
Vol.:(0123456789)1 3

Construction Robotics (2022) 6:15–37
https://doi.org/10.1007/s41693-022-00069-0

ORIGINAL PAPER

Autonomous robotic additive manufacturing through distributed
model‐free deep reinforcement learning in computational design
environments

Benjamin Felbrich1,3 · Tim Schork3 · Achim Menges1,2

Received: 1 December 2021 / Accepted: 6 March 2022 / Published online: 23 May 2022
© The Author(s) 2022

Abstract
The objective of autonomous robotic additive manufacturing for construction in the architectural scale is currently being
investigated in parts both within the research communities of computational design and robotic fabrication (CDRF) and
deep reinforcement learning (DRL) in robotics. The presented study summarizes the relevant state of the art in both research
areas and lays out how their respective accomplishments can be combined to achieve higher degrees of autonomy in robotic
construction within the Architecture, Engineering and Construction (AEC) industry. A distributed control and communication
infrastructure for agent training and task execution is presented, that leverages the potentials of combining tools, standards
and algorithms of both fields. It is geared towards industrial CDRF applications. Using this framework, a robotic agent is
trained to autonomously plan and build structures using two model-free DRL algorithms (TD3, SAC) in two case studies:
robotic block stacking and sensor-adaptive 3D printing. The first case study serves to demonstrate the general applicability of
computational design environments for DRL training and the comparative learning success of the utilized algorithms. Case
study two highlights the benefit of our setup in terms of tool path planning, geometric state reconstruction, the incorporation
of fabrication constraints and action evaluation as part of the training and execution process through parametric modeling
routines. The study benefits from highly efficient geometry compression based on convolutional autoencoders (CAE) and
signed distance fields (SDF), real-time physics simulation in CAD, industry-grade hardware control and distinct action
complementation through geometric scripting. Most of the developed code is provided open source.

Keywords Additive manufacturing · Robotic construction · Deep reinforcement learning · Distributed control · Computer-
aided manufacturing

1 Introduction and context

1.1 Planning and autonomy in computational
design and robotic fabrication

With the rise of CDRF in architecture as an established
research field in the last two decades, a fundamental shift
of the AEC industry towards higher degrees of automation
becomes apparent (Menges 2015; Willmann et al. 2014).
Throughout the years, a higher degree of robotic auton-
omy was a persistent goal among researchers as it bears
the potential to adapt construction logics to new robotic
means of making and ultimately free up construction work-
ers from repetitive and dangerous tasks. Numerous CDRF
research projects demonstrated the use of robots for pre-
fabrication and in situ construction with a wealth of dif-
ferent material systems and construction methods. General

 * Benjamin Felbrich
 benjamin@felbrich.com

 Tim Schork
 tim.schork@uts.edu.au

 Achim Menges
 achim.menges@icd.uni-stuttgart.de

1 University of Stuttgart, Institute for Computational Design
and Construction, Stuttgart, Germany

2 Cluster of Excellence IntCDC Integrative Computational
Design and Construction for Architecture, University
of Stuttgart, Stuttgart, Germany

3 School of Architecture, Faculty of Design, Architecture
and Building, University of Technology Sydney, Sydney,
Australia

http://orcid.org/0000-0001-5002-8982
http://orcid.org/0000-0002-4583-2439
http://orcid.org/0000-0001-9055-4039
http://crossmark.crossref.org/dialog/?doi=10.1007/s41693-022-00069-0&domain=pdf

16 Construction Robotics (2022) 6:15–37

1 3

purpose industrial robot arms enjoy great popularity within
this field of research as they possess high payloads, versa-
tility and precision. The variety of investigated materials
and structures reaches from experiments with robotic brick
laying (Bonwetsch et al. 2007), composite fiber winding
(Doerstelmann et al. 2015), metal welding (Parascho et al.
2018), timber sewing (Alvarez et al. 2019; Schwinn et al.
2016) to 3D printing of thermoplastics (Yuan et al. 2016),
concrete (Khoshnevis et al. 2006) or composites (Felbrich
et al. 2018b; Hack and Lauer 2014) and many more. These
projects demonstrated the ability of the CDRF research
community to conceptualize, develop and fully implement
complex robotic fabrication processes. Often the machining
capabilities of industrial robots are heavily extended through
elaborate custom end effectors and sensor systems. However,
robotic tool paths are often carefully crafted by a human
adhering to a static unidirectional information flow from
the CAD model of a desired product to machine instruc-
tions. This mode of operation has its roots in the adoption
of numerical control (NC) in manufacturing since the 1940s
and the subsequent development of CAD/CAM routines that
offer a more streamlined way of instantiating virtual objects
in the physical world using machines. As is the case in many
manufacturing fields that involve heavy machinery, these
workflows justifiably favor robustness, precision and secu-
rity over adaptiveness and agility, which are desirable quali-
ties in robotics research.

An increased popularity of machine learning (ML) tools
in this field proves that CDRF researchers are well aware
of the potentials that novel ML methods have for design
optimization. Noteworthy examples include the detection
of fabrication-relevant material features such as wood knots
(Nagy 2017; Norlander et al. 2015) or masonry cracks (Chai-
yasarn et al. 2018), the prediction of material behavior like
metal rod bending (Smigielska 2018), the use of various
neural networks for conceptual design generation (As et al.
2018; Mahankali et al. 2018) or evaluation (Tarabishy et al.
2020), or as a direct modeling aid through a brain-computer
interface (Cutellic 2019) or augmented reality headsets (Fel-
brich et al. 2018a).

Projects with a stronger focus on ML-enabled robotics
include Brugnaro and Hanna (2017), where researchers
made use of a Deep Neural Network (DNN) to cross-map
fabrication parameters in robotic wood chiseling. Harichan-
dran et al. (2019) enhanced an exemplary task of lifting a
scaffold structure with four distinct lifting machines using
state vector machines (SVM). Rossi and Nicholas (2018)
demonstrated a way to map the paths taken by a metal sheet
robotically manoeuvered through an English Wheel to its
deformation behavior caused by the exerted pressure. This
gave insight into how complex, hard-to-simulate metal
deformation under rolling/pressure relates to its final cur-
vature. Tamke et al. (2018) show two distinct case studies.

In the first project, DNNs are used within a computational
form-finding process of a wall structure composed of bend-
ing-active tensile rod modules. The optimization procedure
of the global structure was simplified and heavily sped up by
classifying load cases on the module-level. The second pro-
ject made use of DNNs to predict unfavorable spring-back
of metal sheets after being deformed in a process of robotic
incremental sheet forming (RISF).

Although the use of classic supervised learning with
DNNs shown in these projects bears some potential for opti-
mized planning, it (a) disregards modern machine learning
research especially within the field of robotic learning and
(b) leaves large potentials of higher robotic autonomy in
fabrication untapped. Achieving higher degrees of robotic
autonomy within CDRF is extremely hard, if not impossible,
with currently used ML tools.

In the realm of additive manufacturing both Mozaffar
et al. (2020) and Nicholas et al. (2020) exemplify a tendency
of approaching individual aspects of the design-to-fabrica-
tion workflow in isolation by focusing on tool path optimi-
zation using DNNs and/or DRL. Jin et al. (2020) propose
ML-based optimization strategies to solve three separate
steps of the entire workflow: improving geometrical design,
process parameter configuration, and in situ anomaly detec-
tion. A coherent overview of ML-related additive manufac-
turing research given in Goh et al. (2021) similarly divides
the reviewed projects into design optimization, process opti-
mization and in situ quality control. As such, projects often
heavily focus on solving isolated manufacturing related engi-
neering problems. They do not target a constructive robotic
problem-solving strategy as it is the goal in DRL robotics
research.

1.2 Deep reinforcement learning in robotics

Supervised learning approaches with the mere use of non-
linear function approximators like DNNs for classification—
as it is current practice in CDRF—is not feasible in robotic
construction: to control a robot with an encoded state-action
mapping—i.e., a decision making strategy—in a DNN, one
would have to generate a very large data set of state-action
pairs for training. With increased data dimensionality and
continuous action spaces, as they are common in CDRF, this
approach of basically presenting the entire cause-reaction
space to a DNN quickly becomes unfeasible. Furthermore,
in many cases, a human instructor might not even have the
insight to provide suitable actions for every possible envi-
ronmental circumstance and rather wants the learning mech-
anism to find solutions to construction tasks by itself.

In this regard, reinforcement learning (RL)—first com-
prehensively described in Sutton and Barto (1998)—is a
particularly promising subset of machine learning. A few
key achievements of this approach are fully autonomous

17Construction Robotics (2022) 6:15–37

1 3

aerobatic flight control of a helicopter (Abbeel et al. 2007),
robotic control through demonstration and imitation (Kober
and Peters 2011), bipedal (Mordatch et al. 2016) and quadru-
pedal robotic locomotion (Haarnoja et al. 2018a; Hwangbo
et al. 2019), the defeat of human players in many Atari
games (Mnih et al. 2013) and even mastering the highly
complex strategic board game Go on a super-human level—
AlphaGo (Silver et al. 2017).

RL and Deep RL (DRL) can overcome the aforemen-
tioned limitations as they encourage an agent to indepen-
dently explore the state space. As the robotic agent receives
positive rewards for favorable actions and autonomously
maximizes this accumulative reward through strategies such
as state(-action) value estimation, policy gradients and/or
model examination, it is the human’s only responsibility
to lay out an appropriate environment and reward-granting
logic, which can be tailored towards constructive tasks. The
advantages of DRL to (a) operate in vast environments with
continuous or practically infinitely large discrete state-action
spaces and (b) discovery of strategies beyond human dem-
onstration render it a promising means for robotic autonomy
in construction.

A thorough overview over DRL-based robotic control
paradigms is given in Amarjyoti (2017). Interestingly, DRL
researchers at times choose construction tasks to practice
and benchmark learning algorithms. A few of them will be
mentioned here. A more in depth discussion of some indi-
vidual algorithms applied will be given in Sect. 2.2.

With the focus on noise resilience and affordability,
Deisenroth et al. (2011) presented a very sample-efficient
way of training a noisy, low-cost gripper-equipped manip-
ulator to build a tower of colored blocks through visual
feedback. The custom-made framework used for this study,
PILCO, was introduced earlier in a more general fashion
(Deisenroth and Rasmussen 2011).

Duan et al. (2017) and Finn et al. (2017) presented a dif-
ferent approach of meta-learning in which an agent not only
learns a policy but also a way to generalize said policy to
new tasks. Here, a robot is able to learn the task of stack-
ing blocks through a single demonstration by a human, giv-
ing rise to its name one-shot imitation learning. It uses two
DNNs: a vision network to infer object positions from raw
image data, and an imitation DNN to derive and generalize
the task intent from the demonstration. The latter is pre-
trained on thousands of simulated demonstration samples.

Liu et al. (2018) made use of Deep Q-Learning in which
the prospective value of a state-action pair at the current
time step (the Q-value) is predicted using a DNN. With this
technique, the agent learns to plan the stacking of irregular
2D-objects into a stable wall. The trained planning policy is
then executed by a robot arm.

Zhang et al. (2019) describe a method to learn state model
representations from image data. Although the paper’s main

focus is structured representation and inference of model
dynamics, it also employs a construction task—connecting
Lego bricks—as a benchmark (among others).

Since at least the introduction of one-shot imitation learn-
ing, the task of object stacking—the most fundamental form
of additive construction—with full robotic autonomy and
very little human guidance can be considered solved. As
DRL researchers are interested in improving the perfor-
mance of their algorithms, they naturally tend to employ
these simpler construction tasks like block stacking and have
little motivation to extend their research to other construc-
tion principles. It seems, however, that this research field
bears enormous potentials in increasing robotic autonomy
in CDRF. Still DRL found little resonance within the CDRF
community so far.

1.3 Motivation

The reasons why DRL has not been employed in CDRF yet
are manifold. Both DRL and CDRF are relatively young
research fields, with largely unrelated research focusses.
Aside from the required educational background, the tools
and methods that are used are quite different. A closer look
at the latter is worthwhile.

In fact, both of these research areas heavily benefitted
from recent developments of powerful software tools.

Aside from an increased availability of robotic hard-
ware in CDRF, the rise of generative and parametric design
software made it is easier than ever to ideate, shape and
script architectural objects that are both highly optimized
towards multiple objectives (structural performance, mate-
rial efficiency, etc.) and at the same time robotically fabri-
cable (Jabi et al. 2013; Braumann and Brell-Cokcan 2011).
Especially, visual programming interfaces in CAD enjoy
great popularity for their ease-of-use and modularity, with
McNeel’s Rhino and Grasshopper (Rhino-GH) currently
being the quasi-standard. Such tools enable designers to
model, evaluate and improve design solutions through an
extendible modular tool set that offers a multitude of relevant
sub-functions such as simulation-based form finding, FEA,
CAD/CAM, numerical optimization, daylight simulation,
some basic machine learning and robot kinematics capa-
bilities and others.

DRL research on the other hand heavily benefitted from
the availability of optimized deep learning frameworks such
as PyTorch, Tensorflow, Keras, Caffe and others. Their auto-
matic differentiation capabilities make them highly modular
as they allow for numerical optimization of arbitrarily com-
posed neural architectures. In addition, the Robot Operation
System ROS, the quasi-standard in experimental robotics,
offers a multitude of middleware components to access and
control practically every motor or sensor that is relevant in
the field. It also provides very capable tools for robotic path

18 Construction Robotics (2022) 6:15–37

1 3

planning, visualization, simulation and many more. These
tools offer a much more agile framework than traditional NC
that are common in CAD/CAM. Although their features are
highly relevant in CDRF they are hardly used.

We thus conclude that in summation, all the relevant
methodic as well as algorithmic foundations for robotic
autonomy in construction are already around. They just exist
in different research realms and have not been combined yet.

Buckminster Fuller, one of the most influential archi-
tects of the twentieth century said: “If you want to
teach people a new way of thinking, don't bother try-
ing to teach them. Instead, give them a tool, the use
of which will lead to new ways of thinking.” (Senge
et al. 1994, p. 28).

The direct contribution this study intends to make is a
way of combining methods and tool sets of DRL and CDRF,
that leverages their individual strengths. Our hope is that
such a framework would allow practitioners and research-
ers outside the realm of DRL and robotic research to use
state-of-the-art robot control and learning tools for robotic
fabrication and CAD/CAM workflows. This bears the poten-
tial that (a) methods for multi-criterial (structural) perfor-
mance analysis can be repurposed as training environments
to highly efficient DRL optimization routines and robotic
learning and thus lead to improved outcome and (b) serve as
a means for DRL researchers to assemble training environ-
ments with direct practical relevance.

While the presented study aims to introduce a higher
degree of autonomy into CDRF research, it considers prac-
tical requirements that are prevalent in typical industrial
fabrication setups, such as the need for real-time control,
geometric state representation, structural performance evalu-
ation and tool path accuracy. Furthermore, it aims to provide
insight into practical applications of DRL and the challenges
therein.

For this purpose, a communication and control frame-
work for distributed agent training and task execution is
presented and demonstrated in two case studies.

1.4 Related studies

As construction-related DRL research and ML-related
CDRF research were already discussed, this section focuses
on existing CDRF projects that made use of techniques and
frameworks that are also common in DRL.

Robotic autonomy highly depends on sensor-based
feedback-loops allowing an agent to react to unforeseen cir-
cumstances or reconsider its behavior. Thus, the integration
of design and fabrication tools into continuous multi-direc-
tional workflows yields tremendous potentials for CDRF.
Vasey et al. (2015) investigated the robotic placement of
pre-impregnated polymer reinforced carbon fibers onto a

pneumatic formwork. Using feedback from a load cell and
adaptive control, robotic motion could be adjusted in reac-
tion to formwork deformation or previous fiber displace-
ment. Giulio Brugnaro et al. (2016) demonstrated adaptive
robotic behaviors enabled by visual feedback in weaving
bending rattan rods. In Heimig et al. (2020), images of an
integrated camera were used to adapt tool paths in the highly
complex task of 3d printing with metal.

A common challenge in sensor-based setups in CDRF
is a multitude of available frameworks and products, all of
which are not necessarily compatible. ROS was designed
to overcome exactly these challenges by introducing a uni-
fied modular middleware that enjoys overwhelming support
by hardware vendors and software developers. Both Feng
et al. (2014) and Benjamin Felbrich et al. (2017) made use
of ROS and ROS-supported sensor systems in setups related
to architectural fabrication. The latter used ROS as the main
communication infrastructure for a multi-machine fabrica-
tion setup involving two industrial robots, a custom-made
UAV and tension sensing devices. The usefulness of ROS for
human-aided fabrication with an augmented reality headset
was successfully demonstrated in Wannemacher (2017) and
Kyjanek et al. (2019). Sutjipto et al. (2019) demonstrated
closed-loop, sensor-based 3D printing.

Gandia et al. (2019) implemented the powerful Open
Motion Planning Library (OMPL) into a common CDRF
workflow.

These studies allude to a process of general technical
maturation through the incorporation of performant planning
and control routines within robotic fabrication. The intro-
duction of a unified platform implementing DRL learning
and sophisticated control could help accelerate this process.

2 Methods

2.1 Distributed training‑fabrication framework

The software infrastructure that was developed to facili-
tate the integrated training and fabrication process will be
referred to as deepbuilder. It is presented in detail hereafter
and demonstrated in video one.1

2.1.1 Design principles

To fully leverage the strengths of combining methods of
both fields of research and reflect the needs of CDRF fab-
rication setups, our framework had to follow a few design
principles, which then guided its specific layout:

1 Electronic supplementary material 1: video 1.

19Construction Robotics (2022) 6:15–37

1 3

Access to algorithms: Many newly developed DRL algo-
rithms are provided to the community free and open source.
The performance of these algorithms is often tested and
demonstrated within the OpenAI Gym framework. It defines
a simple interface of functions, a template for writing agent–
environment interaction cycles. Adhering to this standard
allows easy access to existing and newly developed algo-
rithms in the future.

Modular setup of training environments: While powerful
physics simulation frameworks such as MuJoCo, DART
and ODE are commonly used among DRL researchers as
environments for agent training, their capabilities for geo-
metric modeling and performance analysis are limited.
Rhino-GH on the other hand offers strong CDRF-related
tools for modeling, analysis and simulation, an intuitive UI
and is continuously extended by the community. The key
idea is to turn Rhino-GH into a modular construction kit for
training environments, i.e., an extension of OpenAI’s Gym
concept into the realm of generative modeling and compu-
tational design. This opens up the possibility to assemble
CDRF-related performance evaluation training fields for
agent actions and also allows for the agent itself to perform
script-based CAD modeling.

Real-time physics: While Rhino-GH offers great func-
tionality, its physics simulation capabilities, especially in
collision-rich scenarios do not match those of Gazebo or
MuJoCo. However, robotic training scenarios and fabrica-
tion heavily rely on such assets. We thus extended Rhino-GH
with a custom plugin for fast real-time physics simulation
based on the Nvidia Flex engine (Benjamin Felbrich 2019).

Open-endedness: While our specific setup stipulated a cer-
tain CAD training environment, the framework should in
principle be open to other means of simulation and action
evaluation. Thus, language- and software-agnostic commu-
nication was to be favored wherever possible.

Full integration with ROS: ROS extinguishes itself through
its modularity and community support within robotics. Mak-
ing full use of its capabilities, especially in terms of motion
planning and sensor control, greatly simplifies the execution
of trained agent policies. For our experiments a Universal
Robot UR10 with the appropriate ROS drivers was used.
Further hardware choices will be discussed later.

Support of real-time controls via fieldbus: Although some-
what experimental, the presented research targets industry-
grade machinery for its relevance in fabrication. The frame-
work must, therefore, allow to automate a real-time fieldbus
system such as EtherCAT.

Bare-metal hardware support: ROS-based hardware con-
trol requires a very stable network connection between the
host and connected devices. Neural computation and phys-
ics simulation both heavily benefit from highly parallelized
GPU computation. To fulfill these requirements, system vir-
tualization through VMs or WSL was foreclosed in favor of
dedicated hardware.

Multiple simulation workers: DRL algorithms, especially in
model-free approaches, generally require a high amount of
simulation steps, the reduction of necessary training samples
and most efficient use of collected data is a major subject of
investigation within DRL research. To compensate for the
loss in simulation speed caused by network communication
and system distribution, an ability to run multiple training
sessions at once is crucial.

2.1.2 System overview

With the discussed principles in mind, a system was estab-
lished that can access and control a variety of relevant tools
and applications (Fig. 1). This deepbuilder runtime partly
consists of an environment class based on OpenAI Gym able
to communicate with different tools and applications rel-
evant to the task of robotic construction.2 It gives an autono-
mous DRL agent the ability to train its behavior within a
simulation environment that offers parametric design fea-
tures (i.e., a Rhino-GH script) while validating and planning
movements through MoveIt, execute the trained policy on an
actual robot and retrieve new environmental states through
visual sensors. Furthermore, geometric CAD scripting rou-
tines can be automated to aid planning and execution, which
is especially useful in critical tooling-related subroutines
that require high precision. This enables the differentiation
of building behavior into low-precision global movements,
that are learned, and more precise local movements, that are
scripted and complement the autonomous fabrication learn-
ing workflow. Lastly, a real-time middleware is connected to
enable the control of industrial grade machinery.

Simulation Phase—A typical simulation phase incorporates
the motion planning capabilities of OMPL in ROS to vali-
date prospective actions in terms of collision avoidance with
the environment through respective service calls. Actions
that lead to collisions are considered bad and will be penal-
ized. Collision-free actions are forwarded to the simulation
environment through a CAD instance management service
running on another computer in the network. There, Rhino-
GH scripts can be used to (a) simulate the action, (b) infer

2 Source code available at https:// github. com/ Heinz Benja min/ deepb
uilder.

https://github.com/HeinzBenjamin/deepbuilder
https://github.com/HeinzBenjamin/deepbuilder

20 Construction Robotics (2022) 6:15–37

1 3

performance-related information from the state geometry
that is relevant for reward shaping and learning, and (c)
derive refined tool paths in accordance with the environ-
mental state if necessary.

Execution Phase—Once trained the policy is deployed to the
actual hardware. Prior to execution each action is validated
and planned through motion planning and possibly refined
through CAD scripts. It is then executed by the robot arm
and the respective ROS-driven hardware extensions. In cases
where additional industrial hardware is needed throughout
the action execution (e.g., controlling an extruder motor or
heating a printing nozzle), respective commands are sent to
another service allowing the control of fieldbus-connected
devices.

2.1.3 System components

2.1.3.1 ROS setup3 For motion planning, a Bi-directional
Transition-based Rapidly exploring Random Tree (BiTRRT)
was used. When a desired goal could not be reached, a dis-
tinction is made between self-collisions, collisions with
static environment objects (floor, virtual safety planes) and
dynamic environment objects (objects added to the environ-

ment by agent actions). These differentiated measures can
be used for nuanced reward shaping. ROS was used to con-
trol the UR10 robot, a gripper and sensing devices.

2.1.3.2 Sensor integration For reliable camera-based pose
estimation of physical objects, the popular visual fiducial
system AprilTag (Wang and Olson 2016) was chosen and
integrated into the system through the appropriate ROS driv-
ers. Additional depth information gathered with the utilized
Intel RealSense D435 camera was processed with custom-
developed ROS nodes. They will be described in detail later.

2.1.3.3 CAD instance management The simulation envi-
ronment in CAD is accessed through an ASP.NET Web API
running on a Windows computer. It serves three purposes:
(1) instantiate and manage CAD instances making sure
that there is an active application per training session run-
ning and ready to receive orders, (2) act as a microservice
to receive Http requests from the deepbuilder runtime that
include actions intended for simulation or scripting instruc-
tions intended to request further geometric information and
forward them to an available CAD instance and (3) act as
an instance watchdog, that detects faulty simulations, unre-
sponsive Rhino-GH instances as well as excessive RAM
usage and performs necessary supervisory measures such as

Fig. 1 Deepbuilder system overview

3 Driver configuration specific to our setup available at https:// github.
com/ Heinz Benja min/ deepb uilder- catkin.

https://github.com/HeinzBenjamin/deepbuilder-catkin
https://github.com/HeinzBenjamin/deepbuilder-catkin

21Construction Robotics (2022) 6:15–37

1 3

killing and restarting simulation instances.4 Requests to the
GH script were received through components implement-
ing the .Net Http server functions.5 CAD instances are cou-
pled to deepbuilder training sessions with unique identifiers.
This allows for the parallel execution of multiple training
sessions.

2.1.3.4 TwinCAT-Http-server6 EtherCAT fieldbus control-
lers can be programmed with Beckhoff’s TwinCAT3 over
a real-time ethernet connection. It is a well-established
industrial control tool. The related Beckhoff library Twin-
CAT.Ads offers the automation of TwinCAT through .Net
languages such as C#. TwinCAT-Http-Server is a custom-
developed WPF application that can communicate with
TwinCAT.Ads while also acting as an ASP.NET Web API
host receiving Http requests. It, therefore, exposes read and
write functionality of TwinCAT3 parameters at runtime to
arbitrary network locations in a language-agnostic way. In
our case, the read and write requests were made from an
accordingly designed ROS node and thus allowed ROS to
remote control EtherCAT devices. TwinCAT-Http-Server
also offers a UI to monitor traffic and plan correct requests.

2.2 Choice of RL algorithms

Within the field of RL, many different algorithms have been
proposed over the years. As it was not intended to introduce
a new algorithm, the choice of a suitable existing one from
the literature was crucial. A non-exhaustive overview of
existing techniques is given in (Achiam 2018). An important
distinction has to be made between model-based and model-
free learning. In model-based RL, the agent retains an inner
representation of the environment, a function that predicts
state transitions to the next state s′ and reward r based on
current state s and action a . This enables planning and pre-
diction of long-term strategies and thus yields a high sample
efficiency. However, model-based approaches are generally
more difficult to adapt to changing task definitions. As it
was intended to test this learning framework on different
construction tasks and possibly extend its use further, task-
specific model implementation and tuning had to be avoided.

One model-free technique, Q-Learning, stores and incre-
mentally improves the Q-function Q(a, s) which approxi-
mates the value of state-action pairs, i.e., the total reward
accumulation that can be expected after taking a in state s
when following a given policy � . The optimal policy �∗ is
the one that uses an optimal Q-function Q∗ to find the best
possible action a∗ in every s . The main optimization objec-
tive is thus finding a Q-function that describes the task as
complete and accurate as possible. Finding it is typically
done by mediating between exploring the environment in
early phases of training and later exploiting known infor-
mation about advantageous actions. The classic form of
Q-Learning, where Q values are stored in a table, is limited
to discrete action spaces and thus not applicable to our task.
However, using such state-action-value approximators, e.g.,
in the form of a DNN as its done in deep Q-Learning, is
highly advantageous.

Policy optimization, also called policy gradient, tech-
niques on the other hand, do not make use of such substitute
optimization objectives and directly optimize the parameters
� that make up a policy to maximize accumulated reward. If
the policy is represented by a DNN, � are its weights.

For this study, we chose to use two modern model-free
DRL algorithms that combine the advantages of policy opti-
mization and value approximation: they are relatively simple
to implement, yet provide state-of-the-art efficiency and do
not require advanced task-specific model engineering: Twin
Delayed Deep Deterministic Policy Gradient (TD3) (Fuji-
moto et al. 2018) and Soft Actor-Critic (SAC) (Haarnoja
et al. 2018b).

As a successor to DDPG (Lillicrap et al. 2015)—a deep
Q-Learning method adapted for continuous action spaces—
,TD3 also concurrently trains neural approximators for
Q∗(s, a) and a∗(s) , but addresses DDPG’s high sensitivity
to hyper-parameter tuning. It does so using two Q-DNNs,
delaying policy updates and smoothing the target policy, to
avoid Q-function error exploitation.

SAC is similarly structured, but differs in that it works
with a stochastic policy, whose entropy is maximized along
with reward accumulation throughout training. A maxi-
mized policy entropy is understood to be more expressive
and responsive to environment state changes as it implicitly
encourages exploration and thus avoids getting trapped in
local optima.

Both algorithms greatly benefit from storing experience
of previous steps in the form of [s, a, r, s�]-tuples and sam-
pling from this data during training. This technique called
experience replay allows for the reuse of collected data
and more flexible data acquisition involving, e.g., multiple
simulation workers and combining data of multiple training
sessions.

Like many DRL algorithms, these two have difficulties to
converge sufficiently when they only receive sparse rewards.

4 CAD applications such as Rhino-GH are often based on the.Net
framework and typically not designed for and thus not robust towards
inter-process communication. Thus, to avoid crashes special care had
to be given to synchronizing incoming traffic with the GH update
cycle and thread. This circumstance prohibited more direct commu-
nication via ROSBridge and necessitated dedicated instance manage-
ment capabilities.
5 For this study, the http functions of the Bengesht plugin were used:
https:// github. com/ behro oz- tahan zadeh/ Benge sht.
6 Source code available at https:// github. com/ Heinz Benja min/ TwinC
AT- Http- Server.

https://github.com/behrooz-tahanzadeh/Bengesht
https://github.com/HeinzBenjamin/TwinCAT-Http-Server
https://github.com/HeinzBenjamin/TwinCAT-Http-Server

22 Construction Robotics (2022) 6:15–37

1 3

As they start out with completely random actions it might
be, in the case of tower stacking for example, extremely
unlikely that the agent just randomly happens to stack one
block on a previous one and thus never receives a positive
reward. To enrich this scarce reward landscape, it is common
practice to apply reward shaping, in which smaller rewards
are granted for actions that, although not entirely satisfying,
are still somewhat advantageous. Using TD3 and SAC, dif-
ferent agents were trained within the described framework
in two construction-related case studies. The detailed task
description, reward-shaping approaches, learning results and
robotic execution are described hereafter.

3 Case studies

The following two case studies are intended to show the
functioning of the distributed training and fabrication setup
described in Sect. 2 and further detail fabrication-specific
applications. They should be understood as reduced-size
demonstrations that, although not quite matching the physi-
cal size of actual architectural fabrication, make use of and
serve a mode of operation that is very typical in CDRF
applications (especially in case study two).

3.1 Case study A: block stacking

3.1.1 Setup

In the first case study, the robotic agent consists of a UR10
six-axis robot equipped with hardware shown in Fig. 2. Its

task is to stack boxes of 12 × 12 × 8 cm into a tower-like
structure. The robot is mounted to a table which limits its
reach to the area above its own root plane. It is furthermore
confined by a set of virtual safety planes to its left, right,
front, back and top. In addition to the table and the safety
planes, the block source (Fig. 2: 1) acts as another static col-
lision object of the environment. A sensor-processing unit
(3) was used to pre-process image and depth data and wire-
lessly transmit the results. The boxes consisted of Styrofoam
which was manually softened to reduce bouncing. Later
cardboard boxes with similar weight, friction and restitution
were used. To reduce the reality gap between simulation and
execution, the parameters of Flex were carefully adjusted to
closely resemble the physical behavior of the actual boxes
through visual comparison, trial and error.

3.1.2 Task description

By default, the robot rests in a neutral, collision-free home
position from which it can reach the block source to pick up
a new block. The motion of picking up a new block which
starts and ends in the home position is pre-defined and not
subject to learning. Actions that are generated by the agent
represent a single robot posture consisting of its 6D joint
configuration that we call action pose.7 Holding a block in

Fig. 2 Block building arena: (1) block source; (2) UR10; (3) sensor processing unit Nvidia Jetson TX1; (4) Robotiq 2F-140 two finger gripper
and Intel Realsense D435 camera; (5) building block with localization markers attached

7 We could have also chosen to represent actions with Cartesian coor-
dinates of the effector frame with its rotation defined as Euler angles or
quaternions. With readily available IK solvers, this would have enabled
a more intuitive interpretation of actions. However, joint space coordi-
nates were preferred to due to the absence of singularities and their cat-

23Construction Robotics (2022) 6:15–37

1 3

its gripper, the robot moves from the home position to the
action pose, drops the block by opening the gripper, and
returns home. The agent’s task is to find a succession of
reachable action poses, from which it drops consecutive
blocks in such a way that they form a tower-like structure.
At most, the agent can drop 20 blocks into the environment
to complete one building attempt or training episode. To
plan the motion from the home position towards an action
pose, we employ the BiTRRT path planner in MoveIt.
Action poses are initially chosen at random from the range
[− 180.0°, 180.0] for axes three, four, five and six; axes one
and two are restricted to half that range to avoid the most
obvious collisions with the floor and virtual safety planes.

The state is represented by 144 (12 × 12) normalized
height measurements resulting from the absence or presence
of blocks at certain fixed grid points in a quadric section on
the table—the play field.

3.1.3 Training protocol

Each training epoch begins with resetting the agent’s training
environment. This entails:

(a) clearing any episode-related data and resetting the
simulation

(b) requesting the remote CAD instance manager to start
a new CAD simulation instance and return its unique
process handle, so this instance can be addressed in
the future. If a process handle is already stored from
a previous epoch and the respective CAD instance is
running, this step is skipped

(c) ensuring that an active connection to ROS is available8
and setting the robot’s pose in ROS to the home posi-
tion

Once the system is reset and ready the state is processed
through the policy network to get an action. The action is
passed to the path planner to verify its reachability with the
robot. If the action pose cannot be reached the action is dis-
carded, a negative reward is given, and the next action is
taken. If path planning is successful, the action is passed to
the affiliated CAD instance where the dropping of a block
from the action pose is simulated. As soon as the simula-
tion came to a rest, the newly measured state of height field
values along with additional info (e.g., exact position of the
tower tip or distance from effector to tower tip) is returned
to the trainer. This additional info, along with the state is
used for reward shaping. Reward and state are returned to

the agent which then decides for the next action. Noise is
applied to states to avoid overfitting (especially in the early
default states where no blocks are present) and prepare the
policy for inaccurate measurements during execution later
on. The [s, a, r, s�] tuple is stored in an experience replay
buffer. A tower building attempt ends, when the maximum
allowed number of actions is reached.9 DNN parameter
updates are applied between plays at regular intervals.10

A typical action cycle would take around 0.1 s for path
planning, with an additional 2–3 s for block drop simulation
(or around 20 s for real-world robotic execution). Training
was performed using the pre-collected data of 1000 random
plays as initialization data and 2000 to 3000 additional plays
for training. In our framework, a training session of 1000
plays would typically take between 7 and 12 h depending
on the number of collisions.

3.1.4 Reward shaping

The fundamental measure of success for the agent’s actions
is a growth in absolute tower height. In addition to this rarely
occurring event, various intermediate reward-shaping meas-
ures were taken. The total reward consisted of partial posi-
tive rewards (r) and negative rewards (penalties (p)):

Collision penalty pcol: Self collisions and collisions with the
environment caused a severe penalty pcol = −0.25 . In this
case, no further reward features were considered and the
action was terminated. Otherwise, all other reward-shaping
features were summed up as described.

Tower tip proximity reward rprox : The agent was encour-
aged to react to the environment by dropping new blocks
close to the currently existing tower tip. A short distance dc
between the highest block in the scene and the TCP posi-
tion was rewarded. It was measured, normalized to the range
dcmin = 0.12m and dcmax = 0.8m , and further scaled to a
maximum value of 0.15:

r =

{

pcol if collision

rprox + pcollapse + rctrl + pstuck + rgrowth if no collision
.

rprox = 0.15 ∗
min

{

max
{

dc, dcmin

}

, dcmax

}

− dcmin

dcmax − dcmin

8 Via roslibpy—https:// github. com/ grama zioko hler/ rosli bpy.

9 In previous attempts, collisions with the state were made to termi-
nate a play. However, as reset routines are computationally more time
consuming and no better training results could be observed, a fixed
length trajectory was favored.
10 For learning, the open-source tool RLkit was used and reasonably
modified: https:// github. com/ vitch yr/ rlkit.

egorical consistency (i.e., no differentiation between position and rota-
tion, like in Cartesian space) which we considered beneficial to learning.

Footnote 7 (continued)

https://github.com/gramaziokohler/roslibpy
https://github.com/vitchyr/rlkit

24 Construction Robotics (2022) 6:15–37

1 3

Tower collapse penalty pcollapse : Another penalty
pcollapse = −0.05 was applied, whenever the tower signifi-
cantly shrank in height after an action. This encouraged the
agent to not crash into the tower and keep a certain distance.
However, as collapses were often delayed and difficult to
predict, its actual effect on learning is debatable.

Controlled action reward rctrl : Ideally, the agent should
perform controlled actions in which the block, after being
dropped, came to rest in a pose that was close to the gripper
and of similar orientation. To do so, the Cartesian distance dc
and quaternion distance dq between the poses of TCP and the
block (the latter indicating similar orientation) were meas-
ured,11 normalized to appropriate ranges (dcmin = 0.12 m,
dcmax = 0.4 m, dqmin = 0.3 and dqmax = 0.8) and scaled to the
range [0, 0.15]. Their average formed rctrl:

Block stuck penalty pstuck : Accounting for block-robot col-
lisions, a negative reward of pstuck = −0.05 was given when
the block got stuck in the gripper due to unfavorable effector
pose. This encouraged the agent to drop blocks while the
gripper was pointing downward.

rctrl =
d̂c + d̂q

2

d̂c = 0.15 ∗
min

{

max
{

dc, dcmin

}

, dcmax

}

− dcmin

dcmax − dcmin

d̂q = 0.15 ∗
min

{

max
{

dq, dqmin

}

, dqmax

}

− dqmin

dqmax − dqmin

Tower growth reward rgrowth : Dropping one block on another
one causing the tower to grow resulted in a high additional
reward of rgrowth = 0.7.

The agent started with random actions. These reward fea-
tures were laid out to successively encourage it to (a) restrict
its actions to the working area (by avoiding pcol); (b) reach
for the tip of the existing tower without crashing into it (by
increasing rprox and avoiding pcollapse); (c) exert controlled
actions with the gripper facing down (by avoiding pstuck and
increasing rctrl), and (d) finally place the new block on top of
the existing structure (increasing rgrowth). From this scheme
resulted a reward range from − 0.25 for a collision to 1.0
for a perfect action of collecting all rewards and receiving
no penalty.

3.1.5 Learning results

Twin delayed deep deterministic policy gradient
Even after thorough hyper-parameter tuning, the TD3-

trained policy would quickly converge to a local optimum
from which it did not recover. Using a very simple technique
of just repeating the exact same suboptimal pose over and
over again, the agent is able to effectively avoid collisions
and quickly accumulate a lot of controlled-action-reward for
small divergence of block orientation (Fig. 3 left, note that
no tower growth reward is granted as blocks do not exceed
the table in height). In other instances, it successfully builds
a tower of around ten blocks by repeating a different pose
(Fig. 3 right). This behavior, however, is only successful in
simulation as it exploits inevitable inaccuracies concerning

Fig. 3 TD3: Agent exploits
either singular reward-shaping
features such as controlled-
action-reward (left) or simula-
tion inaccuracies (right)

11 With quaternion, distance dq here being the angle of the shortest
arc between poses q1 and q2.

25Construction Robotics (2022) 6:15–37

1 3

Flex’s friction and restitution properties.12 Furthermore,
achievable tower height is limited due to the robot’s static
pose and inadaptability. As soon as the tower reaches the
gripper, this strategy fails. This is well reflected in the learn-
ing curve’s plateau shape (Fig. 4).

Soft actor critic
In contrast to TD3, the agent training with SAC does not

quickly converge to local optima and, due to its stochastic

policy, generally exhibits a more diverse set of actions
(Fig. 5). After around 600 plays, it starts to occasionally
perform the best possible action (Fig. 6) where it places a
new block on an existing one in a controlled fashion and
collects the highest possible reward. Using this technique, it
was able to build small towers of up to three blocks. These
episodes however remain scarce. With longer training, the
agent falls back into somewhat repetitive behavior. However,
in contrast to TD3, it reliably choses a better pose from the
start (gripper pointing downward, lower position, blocks
being positioned not diagonally but with one face parallel
to the floor) and reaches for the same points in space from
different angles, suggesting that it gradually incorporates
some understanding of its forward kinematics.

3.1.6 Robotic execution

Both policies were executed on the robotic setup shown in
Fig. 2.

To sense the required 12 × 12 height field, we used the
effector-mounted camera’s 1080 × 720 depth field and meas-
ured its distance to the blocks/table at specific pixel indices
as soon as the robot returned to the home position after each
action. To account for inaccuracies in the kinematic chain,
the pixel indices were identified at runtime through image
compartmentalization and parallel search for depth cloud
points closest to those of the fixed grid points in question
(with the z-coordinate being ignored during search). This
pre-processing was executed on the sensor-processing unit
(Fig. 7).

In addition, the aforementioned tag system AprilTag was
used for further information about block orientation. This
information, however, did not feed into the learning algo-
rithm and was purely used for visual cross-validation.

As mentioned before, the TD3-trained policy fails on the
robot as blocks just bounced off uncontrolled after being
repeatedly released from the same suboptimal elevated posi-
tion. The SAC trained policy, however, managed to robustly
build towers of four to six blocks in height. Although this
success is somewhat aided through slightly heavier building
blocks made of cardboard, SAC’s favorable policy is clearly
visible. Block building results shown in video two13 clearly
show SAC’s favorable policy.

3.1.7 Conclusion

Case study A was intended to prove the general feasibility
of the presented distributed learning framework. The setup
of the training environment was made easy using the CAD
framework and visual programming interface. Using CAD

Fig. 4 TD3: as collision occurrences disappear the returns and tower
heights increase but plateau

Fig. 5 Learning results for SAC in block stacking—learning is gener-
ally slower but shows a longer period of improvement

12 Flex only allowed for simulations with slightly too low restitution
and too high friction compared to the real world, leading to cubes
coming to rest quicker in the simulation. A real box dropped from the
high effector positions that TD3 produced would bounce off the table
and be lost. For SAC, this effect was less severe, as it produced poses
that were lower and caused less bouncing. This aspect did not affect
case study 2, as drops influenced by restitution were not part of the
simulation. 13 Electronic supplementary material 2: video 2.

26 Construction Robotics (2022) 6:15–37

1 3

instance handles, it was possible to run up to four train-
ing sessions in parallel on a single simulation machine.14
Although the innovative value in robotic learning in this case
study is relatively low (autonomous block stacking has been
demonstrated before as discussed earlier), it showed that in
principle robotic DRL is possible in computational design
environments and yields results similar to those of existing
studies. This opens up tremendous potentials of using gen-
erative design tools as learning environments as was done
in case study B.

3.2 Case study B: sensor‑adaptive 3D printing

3.2.1 Setup

In this case study, the same robot arm was equipped with a
custom-made 3D printing nozzle capable of extruding dif-
ferent, potentially soft, thermoplastic materials (Figs. 8, 9).
The agent’s task was to consecutively add new volumetric
segments onto an existing structure through 3D printing.
To do so it could sense the existing structure through a tag-
based geometry reconstruction system using a high framer-
ate RGB camera. Through this sensory setup, it was able to
adapt to unseen starting configurations and react to potential
deformations in the structure. This task layout was designed
to more closely emulate the requirements of a real-world
CDRF problem: a spatially tightly confined robot working
with an amorphous material subject to deformation under
self-weight in an additive fashion; its controls are differen-
tiated between large global movements to travel between

Fig. 6 After approx. 600 plays,
the agent occasionally performs
the best possible action

Fig. 7 (Left to right) TD3 policy results in unordered block pile; SAC (towers 1 and 2) finds better starting positions and reaches for similar
points from different angles, actions are more controlled in SAC

14 Intel Core i7 7700 K, GTX1080, 32 GB RAM, with RAM being
the limiting factor.

27Construction Robotics (2022) 6:15–37

1 3

positions and narrow movements to execute local manipula-
tion routines, the planning of which requires high geometric
accuracy with respect to a CAD model. Contrary to common
CDRF works, however, the global shape of our final product
is not a priory human-designed but entirely subject to agent
learning.

3.2.2 Task description

Printing control is compartmentalized into different catego-
ries. Instead of learning low level controls for robot axes and
the extruder, the agent’s learned actions represent high-order
instructions. Low-level controls are subsequently handled
through a parametric tool path planner for printing (simi-
lar to a slicer) and machine control in ROS. Like in case
study A, the robot starts each training rollout in a neutral
home position from which it generates actions in the form
a 7D poses, with the first six values again representing a
singular robot action pose. The action pose’s TCP forms a
reference frame, in whose origin a block-shaped volumetric
segment—a candidate—is situated that might get attached to
the existing geometry. It is rotated around the TCP’s Z-axis
at the origin by the action’s seventh value.15 The immediate

goal of an action was to generate a candidate that intersects
with and is sufficiently supported by the existing structure,
so that it could be printed. The long-term goal was to add
segments to the scene to form a structure that stretches in
height or covers a large floor area.16

3.2.3 Training/execution protocol

Figure 10 shows the control flow diagram for this case study.
Actions colored in cyan are executed in the CAD environ-
ment, the green ones are handled in ROS. These controls are
set within the framework shown and described in Sect. 2.1.

P: pose validation and tool path planning
A first simple pose validation (P1 in Fig. 11) by means of

mesh intersection quickly filters out unreachable poses. Bad
poses are categorized by the objects they cause collisions
with (self, table, walls and ceiling, state mesh). Successful
poses are further verified by making sure there exists a path
from the home position to action pose (P2). Once an action
surpassed these steps, it needs to be verified whether its can-
didate volume can be printed on the existing structure. This
is done through a CAD script that evaluates contingent areas
of intersection for the existence of surfaces that can support
the new candidate (Fig. 9 green, Appendix Fig. 16). It then
blends this support area with the desired block shape (hence
the “missing corners” in the printed geometry) and slices
the resulting volume into layers parallel to the TCP plane.
From these layers, the actual print path is generated as a list
of Cartesian way points. If this procedure is successful, the
action passes and the resulting print tool path, starting and
ending in the action pose, is forwarded.17

S: print simulation and training
Successful candidates are attached to the existing struc-

ture. In case of fully rigid material behavior, this step is
straight forward: a simple Boolean mesh union of state
mesh and candidate. However, it was intended to account
for possible deformations in the global structure caused by
the added weight of the newly attached segment. Thus, the
state geometry is in parallel represented as a position-based
dynamics (PBD) particle system using Flex, in which mesh
vertices and volumetric particles of an individual segment
are grouped together by a shape matching constraint (SMC),

Fig. 8 Hardware setup for sensor-adaptive 3D printing: (1) sensor
board carrying Intel Realsense D435 and Blackfly BFS-U3-16S2C-
CS cameras; (2) custom-made filament extruder with thermoplastic
nozzle; (3) vent; (4) filament source; (5) marked print object

17 Note that in training simulation this is simplified with the concept
of a printability ratio, which is explain later on. However, in this step
all kinds of fabrication and tooling related criteria could be used for
feedback to the agent.

15 A rather simple cuboid candidate shape was chosen, mainly to
simplify robotic scanning and tag-based shape reconstruction. How-
ever, in principle any geometric form can be used as the candidate

geometry. They could also be further parameterized through agent
actions, instead of just rotating them around the TCP’s Z-axis.

Footnote 15 (continued)

16 Covered floor area meaning unsupported area. Footprint of the
state structure was discarded.

28 Construction Robotics (2022) 6:15–37

1 3

making it a pseudo rigid body. When a new segment is added
and intersects with existing geometry, its individual SMC is
made to incorporate vertices of the existing structure at the
area of intersection, effectively connecting the two segments
by an elastic link. Thus, the global structure behaves like a
semi-soft body.18 Whenever a new segment is attached a
fixed number of simulation iterations is performed. Damping
is added to ensure the system coming to rest.

With this new state mesh, relevant information about
the action’s outcome can be drawn, such as height of the
structure, covered floor area, relative deformation (as the
per-segment displacement from the segment’s initial center
plane position both in Cartesian and quaternion space), dis-
tance from the TCP to the structure and more (R1). This
information is then used for reward shaping (see R3).

E: robotic execution
The CAD-generated tool path is used for robotic Carte-

sian motion planning in MoveIt (E1) and the print proce-
dure is executed with the robot (E2a). During this process
the extruder motor as well as heat and fan control, which
are controlled via EtherCAT fieldbus, are monitored and

adjusted through a ROS node communicating with Twin-
CAT-Http-Server (E2b). As is often the case with 3D print-
ing, this extrusion is quite slow. Printing a single segment
typically took between one and three hours, depending on
its actual geometry, layer thickness and movement speed.

Once printing has finished, a human operator attaches
April tags onto the printed object following a few simple
rules (Fig. 11) so that the geometry can be scanned with
the effector-attached RGB camera.19 To increase precision
and reduce blind spots, multiple tag measurements are taken
while the robot moves along a parametrically defined sim-
ple discovery path (a circular motion above the last action
TCP position with the camera facing inward). At the end of
this procedure, tag measurements concerning one and the
same block are merged via Cartesian and quaternion averag-
ing with larger tags of mode A being weighed higher. The
averaged block positions are related to the measurements
of fixed-position reference markers on the arena’s corners
and merged into an updated mesh-based state representation
(Fig. 10: E4). Through this sensing method, a high accuracy
with a maximum observed deviation of two millimeters was
reached.

Fig. 9 Virtual print environ-
ment, the agent action is rep-
resented in the robot pose and
the rotation angle of new block
volume around TCP. Contact
surfaces of the state volumes
with the new block are shown
in pink (non-supportive contact)
and magenta (supportive con-
tact area)

18 The ambition of this soft body simulation was not physical accu-
racy but simulation speed. However, parameters such as SMC stiff-
ness and damping were tuned to behave like a soft 3D printing ther-
moplastic like NinjaFlex.

19 This procedure can potentially be sped up using a 3D scanner with
millimeter precision. However, such a device was not available at the
time.

29Construction Robotics (2022) 6:15–37

1 3

Through this sensing method, a high accuracy with a
maximum observed deviation of 2 mm was reached. This
was especially useful as the measured geometry served as a
basis for future print tool path generation (P3).

State compression R2
In case study A, the state could be sufficiently represented

by a 12 × 12 grid of height values. Case study B, however,
investigates a more complex scenario in which the state is
constituted by actual volumetric geometry. A consistent
and expressive method of geometric encoding was, there-
fore, crucial. With the intention for general applicability in
mind, hand crafted and task-specific feature extraction, e.g.,
through extraction and parametrization of geometric primi-
tives was not suitable. Multiple studies demonstrated the
potential of deep learning with signed distance field (SDF)
data as an efficient means of volumetric shape compression,
interpolation and completion (Angela Dai et al. 2016; Park
et al. 2019). Thus, the use of a convolutional autoencoder
(CAE) to encode the state by means of SDF data compres-
sion stood to reason.

Another viable approach is the extension of principle
component analysis (PCA) to higher dimensional data sets
by means of tensor rank decomposition. This method has been
discussed and demonstrated in other realms of data compres-
sion (Chen and Shapiro 2009; van Belzen and Weiland 2012) Fig. 10 Flow control chart for learning-based sensor-adaptive robotic

thermoplastic printing

Fig. 11 There are three different modes in which a block can be
labeled. The available markers are grouped into pairs and catego-
rized in these modes. Markers with an even id in category A, B or C
and their successor of id + 1 must be attached according to the pic-
ture. With this logic, markers can be attached in different positions
on a block to ensure tag discovery from different angles to increase
accuracy. An individual block can also be labeled by multiple sets of
markers to ensure discovery from different angles

30 Construction Robotics (2022) 6:15–37

1 3

and visual 3D data (Ballester-Ripoll et al. 2019) and has the
advantages of not requiring lengthy training computation
and not being prone to faulty parameter tuning. Furthermore,
as the number of rank-1 tensors per dimension utilized for
decomposition can be chosen at runtime, the degree of com-
pression (and loss) can be tuned without the need for retrain-
ing. In such a scenario, the state could consist of the flattened
decomposition tensors. As an application of tensor decompo-
sition to SDF data to our knowledge has not been presented
yet, a comparison with the aforementioned CAE approach
was undertaken. Specifically the CANDECOMP/PARAFAC
decomposition (Carroll and Chang 1970; Richard and Harsh-
man 1970) was performed on 643 SDF data.

The utilized CAE had the following structure: a 643 tensor
containing the SDF data was processed through three consec-
utive convolutional layers (kernel size 4, stride 2, interposed
batch normalization, ReLU activation) of edge size 64, 32 and

16. After flattening the tensor, the data was processed through
three fully connected layers of size 1296, 432 and finally 144
(or 256) units—the bottleneck—whose outcome is presented
to the agent as the state. The decoding pipeline is of the same,
but mirrored structure. Two such networks were trained on
around 100k mesh samples20 using an SGD optimizer.

A comparison of reconstruction results is shown in
Fig. 12. With an average MSE of consistently under 5*10–5
on unseen data and visually more satisfactory reconstruction

Fig. 12 Comparison between 643 SDF compression methods for
state representation: convolutional autoencoders (CAE) of differ-
ent bottleneck sizes are compared to nD-PCA via CANDECOMP/
PARAFAC (CP) tensor rank decomposition using different numbers
of rank-1 tensors per dimension (1, 4, and 12): a CAE-144: bottle-
neck size: 144, compression ratio: 99.945%; b CAE-256: bottleneck
size: 256, comp. ratio: 99.902%; c CP1: bottleneck size: 192, comp.

ratio: 99.927%; d CP-4: bottleneck size: 768, comp. ratio: 99.707%;
e CP-12: bottleneck size: 2304, comp. ratio: 99.121%. CAE exhib-
its much better reconstruction results (blue) from the input meshes
(white) at higher compression rates. To achieve the same reconstruc-
tion quality CP requires wider bottlenecks. Furthermore, no consider-
able performance difference can be observed between CAE-256 and
CAE-144, rendering the latter as the superior compression method

20 Around 5600 solid meshes were downloaded from Thingi10K and
procedurally manifolded through non-uniform scaling, bending and
twisting. Gaussian noise of 1.5 mm standard deviation was added to
the SDF data drawn from the samples. The network was trained on a
GTX1080 for around three weeks.

31Construction Robotics (2022) 6:15–37

1 3

at much higher compression ratios, the CAE of bottleneck
size 144 was chosen for state compression.

Reward shaping R3
The agent’s general goal is to build a structure that grows

in height or in covered floor area (preferably both) while
deforming as little as possible. Reward shaping was designed
to gradually guide the agent from (0) random actions with
many (self) collisions towards (1) less collisions to (2) reach-
able action poses, (3) printable segment candidates to (4)
increased structural performance of these candidates in the
mentioned criteria. An intuition of the relationship between
these criteria is summarized in Fig. 13. No reward is granted
if a collision occurs. If the agent avoided a collision, it could
earn a small reward of up to 0.4 when its TCP and thus
the candidate segment are close to the existing state mesh.
This state proximity ratio is the sum of (a) the normalized
inverse Cartesian distance between the TCP and the clos-
est point on the existing state mesh and (b) the normalized
deviation of the TCP’s orientation from the ideal downward-
pointing pose, i.e., the angle between TCP z-axis and global
z-axis. The latter takes the issue with tilted printing layers
into consideration: Nozzle orientations and thus printing
layers diverging more than 45° from the horizontal plane
are considered unprintable and thus penalized. The closer
the TCP is to the existing structure and the closer its pose
is to facing downward, the more likely it is that the action
produces a printable candidate segment, and thus the higher
the state proximity reward. With actions getting closer to
the existing structure, a printability ratio signals if and how
well a candidate segment can be printed. It is zero if (a) no
candidate-state mesh intersection is found or it is too small,
(b) the segment would be attached laterally instead of on top
of the structure or printing is blocked for other reasons. If
none of these negative circumstances occurs, the printability
ratio is the normalized inverse intersection volume between
state and candidate. It is a simplified, faster substitute for
generating an actual print path with the aforementioned
CAD script (which is costly). This encourages the agent
to choose actions that would yield a valid and preferably
long print tool path resulting in larger segment volumes. If
the printability ratio is larger than zero, and thus a candi-
date segment is printable the agent can earn an additional
structural performance reward: the minimum of either (a)
the height increase normalized by the maximum possible
per-action height increase: a full segment height; or (b)
covered area increase normalized by the maximum possible
per-action area increase: the area of a segments front face.
This performance ratio is scaled by the average per-segment
displacement through deformation normalized by a particu-
larly chosen maximum deformation (2 cm average segment
displacement was considered the worst), to discourage large
deformations in the printed structure.

3.2.4 Learning results

A training episode consists of 30 actions after which the
printed structure is reset. Training incorporated the data
of 100 k pre-collected action samples. Actions range from
− 45° to 45° for axes one, two and three and from − 90° to
90° for the others. In case study A, a certain indifference
of the agent toward states was observed. This was partly
because it always started out with an empty table and could
start building a tower wherever it wanted, leading to some-
what repetitive behavior. To counteract this tendency, epi-
sodes in case study B were initialized with randomly placed
existing blocks enriching the state information from the very
start. In this scenario, it is significant, whether the table
mesh is treated as part of the state or not. If so, the agent
can start building structures directly on the floor without
the precept to incorporate information about present blocks.
If not, the agent is not allowed to seed new structures and
needs to find an existing block to build on. Figure 14 shows
the comparative learning success of SAC and TD3 with and
without permission to initialize structures. Naturally, the
mean returns are higher from the start when this permission
is granted as state proximity ratios are also measured from

Fig. 13 Reward scale for case study B

32 Construction Robotics (2022) 6:15–37

1 3

the table mesh and random successful prints occur more
often. Agents trained with TD3 very quickly retreat to a safe,
collision-free pose and collect proximity rewards if initial
building blocks happen to be nearby, but do not leave this
pose or explore the environment. Even in the comparatively
easier task where building on the table is allowed, no delib-
erate building is observed. On the contrary, an agent trained
with SAC reliably prints towers after around 4500 episodes.
It initializes a tower at a random, yet mostly on the left half
of the table, and adds new segments on the top of the tower
tip by moving its nozzle up after a successful print. Fig-
ure 15 and video three21 show this learning success in more
detail and with varying material rigidity. If the permission
to structure initialization is not granted, the SAC agent per-
forms considerably worse (TD3 was not even tested in this
more difficult scenario). This suggests that it (a) has difficul-
ties to correctly identify the position of present blocks in the
scene and/or (b) successful print events on existing blocks
occur too rarely for it to draw conclusions from them. The
policy that works, however, produced structures of up to
seven blocks. It also seems that these towers tend to grow
diagonally (Fig. 15 left). Whether this happens by accident
or due to deliberate planning to increase the covered area
could not be determined at this point. It must be noted, that

the produced actions all represent fabricable building blocks,
as the existence of a motion plan toward the action pose and
of a valid print tool path are inherent performance criteria in
learning. Due to government measures implemented to com-
bat the Covid-19 pandemic in Australia, the trained policy
could not be deployed on the physical robot anymore. With
all software and hardware components laid out, however, the
real-world implementation is straight forward.

4 Conclusion

4.1 Achievements

The presented workflow combines quasi-standard tools of
robotics, DRL and CDRF research into an integrated agent
training and control environment for autonomous robotic
construction. It is open to arbitrary model-free DRL algo-
rithms via the OpenAI Gym interface and offers simple
environment setup through a well-established visual-pro-
gramming interface. Yet, its language-agnostic microser-
vice layout in principle allows for the use of any backend
software as a simulation environment. It furthermore allows
the use of CAD scripting routines for sophisticated geomet-
ric representations and to complement agent actions. It also
enables real-time industrial machine control common in

Fig. 14 Comparative learning success between TD3 and SAC with and without the ability to initialize structures

21 Electronic supplementary material 3: video 3.

33Construction Robotics (2022) 6:15–37

1 3

industrial fabrication setups. Through CAD instance man-
agement and error handling, uninterrupted training sessions
of multiple days to weeks can be performed, although stabil-
ity decreases with the number of parallel training sessions.

The framework’s operation was demonstrated in two
construction-related case studies, serving as stand-ins for
large-scale fabrication scenarios, in which commonly arising
issues such as sensor-adaptive automation, structural as well
as tooling-related planning, geometric state representation
and real-time control are addressed. The case studies pre-
sented ways of formulating DRL learning as a succession
of independent constructive actions contributing to a global
structure. The learning performance of SAC and TD3 within
these exemplary tasks could successfully be compared. SAC
has proven to be the more effective training method for our
use cases which conforms to the scientific consensus within
DRL research.

4.2 Shortcomings

In terms of simulation speed, the presented training frame-
work does not compare favorably to highly optimized
simulation software like MuJoCo. Although a consider-
able performance increase could be observed when thor-
ough collision checking and path validation in MoveIt are
skipped in favor of simple mesh intersection in CAD, its
distributed nature and processing through multiple network
layers as well as relatively slow visual scripting computation
represent bottlenecks. Although geometric CAD scripting
was found to be a promising means to simulate construc-
tion, the development of tool path planning subroutines that
account for every possible geometric configuration of state
and action is difficult. Thus, our print path generation script
would not produce feasible outputs in about 5% of the cases.
Furthermore, structural performance analysis by means of
PBD as done in our case studies does not represent a suf-
ficient means of stress evaluation in construction and was
chosen mainly for simulation speed. Furthermore, its actual
impact on the learning procedure in case study two can be

questioned as the agent did not seem to make such high level
considerations.

In a more general scope, the structures that were pro-
duced with our methods do not represent useful architectural
objects.

4.3 Future work

As this study was focused on using comparatively simple
and easy-to-adapt learning algorithms, model-based RL
approaches were not considered. However, construction
scenarios in which system dynamics are well known, e.g.,
construction of fully rigid objects or FEA-based stress and
deformation analysis, model-based learning could tremen-
dously increase sample efficiency. