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Abstract
The objective of autonomous robotic additive manufacturing for construction in the architectural scale is currently being 
investigated in parts both within the research communities of computational design and robotic fabrication (CDRF) and 
deep reinforcement learning (DRL) in robotics. The presented study summarizes the relevant state of the art in both research 
areas and lays out how their respective accomplishments can be combined to achieve higher degrees of autonomy in robotic 
construction within the Architecture, Engineering and Construction (AEC) industry. A distributed control and communication 
infrastructure for agent training and task execution is presented, that leverages the potentials of combining tools, standards 
and algorithms of both fields. It is geared towards industrial CDRF applications. Using this framework, a robotic agent is 
trained to autonomously plan and build structures using two model-free DRL algorithms (TD3, SAC) in two case studies: 
robotic block stacking and sensor-adaptive 3D printing. The first case study serves to demonstrate the general applicability of 
computational design environments for DRL training and the comparative learning success of the utilized algorithms. Case 
study two highlights the benefit of our setup in terms of tool path planning, geometric state reconstruction, the incorporation 
of fabrication constraints and action evaluation as part of the training and execution process through parametric modeling 
routines. The study benefits from highly efficient geometry compression based on convolutional autoencoders (CAE) and 
signed distance fields (SDF), real-time physics simulation in CAD, industry-grade hardware control and distinct action 
complementation through geometric scripting. Most of the developed code is provided open source.

Keywords Additive manufacturing · Robotic construction · Deep reinforcement learning · Distributed control · Computer-
aided manufacturing

1  Introduction and context

1.1  Planning and autonomy in computational 
design and robotic fabrication

With the rise of CDRF in architecture as an established 
research field in the last two decades, a fundamental shift 
of the AEC industry towards higher degrees of automation 
becomes apparent (Menges 2015; Willmann et al. 2014). 
Throughout the years, a higher degree of robotic auton-
omy was a persistent goal among researchers as it bears 
the potential to adapt construction logics to new robotic 
means of making and ultimately free up construction work-
ers from repetitive and dangerous tasks. Numerous CDRF 
research projects demonstrated the use of robots for pre-
fabrication and in situ construction with a wealth of dif-
ferent material systems and construction methods. General 
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purpose industrial robot arms enjoy great popularity within 
this field of research as they possess high payloads, versa-
tility and precision. The variety of investigated materials 
and structures reaches from experiments with robotic brick 
laying (Bonwetsch et al. 2007), composite fiber winding 
(Doerstelmann et al. 2015), metal welding (Parascho et al. 
2018), timber sewing (Alvarez et al. 2019; Schwinn et al. 
2016) to 3D printing of thermoplastics (Yuan et al. 2016), 
concrete (Khoshnevis et al. 2006) or composites (Felbrich 
et al. 2018b; Hack and Lauer 2014) and many more. These 
projects demonstrated the ability of the CDRF research 
community to conceptualize, develop and fully implement 
complex robotic fabrication processes. Often the machining 
capabilities of industrial robots are heavily extended through 
elaborate custom end effectors and sensor systems. However, 
robotic tool paths are often carefully crafted by a human 
adhering to a static unidirectional information flow from 
the CAD model of a desired product to machine instruc-
tions. This mode of operation has its roots in the adoption 
of numerical control (NC) in manufacturing since the 1940s 
and the subsequent development of CAD/CAM routines that 
offer a more streamlined way of instantiating virtual objects 
in the physical world using machines. As is the case in many 
manufacturing fields that involve heavy machinery, these 
workflows justifiably favor robustness, precision and secu-
rity over adaptiveness and agility, which are desirable quali-
ties in robotics research.

An increased popularity of machine learning (ML) tools 
in this field proves that CDRF researchers are well aware 
of the potentials that novel ML methods have for design 
optimization. Noteworthy examples include the detection 
of fabrication-relevant material features such as wood knots 
(Nagy 2017; Norlander et al. 2015) or masonry cracks (Chai-
yasarn et al. 2018), the prediction of material behavior like 
metal rod bending (Smigielska 2018), the use of various 
neural networks for conceptual design generation (As et al. 
2018; Mahankali et al. 2018) or evaluation (Tarabishy et al. 
2020), or as a direct modeling aid through a brain-computer 
interface (Cutellic 2019) or augmented reality headsets (Fel-
brich et al. 2018a).

Projects with a stronger focus on ML-enabled robotics 
include Brugnaro and Hanna (2017), where researchers 
made use of a Deep Neural Network (DNN) to cross-map 
fabrication parameters in robotic wood chiseling. Harichan-
dran et al. (2019) enhanced an exemplary task of lifting a 
scaffold structure with four distinct lifting machines using 
state vector machines (SVM). Rossi and Nicholas (2018) 
demonstrated a way to map the paths taken by a metal sheet 
robotically manoeuvered through an English Wheel to its 
deformation behavior caused by the exerted pressure. This 
gave insight into how complex, hard-to-simulate metal 
deformation under rolling/pressure relates to its final cur-
vature. Tamke et al. (2018) show two distinct case studies. 

In the first project, DNNs are used within a computational 
form-finding process of a wall structure composed of bend-
ing-active tensile rod modules. The optimization procedure 
of the global structure was simplified and heavily sped up by 
classifying load cases on the module-level. The second pro-
ject made use of DNNs to predict unfavorable spring-back 
of metal sheets after being deformed in a process of robotic 
incremental sheet forming (RISF).

Although the use of classic supervised learning with 
DNNs shown in these projects bears some potential for opti-
mized planning, it (a) disregards modern machine learning 
research especially within the field of robotic learning and 
(b) leaves large potentials of higher robotic autonomy in 
fabrication untapped. Achieving higher degrees of robotic 
autonomy within CDRF is extremely hard, if not impossible, 
with currently used ML tools.

In the realm of additive manufacturing both Mozaffar 
et al. (2020) and Nicholas et al. (2020) exemplify a tendency 
of approaching individual aspects of the design-to-fabrica-
tion workflow in isolation by focusing on tool path optimi-
zation using DNNs and/or DRL. Jin et al. (2020) propose 
ML-based optimization strategies to solve three separate 
steps of the entire workflow: improving geometrical design, 
process parameter configuration, and in situ anomaly detec-
tion. A coherent overview of ML-related additive manufac-
turing research given in Goh et al. (2021) similarly divides 
the reviewed projects into design optimization, process opti-
mization and in situ quality control. As such, projects often 
heavily focus on solving isolated manufacturing related engi-
neering problems. They do not target a constructive robotic 
problem-solving strategy as it is the goal in DRL robotics 
research.

1.2  Deep reinforcement learning in robotics

Supervised learning approaches with the mere use of non-
linear function approximators like DNNs for classification—
as it is current practice in CDRF—is not feasible in robotic 
construction: to control a robot with an encoded state-action 
mapping—i.e., a decision making strategy—in a DNN, one 
would have to generate a very large data set of state-action 
pairs for training. With increased data dimensionality and 
continuous action spaces, as they are common in CDRF, this 
approach of basically presenting the entire cause-reaction 
space to a DNN quickly becomes unfeasible. Furthermore, 
in many cases, a human instructor might not even have the 
insight to provide suitable actions for every possible envi-
ronmental circumstance and rather wants the learning mech-
anism to find solutions to construction tasks by itself.

In this regard, reinforcement learning (RL)—first com-
prehensively described in Sutton and Barto (1998)—is a 
particularly promising subset of machine learning. A few 
key achievements of this approach are fully autonomous 
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aerobatic flight control of a helicopter (Abbeel et al. 2007), 
robotic control through demonstration and imitation (Kober 
and Peters 2011), bipedal (Mordatch et al. 2016) and quadru-
pedal robotic locomotion (Haarnoja et al. 2018a; Hwangbo 
et al. 2019), the defeat of human players in many Atari 
games (Mnih et al. 2013) and even mastering the highly 
complex strategic board game Go on a super-human level—
AlphaGo (Silver et al. 2017).

RL and Deep RL (DRL) can overcome the aforemen-
tioned limitations as they encourage an agent to indepen-
dently explore the state space. As the robotic agent receives 
positive rewards for favorable actions and autonomously 
maximizes this accumulative reward through strategies such 
as state(-action) value estimation, policy gradients and/or 
model examination, it is the human’s only responsibility 
to lay out an appropriate environment and reward-granting 
logic, which can be tailored towards constructive tasks. The 
advantages of DRL to (a) operate in vast environments with 
continuous or practically infinitely large discrete state-action 
spaces and (b) discovery of strategies beyond human dem-
onstration render it a promising means for robotic autonomy 
in construction.

