRET)
probes, TaqMan probes, dual probes, fusion curve analysis, and molecular beacons [172–174].
Billones-Baaijens et al. [171] have developed qPCR primers that can detect and quantify
multiple species of Botryosphaeriaceae from the environment. It is the first qPCR method
developed to target spores of multiple species. The developed protocol in this study was
able to distinguish 10 species. Furthermore, the quantification was not affected by the
nontarget DNA present in the samples [171].
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Pouzoulet et al. [175] have designed two sets of qPCR primers that can target the beta-
tubulin gene of two fungi (D. seriata and E. lata) for their use in qPCR SYBR Green chemistry.
Moreover, the authors were able to detect and quantify the two fungi from naturally and
experimentally infected samples during different conditions. These analytical approaches
can improve and give a full idea about the etiology of both Eutypia and Botryosphaeria
diebacks on the grapevine, which will help in disease management. Additionally, the study
demonstrated the potential of this test to detect and track both fungi in wood samples from
the field and prove the high sensitivity and accuracy of the detection to the traditional
microbiological method.

4. Grapevine Defense Mechanisms against Fungal Attack

When a plant is threatened, it activates a series of genes that code for various effectors,
receptors, signaling molecules, and protective molecules. Recognizing the genetic and
molecular basis and identifying important genes involved in defense may provide valuable
insights for GTD management. Grapevines, like other plants, attempt to fight back by acti-
vating defensive mechanisms namely the antioxidant system, the phenylpropanoid path-
way, pathogenesis-related (PRs)-proteins, and phytoalexin synthesis, among others [176].
PRs proteins are an essential component of innate immune responses under biotic and
abiotic stress. The PRs proteins protect the plants from infection by accumulating in non-
infected tissues as well as in damaged and adjacent structures. The hypersensitive response
(HR) and systemic acquired resistance (SAR) to infection are likewise mediated by PRs
proteins. In response to any stress scenario and/or invading pathogen, the creation and
activation of PRs proteins are essential. During incompatible host–pathogen interactions,
the plant’s defensive responses restrict the damage caused by the pathogen.

Since the discovery of PRs proteins, the regulation of PR gene expression has been
a highly active research area. The signaling that promotes pathogen-induced PR gene
expression in plants, on the other hand, is yet unknown. This is due partly to the variety
of environmental stimuli and phytohormone stimulation, which can cause the expression
of several PRs genes [177]. PRs were discovered not for their anti-pathogenic properties,
but rather for their ease of detection in infected plants. PRs are induced in a variety of
plant species from various families, implying that these proteins play a broad role in biotic
and abiotic stress adaptation. Many plant species from many families are induced in PRs,
suggesting that PRs have a broad protective effect against biotic stress [178].

Nevertheless, the host’s arsenal of protection against aggressors is frequently ineffec-
tive to stop the disease from spreading depending on the pathogen’s lifestyle (necrotroph,
biotroph, or hemibiotroph).

Different hormone-mediated signaling pathways regulate transcriptional reprogram-
ming and, more importantly, plant defense mechanisms [179]. Based on Arabidopsis thaliana
studies, Jasmonic acid (JA) and ethylene (ET) mediate defense responses to necrotrophic
pathogen defense, which is boosted locally and systemically when microorganisms release
cell wall-degrading lytic enzymes [180]. In addition to wall components, some phospho-
lipids released by plasma membrane degradation directly trigger JA biosynthesis [181]. The
increased expression of defense genes such as glucanases, chitinases, protease inhibitors,
and enzymes involved in the formation of secondary metabolites such as phytoalexins,
is triggered by the increase in JA levels [182]. Salicylic acid (SA), on the other hand, is
essential for resistance to biotrophs and hemibiotrophs, as it leads to an increase in reactive
oxygen species (ROS) and, as a result, localized programmed cell death (PCD) in infected
tissue [183]. This HR restricts pathogen growth by limiting their access to nutrients and
water [182]. Plants must be able to recognize these pathogens for these events to occur.
During attacks, the signaling molecules SA [184,185] and ROS [186], upregulate acidic
PRs, whereas basic PRs are upregulated by gaseous phytohormone ethylene and methyl
jasmonate [187].

Currently, three types of plant–pathogen interactions have been documented. The first,
PTI or PAMPs-triggered immunity (recently renamed MTI or MAMPs-triggered immunity),
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is a non-adaptive pathogen-triggered immune response. This corresponds to the first line
of defense, common in plants of the same species facing pathogenic microorganisms [183].
PTI is mediated by plasma membrane-localized pattern recognition receptors (PRRs),
which have an extracellular domain able to detect PAMPs and an intracellular domain
that amplifies the signal inside the cell [188]. The second form of interaction is the effector-
triggered susceptibility (ETS), termed after the capacity of certain microorganisms to
overcome the baseline plant response by secreting virulence factors (effectors) that inhibit
PTI, hence promoting the disease [183]. Lastly, effector-triggered immunity is a third sort
of interaction (ETI). Receptors known as resistance proteins (R) allow plants of a specific
genotype to recognize pathogen effectors. If an effector is identified by an R protein,
either directly or indirectly, it is classified as an avirulence factor (AVR) and then the
pathogen becomes avirulent to that plant since this interaction promotes the activation of
HR [189,190].

The PR proteins have been classified into 17 families based on molecular mass, iso-
electric point, localization, and biological activity, including β-1,3-glucanases, chitinases,
thaumatin-like proteins, peroxidases, ribosome-inactivating proteins, thionins, nonspecific
lipid transfer proteins, oxalate oxidase, and oxalate oxidase-like proteins [191]. Chitinases
and β-1,3-glucanases are two essential hydrolytic enzymes that accumulate in a variety
of plant species after infection by various pathogens. Chitinases, for instance, are exten-
sively dispersed across the kingdoms of plants, animals, fungus, and bacteria. These
enzymes catalyze the cleavage of a bond between C1 and C4 of two consecutive N-acetyl-
D-glucosamine monomers of chitin, which is found in fungal cell walls and arthropod
shells. Plant chitinases are usually endo-chitinases that may degrade chitin as well as
suppress fungal growth. Many studies have found that chitinases, together with β-1,3
glucanases, play a significant role in plant defense against fungal infections. Various inves-
tigations in the sugar beet [192], wheat [193], and tomato [193] demonstrated that chitinase
expression is upregulated by phytopathogen systems, and resistant types have higher
upregulation than susceptible varieties. Transformation of chitinase genes was performed
in tobacco [194], grapevine [195], rice [196], and peanut [197], achieving, thus, enhanced
disease resistance. Plant β-1,3-glucanases, on the other side, belong to the PR-2 family of
pathogenesis-related proteins and reportedly play a key role in plant defense responses to
pathogen infection. Plants, yeasts, actinomycetes, bacteria, fungus, insects, and fish have
all been reported to have these enzymes [198]. These enzymes catalyze the cleavage of
the β-1,3-glucosidic bonds in β-1,3-glucan, another major structural component of the cell
walls of many pathogenic fungi [199]. It has been proposed that β-1,3-glucanases hydrolyze
fungal cell walls, causing the lysis of fungal cells when defending against fungi. β-1,3-
glucanases also cause the synthesis of oligosaccharide elicitors in response to pathogen
encounters, which elicit the production of other PR proteins or low molecular weight anti-
fungal compounds, such as phytoalexins [200]. For example, Camps et al. [201] reported
an up-regulation of several genes encoding PR proteins (thaumatin and osmotin, chitinase,
and β-1,3-glucanase) in leaves of infected rooted cuttings (Carbernet Sauvignon) artificially
infected with E. lata [201]. The work of Mutawila et al. [202] showed that the elicitation of
cell suspension culture of V. vinifera cv Dauphine with E. lata culture filtrate resulted in
an induction of VvPR2 (β-1,3-glucanase), VvPR5 (thaumatin and osmotin-like proteins),
VvPR3 and VvPR4 (chitinase), and VvPR6 (protease inhibitor, PIN). Secondary metabolite
induction is frequently linked to both defensive and pathogenic reactions [202–204]. Sec-
ondary metabolism is highly induced after infection of grapevine by numerous pathogens,
including E. lata [176].

Several reports have indicated an upregulation of PAL, which encodes the first enzyme
of the phenylpropanoid pathway, as well as genes coding for enzymes of the flavonoid
and stilbenoid pathways, chalcone synthase (CHS), and stilbene synthase (STS), respec-
tively [202]. Grapevine phytoalexin is a stilbene compound including the 3,5,4c- trihydrox-
ystilbene or resveratrol and derivatives [205]. The phenylalanine/polymalonate pathway
is used to synthesize stilbenes. The enzymes PAL and STS are required for resveratrol syn-
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thesis. Both genes were found to have coordinated expression in V. vinifera cv. Optima cells
were treated with a fungal cell wall preparation [206] and leaves of Cissus antarctica were
treated with UV light [207]. Grapevine resistance is enhanced by stilbenes. They are found
in large concentrations in the heartwood of grapevine trunks, where they effectively inhibit
wood decay caused by fungi. They are also collected in leaves or berries in response to
infection by pathogens such as P. viticola or B. cinerea, and their antifungal effects have been
investigated. Resveratrol has low antimicrobial action [208], but it is a precursor to more
active derivatives and is accumulated in high concentrations in response to elicitation or
pathogen attack. There have been established correlations between the ability of grapevine
varieties or species to produce stilbenes and their resistance to cryptogamic diseases. Ad-
ditionally, foreign expression of the stilbene synthase gene in plants or overexpression
of the gene in grapevine usually results in increased pathogen resistance. Resveratrol
inhibits E. lata mycelium growth in vitro [209], but it is unclear whether resveratrol and
other phenolic compounds inhibit E. lata wood colonization in vivo [202].

According to recent data about grapevine/E. lata interaction, grapevine exhibits some
of the typical responses of the PTI, such as PR-protein synthesis and secondary metabolites
accumulation, suggesting that this fungus is sensed by the host [210]. Most V. vinifera
cultivars, on the other hand, are vulnerable to E. lata, implying that defense responses are
insufficient to prevent infection [202]. In grapevine, several PR proteins are synthesized
upon infection through recognizing MAMPs (microbe associated molecular patterns) or
DAMPs (damage-associated molecular patterns) such as oligosaccharide, lipid, and pro-
teinaceous elicitors [211]. The majority of PR-proteins have direct antibacterial properties,
(e.g., osmotin and thaumatin) via hydrolytic activity on pathogen cell walls, (e.g., glucanase
and chitinase) and/or indirectly lead to the production of elicitors that trigger additional
defense responses [212]. Following infection with a wide range of pathogens such as
Botrytis cinerea, P. viticola, and E. necator, numerous studies have revealed the selective
expression of PR-protein producing genes in distinct grapevine cultivars [176]. Up to now,
few defense genes are known in grapevine, mainly PAL, VST or STS (stilbene synthase),
LOX (lipoxygenase), CHIT (chitinase), GLU (glucanases), and PGIP (polygalacturonase
inhibiting protein) and their expression have been studied in response to various elicitors.
The recent sequencing of the grapevine genome now allows researchers to investigate
variations in global gene expression in response to elicitors or pathogen infection [213].

All of these findings showed that resveratrol, derivative chemicals, and flavonoids play
a role in cell wall strengthening in response to infection or elicitor treatment. Numerous
chitinases (PR3, PR4, PR8, and PR11) have been found in leaves that are either constitutive or
inducible by wounding, SA treatment, or infection with P. viticola, E. necator, or B. cinerea [214].
Osmotins or thaumatin-like proteins [215], a ribonuclease-like protein [216], and a lipid
transfer protein or LTP (PR14) have all been identified as PR proteins. These PR proteins may
be involved in grape defense, but this hypothesis remains to be ascertained. The grapevine
phytoalexins resveratrol and its derivatives have been extensively researched. In addition to
antibacterial activity, they may promote cell wall strengthening. Elicitors’ mode of action and
activity is controlled by their chemical structure. Elicitors seem to be of special relevance for
crop protection since they cannot only elicit defenses in a wide range of plants, but they are
also usually non-toxic and appropriate for industrial manufacturing from readily available
sources. Despite encouraging results, the use of induced resistance in the vineyard is still
plagued by inconsistency and yet has only provided minimal disease control.

5. Molecular Mechanisms of Fungal Endophytes Colonization

Several associations were reported between fungi and plants such as mycorrhizas,
parasitism, myco-heterotrophic, and antagonism. These associations can benefit or be
detrimental and lead to the death of the plant. Much attention is being paid to the molec-
ular mechanisms underlying fungal endophytes colonization, whilst only a few studies
were carried out to examine the mechanisms/interactions between plant and fungal endo-
phytes [217,218].
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To colonize the plant, the endophytic fungi need to break the cell walls which is the
first physical wall to go through. The different molecular exchanges between the host and
the endophytic fungi took place through the plasma membrane and the cell wall. Later,
this is deeply involved at the molecular level by mediating most interactions.

Endophytic fungi secrete cell wall degradative enzymes such as pectinase, cellulase,
laccase, etc., which promote the degradation of the cell wall and cause structural damage,
helping in the colonization of plant tissues [219].

As an example, ericoid mycorrhiza has a similar degrading enzyme gene content
library as pathogens and saprophytic fungi, like the polysaccharide degrading enzymes,
lipases, proteases, and some enzymes involved in secondary metabolism. The genome
of ericoid mycorrhiza contains numerous numbers of the CAZymes, quinone-dependent
oxidoreductases, and iron reductase, then other endo and ectomycorrhizal fungi genomes.
Their genome encodes for several genes coding and enzymes such as cellobiose dehydroge-
nases, lytic polysaccharide monooxygenases, as well as laccases which are involved in the
cleavage of different compounds such as cellulose, chitin, pectin, and hemicellulose [219].

As an example of a biotrophic fungus, the Phytophthora infestans (Mont.) is a destruc-
tive pathogen to plants; it uses both cytoplasmic and apoplastic effectors during host
colonization. These effectors contain RXLR (conserved motifs -arginine, any amino acid,
leucine, and arginine) and are potentially involved in transcriptional regulation in the host.
The pathogen uses AVR3a, a cytoplasmic RXLR effector which helps in the stabilization
of U-box that contain E3 ligase protein (CMPG1) during the infection of the plant [220].
The degradation of this ligase protein leads to the induction of a form of a plant cell death
named infestin 1 (INF1)-triggered cell death (ICD). The RXLR effector, i.e., AVRblb2 en-
hances fungus pathogenicity by inhibiting the release of a papain-like cysteine protease
(C14), which plays a role in the inhibition of the fungus infection in the host. These effectors
have shown a dual function. They not only invade the host physiology of susceptible plants
but also affect the immune response of resistant plants [220].

6. Control Methods

So far, no grape varieties are known to be immune to GTD. Since the banning of sodium
arsenite because of its toxicity, a worrying progression of diseases in vineyards around the
world is taking place. Only Esquive® produced by Agrauxine, and Vintec® produced by
BELCHIM Crop Protection, have been authorized to fight against these diseases. Other
products are being studied, including molecules capable of transporting the pathogen
through the plant [221–223].

The major problem with GTD lies in the total absence of curative treatment, as the
pathogen spreads easily. The application of prophylactic measures is recommended, al-
though their effectiveness is discussed. Good prophylaxis involves the systematic and
total elimination of all deadwood, whether from the vine or a surrounding forest [153,224].
Storage of pruning wood close to vineyards is prohibited, and it is preferable to remove this
wood quickly to avoid inoculum maintenance. Late pruning of susceptible grape varieties
can also be considered to have less receptive wounds.

According to prior studies, more than 90 active ingredients were investigated from
2000 to 2018 against the Esca diseases, Botryosphaeria dieback, and Eutypa dieback. The
majority of the active substances tested are synthetic organic compounds that are employed
singly or in mixtures. The most commonly tested chemical groups include benzimidazoles,
triazoles, and strobilurins [224].

The most efficient benzimidazoles were benomyl, carbendazim, and thiophanate-
methyl, which consistently showed great efficacy in both the lab and in the field for
pruning wound protection and nurseries, regardless of the geographical area or GTD
targeted. Their effectiveness against the major GTD was mostly attributable to their
broad-spectrum fungicidal action, persistence, and systemic activity. Except for E. lata,
they demonstrated high competence in decreasing both mycelial growth and conidial
germination in vitro testing. Benzimidazoles were used to protect vines against new
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infection in pruning wounds, mostly as preventative treatments and, to a limited extent,
as curative ones. A previous study reported a 14-day long-lasting preventive effect of
benomyl in protecting wounds from E. lata infections, as well as a moderate curative
effect of benomyl and carbendazim, unless the active ingredients were applied 1 day after
E. lata inoculation [225]. Moreover, benzimidazoles sprayed or painted on pruning wounds
showed similar efficiency. A disadvantage of benzimidazoles is that fungi can acquire
resistance to them, as demonstrated by P. minimum’s resistance towards carbendazim [226].
In nurseries, benzimidazoles effectively reduced the presence of vascular Esca complex
pathogens. When applied during hydration or before grafting, benomyl and carbendazim,
for example, decreased the amount of pathogen inoculum in grafted plants [117,227].

Triazoles, on the other side, are the most common group among synthetic chemicals.
They are currently used to prevent vineyards from a variety of diseases (powdery mildew,
botrytis bunch rot, etc.). Triazoles have been tried to manage GTD for this reason, as well
as for their systemic characteristics. In vitro tests demonstrated that it is very effective at
inhibiting conidial germination and reducing the mycelial growth of GTD pathogens [228]
Some of these positive in vitro effects were tested and verified in planta bio-assays.

Currently, strobilurins are used to control downy and powdery mildew in vineyards.
They were examined to see if they could protect pruning wounds in particular. In both
in vitro and wound protection trials, pyraclostrobin has shown to be the most effective
against GTD pathogens. According to previous studies, other strobilurins were only inves-
tigated in vitro and exhibited various efficiency depending on the GTD pathogen [229].

The resistance of the pathogen to chemicals is one of the major constraints of phytosan-
itary treatments, it is due to the often-prolonged misuse of these products. Alternatives
are at the center of farmers’ major concerns. Several biocontrol agents have been tested to
limit wood diseases such as Trichoderma, which have a battery of potentially usable attack
mechanisms. These fungi have antagonistic and hyperparasitic activity against a large
number of microorganisms, particularly soil microorganisms, and are used in the biological
control of various diseases on different crops [230].

It should be noted that various studies have explained the abundance of Trichoderma
species in different ecosystems by their ability to produce various bioactive substances and
enzymes that are responsible for the degradation of the cell walls of pathogens. They are
therefore an important link in biological chains [231,232]. For their part, Gaigole et al. [233],
consider Trichoderma as a cellulitic ascomycete.

The mycoparasitic activity of Trichoderma spp. against the sclerotia of plant pathogenic
fungi is considered a powerful tool for efficient and effective biological control since these
highly resistant vegetative structures represent the primary form of survival of the pathogen
in the soil [234]. Singh et al. [235] have studied the interaction established between Tricho-
derma and the plant pathogenic fungi by histological and biochemical analysis and showed
that several enzymatic activities are related to mycoparasitism, such as enzymes degrad-
ing cell wall components, namely, chitinase, cellulase, lipase, and protease or phenolic
compounds, laccase degrading lignin and melanin.

The development of sophisticated biopolymer-based systems is the current trend
in encapsulation application in agriculture, i.e., microcapsule formulations combining
two active agents. Given the wide range of encapsulation procedures for encapsulated
chemical agents, there are few investigations on simultaneous encapsulation and delivery
of biological and chemical agents in the literature [236].

More recently, Peil et al. [237] have developed a spore-compatible layer-by-layer
assembly to encapsulate the spores of a new mycoparasite strain of Trichoderma reesei
IBWF 034-05 in a bio-sourced and biodegradable lignin shell creating a surfactant-free,
self-stabilizing spore dispersion. The lignin shell protects the spores by transferring them
into a dormant state. The spore dispersion that results is colloidally stable for several
months and can be injected into the trunk. Once injected, encapsulated spores fulfill the
role of a Trojan horse. If the plant is infected with Esca pathogens, the pathogens’ lignin-
degrading enzymes degrade the lignin shell and initiate the germination process. T. reesei
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that has germinated is capable of parasitizing fungal infections and displacing them from
their natural habitat. At the same time, T. reesei strengthens plants against subsequent
infections. This concept allows T. reesei IBWF 034-05 to be used for both protective and
curative treatments of Esca, one of the most infectious GTDs in the world [236,237].

Encapsulation prevents undesirable premature germination and allows application as
an aqueous dispersion by injection into the trunk. The spores injected into the plant remain
resting. When lignin-degrading fungi infect the plant, the shell is enzymatically degraded,
and germination is selective. This concept allows Trichoderma spores to treat against the
main GTDs such as Esca [237].

In addition, phytocompounds should be much more advantageous than synthetic
pesticides since they are biodegradable, non-polluting, and do not have residual or phy-
totoxic properties. Ammad et al. [238] have demonstrated that the essential oil of lemon
(Citrus limon L.) significantly inhibits the growth of three pathogenic fungi of vine wood
(Eutypa sp., B. dothidea, and F. mediterranea). The findings revealed a novel usage of lemon
essential oil to prevent fungal diseases of grapevine wood for the first time [238]. The
antifungal potential of citrus essential oils has been widely highlighted [239,240]. Moreover,
Van Hung et al. [241] reported that mycelial growth decreases with increasing essential
oil concentration. Similar results were obtained by Mishra and Dubey (1994) [242], with
essential oils of oranges (Citrus Sinensis) against Aspergillus flavus Link. On the other hand,
the effect of lemon oil (C. limon) was observed against Trichophyton mentagrophytes, Epi-
dermophyton floccosum, and Microsporum gypseum [243]. It seems that this citrus inhibitory
effect is due to the richness of citrus essential oils in monoterpenes, as shown by Sawamura
(2011) [244]. These are apolar compounds with great penetrating power [242]. They diffuse
into fungal membrane structures and damage them by increasing their permeability. They
also inhibit intercellular and extracellular enzymes and act as a regulator of cell metabolism
by affecting enzyme synthesis in the nucleus or ribosome. Fisher and Phillips (2008) [121]
highlighted that they interact with nutrients uptake from the environment, which affects
mycelial growth in fungi.

Sanitary measures are also taken in nurseries. Indeed, these are major sources of con-
tamination of future vines [245]. The hot water treatment of cuttings initially used to control
“Flavescence dorée” and black wood is also being investigated as a low-cost alternative.
Nevertheless, some grape varieties resist treatment poorly, resulting in losses [246,247].
Pierron et al. [248] studied a method of treating cuttings in nurseries with ozonated water
to control Esca. This method, widely used in agriculture for post-harvest treatments or in
food processing, has proven its antimicrobial properties. For example, it is effective against
B. cinerea attacking table grapes [249] or against powdery mildew on cucumber leaves [250].
It is a highly oxidizing product with low persistence, causing spore germination to stop at
100% in vitro and 50% in planta [249].

7. Conclusions

The grapevine confronts a plethora of threats during its life, some of which act in
the first period of its life (Petri disease, Blackfoot, Verticilliosis), and others later (Eutypa
dieback, Esca disease, Botryosphaeria dieback). The several patterns of expression observed in
the vineyard correspond to various disruptions in the plant’s metabolism in the presence
of its aggressor.

Globally, the incidence of GTDs, mainly Esca disease, Eutypa, and Botryosphaeria
diebacks, has risen dramatically in recent decades. In 1999, the International Council
on Grapevine Trunk Disease (ICGTD) was created to facilitate the exchange of useful data
on pathogen identification, detection, host–pathogen interaction, epidemiology, and disease
management concerning GTD.

In the lack of precise information concerning the GTD, especially in Morocco, the
present review is an update of scientific knowledge on GTDs, by targeting these fungal
diseases in their entirety and diversity. To our knowledge, this is the first work focusing on
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these diseases in Morocco. Further studies are carried out to assess all the aspects related to
the GTD complex.
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