A thorough overview over DRL-based robotic control 
paradigms is given in Amarjyoti (2017). Interestingly, DRL 
researchers at times choose construction tasks to practice 
and benchmark learning algorithms. A few of them will be 
mentioned here. A more in depth discussion of some indi-
vidual algorithms applied will be given in Sect. 2.2.

With the focus on noise resilience and affordability, 
Deisenroth et al. (2011) presented a very sample-efficient 
way of training a noisy, low-cost gripper-equipped manip-
ulator to build a tower of colored blocks through visual 
feedback. The custom-made framework used for this study, 
PILCO, was introduced earlier in a more general fashion 
(Deisenroth and Rasmussen 2011).

Duan et al. (2017) and Finn et al. (2017) presented a dif-
ferent approach of meta-learning in which an agent not only 
learns a policy but also a way to generalize said policy to 
new tasks. Here, a robot is able to learn the task of stack-
ing blocks through a single demonstration by a human, giv-
ing rise to its name one-shot imitation learning. It uses two 
DNNs: a vision network to infer object positions from raw 
image data, and an imitation DNN to derive and generalize 
the task intent from the demonstration. The latter is pre-
trained on thousands of simulated demonstration samples.

Liu et al. (2018) made use of Deep Q-Learning in which 
the prospective value of a state-action pair at the current 
time step (the Q-value) is predicted using a DNN. With this 
technique, the agent learns to plan the stacking of irregular 
2D-objects into a stable wall. The trained planning policy is 
then executed by a robot arm.

Zhang et al. (2019) describe a method to learn state model 
representations from image data. Although the paper’s main 

focus is structured representation and inference of model 
dynamics, it also employs a construction task—connecting 
Lego bricks—as a benchmark (among others).

Since at least the introduction of one-shot imitation learn-
ing, the task of object stacking—the most fundamental form 
of additive construction—with full robotic autonomy and 
very little human guidance can be considered solved. As 
DRL researchers are interested in improving the perfor-
mance of their algorithms, they naturally tend to employ 
these simpler construction tasks like block stacking and have 
little motivation to extend their research to other construc-
tion principles. It seems, however, that this research field 
bears enormous potentials in increasing robotic autonomy 
in CDRF. Still DRL found little resonance within the CDRF 
community so far.

1.3  Motivation

The reasons why DRL has not been employed in CDRF yet 
are manifold. Both DRL and CDRF are relatively young 
research fields, with largely unrelated research focusses. 
Aside from the required educational background, the tools 
and methods that are used are quite different. A closer look 
at the latter is worthwhile.

In fact, both of these research areas heavily benefitted 
from recent developments of powerful software tools.

Aside from an increased availability of robotic hard-
ware in CDRF, the rise of generative and parametric design 
software made it is easier than ever to ideate, shape and 
script architectural objects that are both highly optimized 
towards multiple objectives (structural performance, mate-
rial efficiency, etc.) and at the same time robotically fabri-
cable (Jabi et al. 2013; Braumann and Brell-Cokcan 2011). 
Especially, visual programming interfaces in CAD enjoy 
great popularity for their ease-of-use and modularity, with 
McNeel’s Rhino and Grasshopper (Rhino-GH) currently 
being the quasi-standard. Such tools enable designers to 
model, evaluate and improve design solutions through an 
extendible modular tool set that offers a multitude of relevant 
sub-functions such as simulation-based form finding, FEA, 
CAD/CAM, numerical optimization, daylight simulation, 
some basic machine learning and robot kinematics capa-
bilities and others.

DRL research on the other hand heavily benefitted from 
the availability of optimized deep learning frameworks such 
as PyTorch, Tensorflow, Keras, Caffe and others. Their auto-
matic differentiation capabilities make them highly modular 
as they allow for numerical optimization of arbitrarily com-
posed neural architectures. In addition, the Robot Operation 
System ROS, the quasi-standard in experimental robotics, 
offers a multitude of middleware components to access and 
control practically every motor or sensor that is relevant in 
the field. It also provides very capable tools for robotic path 
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planning, visualization, simulation and many more. These 
tools offer a much more agile framework than traditional NC 
that are common in CAD/CAM. Although their features are 
highly relevant in CDRF they are hardly used.

We thus conclude that in summation, all the relevant 
methodic as well as algorithmic foundations for robotic 
autonomy in construction are already around. They just exist 
in different research realms and have not been combined yet.

Buckminster Fuller, one of the most influential archi-
tects of the twentieth century said: “If you want to 
teach people a new way of thinking, don't bother try-
ing to teach them. Instead, give them a tool, the use 
of which will lead to new ways of thinking.” (Senge 
et al. 1994, p. 28).

The direct contribution this study intends to make is a 
way of combining methods and tool sets of DRL and CDRF, 
that leverages their individual strengths. Our hope is that 
such a framework would allow practitioners and research-
ers outside the realm of DRL and robotic research to use 
state-of-the-art robot control and learning tools for robotic 
fabrication and CAD/CAM workflows. This bears the poten-
tial that (a) methods for multi-criterial (structural) perfor-
mance analysis can be repurposed as training environments 
to highly efficient DRL optimization routines and robotic 
learning and thus lead to improved outcome and (b) serve as 
a means for DRL researchers to assemble training environ-
ments with direct practical relevance.

While the presented study aims to introduce a higher 
degree of autonomy into CDRF research, it considers prac-
tical requirements that are prevalent in typical industrial 
fabrication setups, such as the need for real-time control, 
geometric state representation, structural performance evalu-
ation and tool path accuracy. Furthermore, it aims to provide 
insight into practical applications of DRL and the challenges 
therein.

For this purpose, a communication and control frame-
work for distributed agent training and task execution is 
presented and demonstrated in two case studies.

1.4  Related studies

As construction-related DRL research and ML-related 
CDRF research were already discussed, this section focuses 
on existing CDRF projects that made use of techniques and 
frameworks that are also common in DRL.

Robotic autonomy highly depends on sensor-based 
feedback-loops allowing an agent to react to unforeseen cir-
cumstances or reconsider its behavior. Thus, the integration 
of design and fabrication tools into continuous multi-direc-
tional workflows yields tremendous potentials for CDRF. 
Vasey et al. (2015) investigated the robotic placement of 
pre-impregnated polymer reinforced carbon fibers onto a 

pneumatic formwork. Using feedback from a load cell and 
adaptive control, robotic motion could be adjusted in reac-
tion to formwork deformation or previous fiber displace-
ment. Giulio Brugnaro et al. (2016) demonstrated adaptive 
robotic behaviors enabled by visual feedback in weaving 
bending rattan rods. In Heimig et al. (2020), images of an 
integrated camera were used to adapt tool paths in the highly 
complex task of 3d printing with metal.

A common challenge in sensor-based setups in CDRF 
is a multitude of available frameworks and products, all of 
which are not necessarily compatible. ROS was designed 
to overcome exactly these challenges by introducing a uni-
fied modular middleware that enjoys overwhelming support 
by hardware vendors and software developers. Both Feng 
et al. (2014) and Benjamin Felbrich et al. (2017) made use 
of ROS and ROS-supported sensor systems in setups related 
to architectural fabrication. The latter used ROS as the main 
communication infrastructure for a multi-machine fabrica-
tion setup involving two industrial robots, a custom-made 
UAV and tension sensing devices. The usefulness of ROS for 
human-aided fabrication with an augmented reality headset 
was successfully demonstrated in Wannemacher (2017) and 
Kyjanek et al. (2019). Sutjipto et al. (2019) demonstrated 
closed-loop, sensor-based 3D printing.

Gandia et al. (2019) implemented the powerful Open 
Motion Planning Library (OMPL) into a common CDRF 
workflow.

These studies allude to a process of general technical 
maturation through the incorporation of performant planning 
and control routines within robotic fabrication. The intro-
duction of a unified platform implementing DRL learning 
and sophisticated control could help accelerate this process.

2  Methods

2.1  Distributed training‑fabrication framework

The software infrastructure that was developed to facili-
tate the integrated training and fabrication process will be 
referred to as deepbuilder. It is presented in detail hereafter 
and demonstrated in video one.1

2.1.1  Design principles

To fully leverage the strengths of combining methods of 
both fields of research and reflect the needs of CDRF fab-
rication setups, our framework had to follow a few design 
principles, which then guided its specific layout:

1 Electronic supplementary material 1: video 1.
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Access to algorithms: Many newly developed DRL algo-
rithms are provided to the community free and open source. 
The performance of these algorithms is often tested and 
demonstrated within the OpenAI Gym framework. It defines 
a simple interface of functions, a template for writing agent–
environment interaction cycles. Adhering to this standard 
allows easy access to existing and newly developed algo-
rithms in the future.

Modular setup of training environments: While powerful 
physics simulation frameworks such as MuJoCo, DART 
and ODE are commonly used among DRL researchers as 
environments for agent training, their capabilities for geo-
metric modeling and performance analysis are limited. 
Rhino-GH on the other hand offers strong CDRF-related 
tools for modeling, analysis and simulation, an intuitive UI 
and is continuously extended by the community. The key 
idea is to turn Rhino-GH into a modular construction kit for 
training environments, i.e., an extension of OpenAI’s Gym 
concept into the realm of generative modeling and compu-
tational design. This opens up the possibility to assemble 
CDRF-related performance evaluation training fields for 
agent actions and also allows for the agent itself to perform 
script-based CAD modeling.

Real-time physics: While Rhino-GH offers great func-
tionality, its physics simulation capabilities, especially in 
collision-rich scenarios do not match those of Gazebo or 
MuJoCo. However, robotic training scenarios and fabrica-
tion heavily rely on such assets. We thus extended Rhino-GH 
with a custom plugin for fast real-time physics simulation 
based on the Nvidia Flex engine (Benjamin Felbrich 2019).

Open-endedness: While our specific setup stipulated a cer-
tain CAD training environment, the framework should in 
principle be open to other means of simulation and action 
evaluation. Thus, language- and software-agnostic commu-
nication was to be favored wherever possible.

Full integration with ROS: ROS extinguishes itself through 
its modularity and community support within robotics. Mak-
ing full use of its capabilities, especially in terms of motion 
planning and sensor control, greatly simplifies the execution 
of trained agent policies. For our experiments a Universal 
Robot UR10 with the appropriate ROS drivers was used. 
Further hardware choices will be discussed later.

Support of real-time controls via fieldbus: Although some-
what experimental, the presented research targets industry-
grade machinery for its relevance in fabrication. The frame-
work must, therefore, allow to automate a real-time fieldbus 
system such as EtherCAT.

Bare-metal hardware support: ROS-based hardware con-
trol requires a very stable network connection between the 
host and connected devices. Neural computation and phys-
ics simulation both heavily benefit from highly parallelized 
GPU computation. To fulfill these requirements, system vir-
tualization through VMs or WSL was foreclosed in favor of 
dedicated hardware.

Multiple simulation workers: DRL algorithms, especially in 
model-free approaches, generally require a high amount of 
simulation steps, the reduction of necessary training samples 
and most efficient use of collected data is a major subject of 
investigation within DRL research. To compensate for the 
loss in simulation speed caused by network communication 
and system distribution, an ability to run multiple training 
sessions at once is crucial.

2.1.2  System overview

With the discussed principles in mind, a system was estab-
lished that can access and control a variety of relevant tools 
and applications (Fig. 1). This deepbuilder runtime partly 
consists of an environment class based on OpenAI Gym able 
to communicate with different tools and applications rel-
evant to the task of robotic construction.2 It gives an autono-
mous DRL agent the ability to train its behavior within a 
simulation environment that offers parametric design fea-
tures (i.e., a Rhino-GH script) while validating and planning 
movements through MoveIt, execute the trained policy on an 
actual robot and retrieve new environmental states through 
visual sensors. Furthermore, geometric CAD scripting rou-
tines can be automated to aid planning and execution, which 
is especially useful in critical tooling-related subroutines 
that require high precision. This enables the differentiation 
of building behavior into low-precision global movements, 
that are learned, and more precise local movements, that are 
scripted and complement the autonomous fabrication learn-
ing workflow. Lastly, a real-time middleware is connected to 
enable the control of industrial grade machinery.

Simulation Phase—A typical simulation phase incorporates 
the motion planning capabilities of OMPL in ROS to vali-
date prospective actions in terms of collision avoidance with 
the environment through respective service calls. Actions 
that lead to collisions are considered bad and will be penal-
ized. Collision-free actions are forwarded to the simulation 
environment through a CAD instance management service 
running on another computer in the network. There, Rhino-
GH scripts can be used to (a) simulate the action, (b) infer 

2 Source code available at https:// github. com/ Heinz Benja min/ deepb 
uilder.

https://github.com/HeinzBenjamin/deepbuilder
https://github.com/HeinzBenjamin/deepbuilder
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performance-related information from the state geometry 
that is relevant for reward shaping and learning, and (c) 
derive refined tool paths in accordance with the environ-
mental state if necessary.

Execution Phase—Once trained the policy is deployed to the 
actual hardware. Prior to execution each action is validated 
and planned through motion planning and possibly refined 
through CAD scripts. It is then executed by the robot arm 
and the respective ROS-driven hardware extensions. In cases 
where additional industrial hardware is needed throughout 
the action execution (e.g., controlling an extruder motor or 
heating a printing nozzle), respective commands are sent to 
another service allowing the control of fieldbus-connected 
devices.

2.1.3  System components

2.1.3.1 ROS setup3 For motion planning, a Bi-directional 
Transition-based Rapidly exploring Random Tree (BiTRRT) 
was used. When a desired goal could not be reached, a dis-
tinction is made between self-collisions, collisions with 
static environment objects (floor, virtual safety planes) and 
dynamic environment objects (objects added to the environ-

ment by agent actions). These differentiated measures can 
be used for nuanced reward shaping. ROS was used to con-
trol the UR10 robot, a gripper and sensing devices.

2.1.3.2 Sensor integration For reliable camera-based pose 
estimation of physical objects, the popular visual fiducial 
system AprilTag (Wang and Olson 2016) was chosen and 
integrated into the system through the appropriate ROS driv-
ers. Additional depth information gathered with the utilized 
Intel RealSense D435 camera was processed with custom-
developed ROS nodes. They will be described in detail later.

2.1.3.3 CAD instance management The simulation envi-
ronment in CAD is accessed through an ASP.NET Web API 
running on a Windows computer. It serves three purposes: 
(1) instantiate and manage CAD instances making sure 
that there is an active application per training session run-
ning and ready to receive orders, (2) act as a microservice 
to receive Http requests from the deepbuilder runtime that 
include actions intended for simulation or scripting instruc-
tions intended to request further geometric information and 
forward them to an available CAD instance and (3) act as 
an instance watchdog, that detects faulty simulations, unre-
sponsive Rhino-GH instances as well as excessive RAM 
usage and performs necessary supervisory measures such as 

Fig. 1  Deepbuilder system overview

3 Driver configuration specific to our setup available at https:// github. 
com/ Heinz Benja min/ deepb uilder- catkin.

https://github.com/HeinzBenjamin/deepbuilder-catkin
https://github.com/HeinzBenjamin/deepbuilder-catkin
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killing and restarting simulation instances.4 Requests to the 
GH script were received through components implement-
ing the .Net Http server functions.5 CAD instances are cou-
pled to deepbuilder training sessions with unique identifiers. 
This allows for the parallel execution of multiple training 
sessions.

2.1.3.4 TwinCAT-Http-server6 EtherCAT fieldbus control-
lers can be programmed with Beckhoff’s TwinCAT3 over 
a real-time ethernet connection. It is a well-established 
industrial control tool. The related Beckhoff library Twin-
CAT.Ads offers the automation of TwinCAT through  .Net 
languages such as C#. TwinCAT-Http-Server is a custom-
developed WPF application that can communicate with 
TwinCAT.Ads while also acting as an ASP.NET Web API 
host receiving Http requests. It, therefore, exposes read and 
write functionality of TwinCAT3 parameters at runtime to 
arbitrary network locations in a language-agnostic way. In 
our case, the read and write requests were made from an 
accordingly designed ROS node and thus allowed ROS to 
remote control EtherCAT devices. TwinCAT-Http-Server 
also offers a UI to monitor traffic and plan correct requests.

2.2  Choice of RL algorithms

Within the field of RL, many different algorithms have been 
proposed over the years. As it was not intended to introduce 
a new algorithm, the choice of a suitable existing one from 
the literature was crucial. A non-exhaustive overview of 
existing techniques is given in (Achiam 2018). An important 
distinction has to be made between model-based and model-
free learning. In model-based RL, the agent retains an inner 
representation of the environment, a function that predicts 
state transitions to the next state s′ and reward r based on 
current state s and action a . This enables planning and pre-
diction of long-term strategies and thus yields a high sample 
efficiency. However, model-based approaches are generally 
more difficult to adapt to changing task definitions. As it 
was intended to test this learning framework on different 
construction tasks and possibly extend its use further, task-
specific model implementation and tuning had to be avoided.

One model-free technique, Q-Learning, stores and incre-
mentally improves the Q-function Q(a, s) which approxi-
mates the value of state-action pairs, i.e., the total reward 
accumulation that can be expected after taking a in state s 
when following a given policy � . The optimal policy �∗ is 
the one that uses an optimal Q-function Q∗ to find the best 
possible action a∗ in every s . The main optimization objec-
tive is thus finding a Q-function that describes the task as 
complete and accurate as possible. Finding it is typically 
done by mediating between exploring the environment in 
early phases of training and later exploiting known infor-
mation about advantageous actions. The classic form of 
Q-Learning, where Q values are stored in a table, is limited 
to discrete action spaces and thus not applicable to our task. 
However, using such state-action-value approximators, e.g., 
in the form of a DNN as its done in deep Q-Learning, is 
highly advantageous.

Policy optimization, also called policy gradient, tech-
niques on the other hand, do not make use of such substitute 
optimization objectives and directly optimize the parameters 
� that make up a policy to maximize accumulated reward. If 
the policy is represented by a DNN, � are its weights.

For this study, we chose to use two modern model-free 
DRL algorithms that combine the advantages of policy opti-
mization and value approximation: they are relatively simple 
to implement, yet provide state-of-the-art efficiency and do 
not require advanced task-specific model engineering: Twin 
Delayed Deep Deterministic Policy Gradient (TD3) (Fuji-
moto et al. 2018) and Soft Actor-Critic (SAC) (Haarnoja 
et al. 2018b).

As a successor to DDPG (Lillicrap et al. 2015)—a deep 
Q-Learning method adapted for continuous action spaces—
,TD3 also concurrently trains neural approximators for 
Q∗(s, a) and a∗(s) , but addresses DDPG’s high sensitivity 
to hyper-parameter tuning. It does so using two Q-DNNs, 
delaying policy updates and smoothing the target policy, to 
avoid Q-function error exploitation.

SAC is similarly structured, but differs in that it works 
with a stochastic policy, whose entropy is maximized along 
with reward accumulation throughout training. A maxi-
mized policy entropy is understood to be more expressive 
and responsive to environment state changes as it implicitly 
encourages exploration and thus avoids getting trapped in 
local optima.

Both algorithms greatly benefit from storing experience 
of previous steps in the form of [s, a, r, s�]-tuples and sam-
pling from this data during training. This technique called 
experience replay allows for the reuse of collected data 
and more flexible data acquisition involving, e.g., multiple 
simulation workers and combining data of multiple training 
sessions.

Like many DRL algorithms, these two have difficulties to 
converge sufficiently when they only receive sparse rewards. 

4 CAD applications such as Rhino-GH are often based on the.Net 
framework and typically not designed for and thus not robust towards 
inter-process communication. Thus, to avoid crashes special care had 
to be given to synchronizing incoming traffic with the GH update 
cycle and thread. This circumstance prohibited more direct commu-
nication via ROSBridge and necessitated dedicated instance manage-
ment capabilities.
5 For this study, the http functions of the Bengesht plugin were used: 
https:// github. com/ behro oz- tahan zadeh/ Benge sht.
6 Source code available at https:// github. com/ Heinz Benja min/ TwinC 
AT- Http- Server.

https://github.com/behrooz-tahanzadeh/Bengesht
https://github.com/HeinzBenjamin/TwinCAT-Http-Server
https://github.com/HeinzBenjamin/TwinCAT-Http-Server
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As they start out with completely random actions it might 
be, in the case of tower stacking for example, extremely 
unlikely that the agent just randomly happens to stack one 
block on a previous one and thus never receives a positive 
reward. To enrich this scarce reward landscape, it is common 
practice to apply reward shaping, in which smaller rewards 
are granted for actions that, although not entirely satisfying, 
are still somewhat advantageous. Using TD3 and SAC, dif-
ferent agents were trained within the described framework 
in two construction-related case studies. The detailed task 
description, reward-shaping approaches, learning results and 
robotic execution are described hereafter.

3  Case studies

The following two case studies are intended to show the 
functioning of the distributed training and fabrication setup 
described in Sect. 2 and further detail fabrication-specific 
applications. They should be understood as reduced-size 
demonstrations that, although not quite matching the physi-
cal size of actual architectural fabrication, make use of and 
serve a mode of operation that is very typical in CDRF 
applications (especially in case study two).

3.1  Case study A: block stacking

3.1.1  Setup

In the first case study, the robotic agent consists of a UR10 
six-axis robot equipped with hardware shown in Fig. 2. Its 

task is to stack boxes of 12 × 12 × 8 cm into a tower-like 
structure. The robot is mounted to a table which limits its 
reach to the area above its own root plane. It is furthermore 
confined by a set of virtual safety planes to its left, right, 
front, back and top. In addition to the table and the safety 
planes, the block source (Fig. 2: 1) acts as another static col-
lision object of the environment. A sensor-processing unit 
(3) was used to pre-process image and depth data and wire-
lessly transmit the results. The boxes consisted of Styrofoam 
which was manually softened to reduce bouncing. Later 
cardboard boxes with similar weight, friction and restitution 
were used. To reduce the reality gap between simulation and 
execution, the parameters of Flex were carefully adjusted to 
closely resemble the physical behavior of the actual boxes 
through visual comparison, trial and error.

3.1.2  Task description

By default, the robot rests in a neutral, collision-free home 
position from which it can reach the block source to pick up 
a new block. The motion of picking up a new block which 
starts and ends in the home position is pre-defined and not 
subject to learning. Actions that are generated by the agent 
represent a single robot posture consisting of its 6D joint 
configuration that we call action pose.7 Holding a block in 

Fig. 2  Block building arena: (1) block source; (2) UR10; (3) sensor processing unit Nvidia Jetson TX1; (4) Robotiq 2F-140 two finger gripper 
and Intel Realsense D435 camera; (5) building block with localization markers attached

7 We could have also chosen to represent actions with Cartesian coor-
dinates of the effector frame with its rotation defined as Euler angles or 
quaternions. With readily available IK solvers, this would have enabled 
a more intuitive interpretation of actions. However, joint space coordi-
nates were preferred to due to the absence of singularities and their cat-
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its gripper, the robot moves from the home position to the 
action pose, drops the block by opening the gripper, and 
returns home. The agent’s task is to find a succession of 
reachable action poses, from which it drops consecutive 
blocks in such a way that they form a tower-like structure. 
At most, the agent can drop 20 blocks into the environment 
to complete one building attempt or training episode. To 
plan the motion from the home position towards an action 
pose, we employ the BiTRRT path planner in MoveIt. 
Action poses are initially chosen at random from the range 
[− 180.0°, 180.0] for axes three, four, five and six; axes one 
and two are restricted to half that range to avoid the most 
obvious collisions with the floor and virtual safety planes.

The state is represented by 144 (12 × 12) normalized 
height measurements resulting from the absence or presence 
of blocks at certain fixed grid points in a quadric section on 
the table—the play field.

3.1.3  Training protocol

Each training epoch begins with resetting the agent’s training 
environment. This entails:

(a) clearing any episode-related data and resetting the 
simulation

(b) requesting the remote CAD instance manager to start 
a new CAD simulation instance and return its unique 
process handle, so this instance can be addressed in 
the future. If a process handle is already stored from 
a previous epoch and the respective CAD instance is 
running, this step is skipped

(c) ensuring that an active connection to ROS is available8 
and setting the robot’s pose in ROS to the home posi-
tion

Once the system is reset and ready the state is processed 
through the policy network to get an action. The action is 
passed to the path planner to verify its reachability with the 
robot. If the action pose cannot be reached the action is dis-
carded, a negative reward is given, and the next action is 
taken. If path planning is successful, the action is passed to 
the affiliated CAD instance where the dropping of a block 
from the action pose is simulated. As soon as the simula-
tion came to a rest, the newly measured state of height field 
values along with additional info (e.g., exact position of the 
tower tip or distance from effector to tower tip) is returned 
to the trainer. This additional info, along with the state is 
used for reward shaping. Reward and state are returned to 

the agent which then decides for the next action. Noise is 
applied to states to avoid overfitting (especially in the early 
default states where no blocks are present) and prepare the 
policy for inaccurate measurements during execution later 
on. The [s, a, r, s�] tuple is stored in an experience replay 
buffer. A tower building attempt ends, when the maximum 
allowed number of actions is reached.9 DNN parameter 
updates are applied between plays at regular intervals.10

A typical action cycle would take around 0.1 s for path 
planning, with an additional 2–3 s for block drop simulation 
(or around 20 s for real-world robotic execution). Training 
was performed using the pre-collected data of 1000 random 
plays as initialization data and 2000 to 3000 additional plays 
for training. In our framework, a training session of 1000 
plays would typically take between 7 and 12 h depending 
on the number of collisions.

3.1.4  Reward shaping

The fundamental measure of success for the agent’s actions 
is a growth in absolute tower height. In addition to this rarely 
occurring event, various intermediate reward-shaping meas-
ures were taken. The total reward consisted of partial posi-
tive rewards (r) and negative rewards (penalties (p)):

Collision penalty pcol: Self collisions and collisions with the 
environment caused a severe penalty pcol = −0.25 . In this 
case, no further reward features were considered and the 
action was terminated. Otherwise, all other reward-shaping 
features were summed up as described.

Tower tip proximity reward rprox : The agent was encour-
aged to react to the environment by dropping new blocks 
close to the currently existing tower tip. A short distance dc 
between the highest block in the scene and the TCP posi-
tion was rewarded. It was measured, normalized to the range 
dcmin = 0.12m and dcmax = 0.8m , and further scaled to a 
maximum value of 0.15:

r =

{

pcol if collision

rprox + pcollapse + rctrl + pstuck + rgrowth if no collision
.

rprox = 0.15 ∗
min

{

max
{

dc, dcmin

}

, dcmax

}

− dcmin

dcmax − dcmin

8 Via roslibpy—https:// github. com/ grama zioko hler/ rosli bpy.

9 In previous attempts, collisions with the state were made to termi-
nate a play. However, as reset routines are computationally more time 
consuming and no better training results could be observed, a fixed 
length trajectory was favored.
10 For learning, the open-source tool RLkit was used and reasonably 
modified: https:// github. com/ vitch yr/ rlkit.

egorical consistency (i.e., no differentiation between position and rota-
tion, like in Cartesian space) which we considered beneficial to learning.

Footnote 7 (continued)

https://github.com/gramaziokohler/roslibpy
https://github.com/vitchyr/rlkit


24 Construction Robotics (2022) 6:15–37

1 3

Tower collapse penalty pcollapse : Another penalty 
pcollapse = −0.05 was applied, whenever the tower signifi-
cantly shrank in height after an action. This encouraged the 
agent to not crash into the tower and keep a certain distance. 
However, as collapses were often delayed and difficult to 
predict, its actual effect on learning is debatable.

Controlled action reward rctrl : Ideally, the agent should 
perform controlled actions in which the block, after being 
dropped, came to rest in a pose that was close to the gripper 
and of similar orientation. To do so, the Cartesian distance dc 
and quaternion distance dq between the poses of TCP and the 
block (the latter indicating similar orientation) were meas-
ured,11 normalized to appropriate ranges ( dcmin = 0.12 m, 
dcmax = 0.4 m, dqmin = 0.3 and dqmax = 0.8 ) and scaled to the 
range [0, 0.15]. Their average formed rctrl:

Block stuck penalty pstuck : Accounting for block-robot col-
lisions, a negative reward of pstuck = −0.05 was given when 
the block got stuck in the gripper due to unfavorable effector 
pose. This encouraged the agent to drop blocks while the 
gripper was pointing downward.

rctrl =
d̂c + d̂q

2

d̂c = 0.15 ∗
min

{

max
{

dc, dcmin

}

, dcmax

}

− dcmin

dcmax − dcmin

d̂q = 0.15 ∗
min

{

max
{

dq, dqmin

}

, dqmax

}

− dqmin

dqmax − dqmin

Tower growth reward rgrowth : Dropping one block on another 
one causing the tower to grow resulted in a high additional 
reward of rgrowth = 0.7.

The agent started with random actions. These reward fea-
tures were laid out to successively encourage it to (a) restrict 
its actions to the working area (by avoiding pcol ); (b) reach 
for the tip of the existing tower without crashing into it (by 
increasing rprox and avoiding pcollapse ); (c) exert controlled 
actions with the gripper facing down (by avoiding pstuck and 
increasing rctrl ), and (d) finally place the new block on top of 
the existing structure (increasing rgrowth ). From this scheme 
resulted a reward range from − 0.25 for a collision to 1.0 
for a perfect action of collecting all rewards and receiving 
no penalty.

3.1.5  Learning results

Twin delayed deep deterministic policy gradient
Even after thorough hyper-parameter tuning, the TD3-

trained policy would quickly converge to a local optimum 
from which it did not recover. Using a very simple technique 
of just repeating the exact same suboptimal pose over and 
over again, the agent is able to effectively avoid collisions 
and quickly accumulate a lot of controlled-action-reward for 
small divergence of block orientation (Fig. 3 left, note that 
no tower growth reward is granted as blocks do not exceed 
the table in height). In other instances, it successfully builds 
a tower of around ten blocks by repeating a different pose 
(Fig. 3 right). This behavior, however, is only successful in 
simulation as it exploits inevitable inaccuracies concerning 

Fig. 3  TD3: Agent exploits 
either singular reward-shaping 
features such as controlled-
action-reward (left) or simula-
tion inaccuracies (right)

11 With quaternion, distance dq here being the angle of the shortest 
arc between poses q1 and q2.
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Flex’s friction and restitution properties.12 Furthermore, 
achievable tower height is limited due to the robot’s static 
pose and inadaptability. As soon as the tower reaches the 
gripper, this strategy fails. This is well reflected in the learn-
ing curve’s plateau shape (Fig. 4). 

Soft actor critic
In contrast to TD3, the agent training with SAC does not 

quickly converge to local optima and, due to its stochastic 

policy, generally exhibits a more diverse set of actions 
(Fig. 5). After around 600 plays, it starts to occasionally 
perform the best possible action (Fig. 6) where it places a 
new block on an existing one in a controlled fashion and 
collects the highest possible reward. Using this technique, it 
was able to build small towers of up to three blocks. These 
episodes however remain scarce. With longer training, the 
agent falls back into somewhat repetitive behavior. However, 
in contrast to TD3, it reliably choses a better pose from the 
start (gripper pointing downward, lower position, blocks 
being positioned not diagonally but with one face parallel 
to the floor) and reaches for the same points in space from 
different angles, suggesting that it gradually incorporates 
some understanding of its forward kinematics. 

3.1.6  Robotic execution

Both policies were executed on the robotic setup shown in 
Fig. 2.

To sense the required 12 × 12 height field, we used the 
effector-mounted camera’s 1080 × 720 depth field and meas-
ured its distance to the blocks/table at specific pixel indices 
as soon as the robot returned to the home position after each 
action. To account for inaccuracies in the kinematic chain, 
the pixel indices were identified at runtime through image 
compartmentalization and parallel search for depth cloud 
points closest to those of the fixed grid points in question 
(with the z-coordinate being ignored during search). This 
pre-processing was executed on the sensor-processing unit 
(Fig. 7).

In addition, the aforementioned tag system AprilTag was 
used for further information about block orientation. This 
information, however, did not feed into the learning algo-
rithm and was purely used for visual cross-validation.

As mentioned before, the TD3-trained policy fails on the 
robot as blocks just bounced off uncontrolled after being 
repeatedly released from the same suboptimal elevated posi-
tion. The SAC trained policy, however, managed to robustly 
build towers of four to six blocks in height. Although this 
success is somewhat aided through slightly heavier building 
blocks made of cardboard, SAC’s favorable policy is clearly 
visible. Block building results shown in video two13 clearly 
show SAC’s favorable policy.

3.1.7  Conclusion

Case study A was intended to prove the general feasibility 
of the presented distributed learning framework. The setup 
of the training environment was made easy using the CAD 
framework and visual programming interface. Using CAD 

Fig. 4  TD3: as collision occurrences disappear the returns and tower 
heights increase but plateau

Fig. 5  Learning results for SAC in block stacking—learning is gener-
ally slower but shows a longer period of improvement

12 Flex only allowed for simulations with slightly too low restitution 
and too high friction compared to the real world, leading to cubes 
coming to rest quicker in the simulation. A real box dropped from the 
high effector positions that TD3 produced would bounce off the table 
and be lost. For SAC, this effect was less severe, as it produced poses 
that were lower and caused less bouncing. This aspect did not affect 
case study 2, as drops influenced by restitution were not part of the 
simulation. 13 Electronic supplementary material 2: video 2.
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instance handles, it was possible to run up to four train-
ing sessions in parallel on a single simulation machine.14 
Although the innovative value in robotic learning in this case 
study is relatively low (autonomous block stacking has been 
demonstrated before as discussed earlier), it showed that in 
principle robotic DRL is possible in computational design 
environments and yields results similar to those of existing 
studies. This opens up tremendous potentials of using gen-
erative design tools as learning environments as was done 
in case study B.

3.2  Case study B: sensor‑adaptive 3D printing

3.2.1  Setup

In this case study, the same robot arm was equipped with a 
custom-made 3D printing nozzle capable of extruding dif-
ferent, potentially soft, thermoplastic materials (Figs. 8, 9). 
The agent’s task was to consecutively add new volumetric 
segments onto an existing structure through 3D printing. 
To do so it could sense the existing structure through a tag-
based geometry reconstruction system using a high framer-
ate RGB camera. Through this sensory setup, it was able to 
adapt to unseen starting configurations and react to potential 
deformations in the structure. This task layout was designed 
to more closely emulate the requirements of a real-world 
CDRF problem: a spatially tightly confined robot working 
with an amorphous material subject to deformation under 
self-weight in an additive fashion; its controls are differen-
tiated between large global movements to travel between 

Fig. 6  After approx. 600 plays, 
the agent occasionally performs 
the best possible action

Fig. 7  (Left to right) TD3 policy results in unordered block pile; SAC (towers 1 and 2) finds better starting positions and reaches for similar 
points from different angles, actions are more controlled in SAC

14 Intel Core i7 7700 K, GTX1080, 32 GB RAM, with RAM being 
the limiting factor.
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positions and narrow movements to execute local manipula-
tion routines, the planning of which requires high geometric 
accuracy with respect to a CAD model. Contrary to common 
CDRF works, however, the global shape of our final product 
is not a priory human-designed but entirely subject to agent 
learning.

3.2.2  Task description

Printing control is compartmentalized into different catego-
ries. Instead of learning low level controls for robot axes and 
the extruder, the agent’s learned actions represent high-order 
instructions. Low-level controls are subsequently handled 
through a parametric tool path planner for printing (simi-
lar to a slicer) and machine control in ROS. Like in case 
study A, the robot starts each training rollout in a neutral 
home position from which it generates actions in the form 
a 7D poses, with the first six values again representing a 
singular robot action pose. The action pose’s TCP forms a 
reference frame, in whose origin a block-shaped volumetric 
segment—a candidate—is situated that might get attached to 
the existing geometry. It is rotated around the TCP’s Z-axis 
at the origin by the action’s seventh value.15 The immediate 

goal of an action was to generate a candidate that intersects 
with and is sufficiently supported by the existing structure, 
so that it could be printed. The long-term goal was to add 
segments to the scene to form a structure that stretches in 
height or covers a large floor area.16

3.2.3  Training/execution protocol

Figure 10 shows the control flow diagram for this case study. 
Actions colored in cyan are executed in the CAD environ-
ment, the green ones are handled in ROS. These controls are 
set within the framework shown and described in Sect. 2.1. 

P: pose validation and tool path planning
A first simple pose validation (P1 in Fig. 11) by means of 

mesh intersection quickly filters out unreachable poses. Bad 
poses are categorized by the objects they cause collisions 
with (self, table, walls and ceiling, state mesh). Successful 
poses are further verified by making sure there exists a path 
from the home position to action pose (P2). Once an action 
surpassed these steps, it needs to be verified whether its can-
didate volume can be printed on the existing structure. This 
is done through a CAD script that evaluates contingent areas 
of intersection for the existence of surfaces that can support 
the new candidate (Fig. 9 green, Appendix Fig. 16). It then 
blends this support area with the desired block shape (hence 
the “missing corners” in the printed geometry) and slices 
the resulting volume into layers parallel to the TCP plane. 
From these layers, the actual print path is generated as a list 
of Cartesian way points. If this procedure is successful, the 
action passes and the resulting print tool path, starting and 
ending in the action pose, is forwarded.17  

S: print simulation and training
Successful candidates are attached to the existing struc-

ture. In case of fully rigid material behavior, this step is 
straight forward: a simple Boolean mesh union of state 
mesh and candidate. However, it was intended to account 
for possible deformations in the global structure caused by 
the added weight of the newly attached segment. Thus, the 
state geometry is in parallel represented as a position-based 
dynamics (PBD) particle system using Flex, in which mesh 
vertices and volumetric particles of an individual segment 
are grouped together by a shape matching constraint (SMC), 

Fig. 8  Hardware setup for sensor-adaptive 3D printing: (1) sensor 
board carrying Intel Realsense D435 and Blackfly BFS-U3-16S2C-
CS cameras; (2) custom-made filament extruder with thermoplastic 
nozzle; (3) vent; (4) filament source; (5) marked print object

17 Note that in training simulation this is simplified with the concept 
of a printability ratio, which is explain later on. However, in this step 
all kinds of fabrication and tooling related criteria could be used for 
feedback to the agent.

15 A rather simple cuboid candidate shape was chosen, mainly to 
simplify robotic scanning and tag-based shape reconstruction. How-
ever, in principle any geometric form can be used as the candidate 

geometry. They could also be further parameterized through agent 
actions, instead of just rotating them around the TCP’s Z-axis.

Footnote 15 (continued)

16 Covered floor area meaning unsupported area. Footprint of the 
state structure was discarded.
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making it a pseudo rigid body. When a new segment is added 
and intersects with existing geometry, its individual SMC is 
made to incorporate vertices of the existing structure at the 
area of intersection, effectively connecting the two segments 
by an elastic link. Thus, the global structure behaves like a 
semi-soft body.18 Whenever a new segment is attached a 
fixed number of simulation iterations is performed. Damping 
is added to ensure the system coming to rest.

With this new state mesh, relevant information about 
the action’s outcome can be drawn, such as height of the 
structure, covered floor area, relative deformation (as the 
per-segment displacement from the segment’s initial center 
plane position both in Cartesian and quaternion space), dis-
tance from the TCP to the structure and more (R1). This 
information is then used for reward shaping (see R3).

E: robotic execution
The CAD-generated tool path is used for robotic Carte-

sian motion planning in MoveIt (E1) and the print proce-
dure is executed with the robot (E2a). During this process 
the extruder motor as well as heat and fan control, which 
are controlled via EtherCAT fieldbus, are monitored and 

adjusted through a ROS node communicating with Twin-
CAT-Http-Server (E2b). As is often the case with 3D print-
ing, this extrusion is quite slow. Printing a single segment 
typically took between one and three hours, depending on 
its actual geometry, layer thickness and movement speed.

Once printing has finished, a human operator attaches 
April tags onto the printed object following a few simple 
rules (Fig. 11) so that the geometry can be scanned with 
the effector-attached RGB camera.19 To increase precision 
and reduce blind spots, multiple tag measurements are taken 
while the robot moves along a parametrically defined sim-
ple discovery path (a circular motion above the last action 
TCP position with the camera facing inward). At the end of 
this procedure, tag measurements concerning one and the 
same block are merged via Cartesian and quaternion averag-
ing with larger tags of mode A being weighed higher. The 
averaged block positions are related to the measurements 
of fixed-position reference markers on the arena’s corners 
and merged into an updated mesh-based state representation 
(Fig. 10: E4). Through this sensing method, a high accuracy 
with a maximum observed deviation of two millimeters was 
reached.

Fig. 9  Virtual print environ-
ment, the agent action is rep-
resented in the robot pose and 
the rotation angle of new block 
volume around TCP. Contact 
surfaces of the state volumes 
with the new block are shown 
in pink (non-supportive contact) 
and magenta (supportive con-
tact area)

18 The ambition of this soft body simulation was not physical accu-
racy but simulation speed. However, parameters such as SMC stiff-
ness and damping were tuned to behave like a soft 3D printing ther-
moplastic like NinjaFlex.

19 This procedure can potentially be sped up using a 3D scanner with 
millimeter precision. However, such a device was not available at the 
time.
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Through this sensing method, a high accuracy with a 
maximum observed deviation of 2 mm was reached. This 
was especially useful as the measured geometry served as a 
basis for future print tool path generation (P3).

State compression R2
In case study A, the state could be sufficiently represented 

by a 12 × 12 grid of height values. Case study B, however, 
investigates a more complex scenario in which the state is 
constituted by actual volumetric geometry. A consistent 
and expressive method of geometric encoding was, there-
fore, crucial. With the intention for general applicability in 
mind, hand crafted and task-specific feature extraction, e.g., 
through extraction and parametrization of geometric primi-
tives was not suitable. Multiple studies demonstrated the 
potential of deep learning with signed distance field (SDF) 
data as an efficient means of volumetric shape compression, 
interpolation and completion (Angela Dai et al. 2016; Park 
et al. 2019). Thus, the use of a convolutional autoencoder 
(CAE) to encode the state by means of SDF data compres-
sion stood to reason.

Another viable approach is the extension of principle 
component analysis (PCA) to higher dimensional data sets 
by means of tensor rank decomposition. This method has been 
discussed and demonstrated in other realms of data compres-
sion (Chen and Shapiro 2009; van Belzen and Weiland 2012) Fig. 10  Flow control chart for learning-based sensor-adaptive robotic 

thermoplastic printing

Fig. 11  There are three different modes in which a block can be 
labeled. The available markers are grouped into pairs and catego-
rized in these modes. Markers with an even id in category A, B or C 
and their successor of id + 1 must be attached according to the pic-
ture. With this logic, markers can be attached in different positions 
on a block to ensure tag discovery from different angles to increase 
accuracy. An individual block can also be labeled by multiple sets of 
markers to ensure discovery from different angles
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and visual 3D data (Ballester-Ripoll et al. 2019) and has the 
advantages of not requiring lengthy training computation 
and not being prone to faulty parameter tuning. Furthermore, 
as the number of rank-1 tensors per dimension utilized for 
decomposition can be chosen at runtime, the degree of com-
pression (and loss) can be tuned without the need for retrain-
ing. In such a scenario, the state could consist of the flattened 
decomposition tensors. As an application of tensor decompo-
sition to SDF data to our knowledge has not been presented 
yet, a comparison with the aforementioned CAE approach 
was undertaken. Specifically the CANDECOMP/PARAFAC 
decomposition (Carroll and Chang 1970; Richard and Harsh-
man 1970) was performed on  643 SDF data.

The utilized CAE had the following structure: a  643 tensor 
containing the SDF data was processed through three consec-
utive convolutional layers (kernel size 4, stride 2, interposed 
batch normalization, ReLU activation) of edge size 64, 32 and 

16. After flattening the tensor, the data was processed through 
three fully connected layers of size 1296, 432 and finally 144 
(or 256) units—the bottleneck—whose outcome is presented 
to the agent as the state. The decoding pipeline is of the same, 
but mirrored structure. Two such networks were trained on 
around 100k mesh samples20 using an SGD optimizer.

A comparison of reconstruction results is shown in 
Fig. 12. With an average MSE of consistently under 5*10–5 
on unseen data and visually more satisfactory reconstruction 

Fig. 12  Comparison between  643 SDF compression methods for 
state representation: convolutional autoencoders (CAE) of differ-
ent bottleneck sizes are compared to nD-PCA via CANDECOMP/
PARAFAC (CP) tensor rank decomposition using different numbers 
of rank-1 tensors per dimension (1, 4, and 12): a CAE-144: bottle-
neck size: 144, compression ratio: 99.945%; b CAE-256: bottleneck 
size: 256, comp. ratio: 99.902%; c CP1: bottleneck size: 192, comp. 

ratio: 99.927%; d CP-4: bottleneck size: 768, comp. ratio: 99.707%; 
e CP-12: bottleneck size: 2304, comp. ratio: 99.121%. CAE exhib-
its much better reconstruction results (blue) from the input meshes 
(white) at higher compression rates. To achieve the same reconstruc-
tion quality CP requires wider bottlenecks. Furthermore, no consider-
able performance difference can be observed between CAE-256 and 
CAE-144, rendering the latter as the superior compression method

20 Around 5600 solid meshes were downloaded from Thingi10K and 
procedurally manifolded through non-uniform scaling, bending and 
twisting. Gaussian noise of 1.5 mm standard deviation was added to 
the SDF data drawn from the samples. The network was trained on a 
GTX1080 for around three weeks.
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at much higher compression ratios, the CAE of bottleneck 
size 144 was chosen for state compression.

Reward shaping R3
The agent’s general goal is to build a structure that grows 

in height or in covered floor area (preferably both) while 
deforming as little as possible. Reward shaping was designed 
to gradually guide the agent from (0) random actions with 
many (self) collisions towards (1) less collisions to (2) reach-
able action poses, (3) printable segment candidates to (4) 
increased structural performance of these candidates in the 
mentioned criteria. An intuition of the relationship between 
these criteria is summarized in Fig. 13. No reward is granted 
if a collision occurs. If the agent avoided a collision, it could 
earn a small reward of up to 0.4 when its TCP and thus 
the candidate segment are close to the existing state mesh. 
This state proximity ratio is the sum of (a) the normalized 
inverse Cartesian distance between the TCP and the clos-
est point on the existing state mesh and (b) the normalized 
deviation of the TCP’s orientation from the ideal downward-
pointing pose, i.e., the angle between TCP z-axis and global 
z-axis. The latter takes the issue with tilted printing layers 
into consideration: Nozzle orientations and thus printing 
layers diverging more than 45° from the horizontal plane 
are considered unprintable and thus penalized. The closer 
the TCP is to the existing structure and the closer its pose 
is to facing downward, the more likely it is that the action 
produces a printable candidate segment, and thus the higher 
the state proximity reward. With actions getting closer to 
the existing structure, a printability ratio signals if and how 
well a candidate segment can be printed. It is zero if (a) no 
candidate-state mesh intersection is found or it is too small, 
(b) the segment would be attached laterally instead of on top 
of the structure or printing is blocked for other reasons. If 
none of these negative circumstances occurs, the printability 
ratio is the normalized inverse intersection volume between 
state and candidate. It is a simplified, faster substitute for 
generating an actual print path with the aforementioned 
CAD script (which is costly). This encourages the agent 
to choose actions that would yield a valid and preferably 
long print tool path resulting in larger segment volumes. If 
the printability ratio is larger than zero, and thus a candi-
date segment is printable the agent can earn an additional 
structural performance reward: the minimum of either (a) 
the height increase normalized by the maximum possible 
per-action height increase: a full segment height; or (b) 
covered area increase normalized by the maximum possible 
per-action area increase: the area of a segments front face. 
This performance ratio is scaled by the average per-segment 
displacement through deformation normalized by a particu-
larly chosen maximum deformation (2 cm average segment 
displacement was considered the worst), to discourage large 
deformations in the printed structure.

3.2.4  Learning results

A training episode consists of 30 actions after which the 
printed structure is reset. Training incorporated the data 
of 100 k pre-collected action samples. Actions range from 
− 45° to 45° for axes one, two and three and from − 90° to 
90° for the others. In case study A, a certain indifference 
of the agent toward states was observed. This was partly 
because it always started out with an empty table and could 
start building a tower wherever it wanted, leading to some-
what repetitive behavior. To counteract this tendency, epi-
sodes in case study B were initialized with randomly placed 
existing blocks enriching the state information from the very 
start. In this scenario, it is significant, whether the table 
mesh is treated as part of the state or not. If so, the agent 
can start building structures directly on the floor without 
the precept to incorporate information about present blocks. 
If not, the agent is not allowed to seed new structures and 
needs to find an existing block to build on. Figure 14 shows 
the comparative learning success of SAC and TD3 with and 
without permission to initialize structures. Naturally, the 
mean returns are higher from the start when this permission 
is granted as state proximity ratios are also measured from 

Fig. 13  Reward scale for case study B
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the table mesh and random successful prints occur more 
often. Agents trained with TD3 very quickly retreat to a safe, 
collision-free pose and collect proximity rewards if initial 
building blocks happen to be nearby, but do not leave this 
pose or explore the environment. Even in the comparatively 
easier task where building on the table is allowed, no delib-
erate building is observed. On the contrary, an agent trained 
with SAC reliably prints towers after around 4500 episodes. 
It initializes a tower at a random, yet mostly on the left half 
of the table, and adds new segments on the top of the tower 
tip by moving its nozzle up after a successful print. Fig-
ure 15 and video three21 show this learning success in more 
detail and with varying material rigidity. If the permission 
to structure initialization is not granted, the SAC agent per-
forms considerably worse (TD3 was not even tested in this 
more difficult scenario). This suggests that it (a) has difficul-
ties to correctly identify the position of present blocks in the 
scene and/or (b) successful print events on existing blocks 
occur too rarely for it to draw conclusions from them. The 
policy that works, however, produced structures of up to 
seven blocks. It also seems that these towers tend to grow 
diagonally (Fig. 15 left). Whether this happens by accident 
or due to deliberate planning to increase the covered area 
could not be determined at this point. It must be noted, that 

the produced actions all represent fabricable building blocks, 
as the existence of a motion plan toward the action pose and 
of a valid print tool path are inherent performance criteria in 
learning. Due to government measures implemented to com-
bat the Covid-19 pandemic in Australia, the trained policy 
could not be deployed on the physical robot anymore. With 
all software and hardware components laid out, however, the 
real-world implementation is straight forward. 

4  Conclusion

4.1  Achievements

The presented workflow combines quasi-standard tools of 
robotics, DRL and CDRF research into an integrated agent 
training and control environment for autonomous robotic 
construction. It is open to arbitrary model-free DRL algo-
rithms via the OpenAI Gym interface and offers simple 
environment setup through a well-established visual-pro-
gramming interface. Yet, its language-agnostic microser-
vice layout in principle allows for the use of any backend 
software as a simulation environment. It furthermore allows 
the use of CAD scripting routines for sophisticated geomet-
ric representations and to complement agent actions. It also 
enables real-time industrial machine control common in 

Fig. 14  Comparative learning success between TD3 and SAC with and without the ability to initialize structures

21 Electronic supplementary material 3: video 3.
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industrial fabrication setups. Through CAD instance man-
agement and error handling, uninterrupted training sessions 
of multiple days to weeks can be performed, although stabil-
ity decreases with the number of parallel training sessions.

The framework’s operation was demonstrated in two 
construction-related case studies, serving as stand-ins for 
large-scale fabrication scenarios, in which commonly arising 
issues such as sensor-adaptive automation, structural as well 
as tooling-related planning, geometric state representation 
and real-time control are addressed. The case studies pre-
sented ways of formulating DRL learning as a succession 
of independent constructive actions contributing to a global 
structure. The learning performance of SAC and TD3 within 
these exemplary tasks could successfully be compared. SAC 
has proven to be the more effective training method for our 
use cases which conforms to the scientific consensus within 
DRL research.

4.2  Shortcomings

In terms of simulation speed, the presented training frame-
work does not compare favorably to highly optimized 
simulation software like MuJoCo. Although a consider-
able performance increase could be observed when thor-
ough collision checking and path validation in MoveIt are 
skipped in favor of simple mesh intersection in CAD, its 
distributed nature and processing through multiple network 
layers as well as relatively slow visual scripting computation 
represent bottlenecks. Although geometric CAD scripting 
was found to be a promising means to simulate construc-
tion, the development of tool path planning subroutines that 
account for every possible geometric configuration of state 
and action is difficult. Thus, our print path generation script 
would not produce feasible outputs in about 5% of the cases. 
Furthermore, structural performance analysis by means of 
PBD as done in our case studies does not represent a suf-
ficient means of stress evaluation in construction and was 
chosen mainly for simulation speed. Furthermore, its actual 
impact on the learning procedure in case study two can be 

questioned as the agent did not seem to make such high level 
considerations.

In a more general scope, the structures that were pro-
duced with our methods do not represent useful architectural 
objects.

4.3  Future work

As this study was focused on using comparatively simple 
and easy-to-adapt learning algorithms, model-based RL 
approaches were not considered. However, construction 
scenarios in which system dynamics are well known, e.g., 
construction of fully rigid objects or FEA-based stress and 
deformation analysis, model-based learning could tremen-
dously increase sample efficiency. Within the model-free 
realm more efficient information-extraction methods such 
as Hindsight Experience Replay (HER) also bear a great 
potential in reducing training time, given that well defined 
goal descriptions are provided. In this context, the formula-
tion of structural performance goals could be considered. In 
terms of performance evaluation, a multitude of aesthetic 
and structural criteria is thinkable. In this regard, actions can 
be used to further parametrize geometric modules to produce 
visually more pleasing outcomes. The successful creation 
of more complex architectural objects with the presented 
approach stands or falls with a carefully crafted reward-
shaping method. There exists a tradeoff between allowing 
unforeseeable scenarios to unfold and defining specific geo-
metric aspects of reward shaping to steer agent behavior. 
Using SAC for training, we found that more action-specific 
feedback (like rewarding a short effector distance to the cur-
rent tower tip) leads to more effective learning than higher-
level structural goals (like overall tower height or covered 
floor area). The agent also benefits from a reward shaping 
that encourages small consecutive improvements over dis-
tant high rewards. In our example, this succession was (1) 
collision avoidance, (2) robot effector pointing downward, 
(3) getting near the existing structure and finally (4) attach-
ing a new piece.

Fig. 15  Autonomously planned 
towers using SAC
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Big potential in terms of real-world application of our 
approach lays in the use of larger, high-payload industrial 
robots. Although readily available at the time, their use was 
not favored due to the experimental nature of the study and 
safety concerns. Deployment onto such machinery necessi-
tates serious considerations of appropriate safety measures. 
The benefits of a real-world application could be less time-
consuming tool path generation, a more tightly integrated 
manufacturing procedure that mediates between and opti-
mizes for structural criteria as well as fabrication constraints, 
and ultimately a higher degree of construction automation 
with benefits for efficiency and human health. In this con-
text the presented work can best be understood as a proof 
of concept to be adapted for even more powerful learning 
algorithms in the future whose actions are very closely mon-
itored by a human—the ultimate actor-critic.

Appendix

The learning parameters for DRL algorithms:

Training algorithm Case study A Case study B

Both
 Optimizer Adam Adam
 Reward range − 0.25 to 1.0 0.0 to 1.0
 Hidden layer sizes (all networks) [256, 256] [432, 360]
 Activation function ReLu ReLu
 Value net learning rate 0.0003 0.0003
 Soft Q learning rate 0.0003 0.0003
 Policy learning rate 0.0003 0.0003

TD3
 Discount 0.99 0.99a

 Batch size 256 256a

 Network gradient steps per action 0.625 1
 Actions between network updates 800 600

SAC
 Discount 0.99 0.9a, 0.99b

 Batch size 256 128a,  256b

Network gradient steps per action 1 1
 Actions between network updates 200 600
 Target smoothing coefficient ( �) 0.005 0.05a, 0.005b

a Experiment in which agent was allowed to initialize new structures, 
bagent was not allowed to initialize new structures

Fig. 16  A CAD script indicates whether a print is possible based on different environmental conditions and returns the appropriate tool path. 
Potential support surfaces are shown in green, non-supportive intersection surfaces are magenta
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The optimizer parameters for CAE training for state 
compression:

Optimizer Stochastic 
gradient 
descent

Optimizer momentum 0.7
Learning rate 0.02
Weight decay 0.0

See (Fig. 16).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s41693- 022- 00069-0.
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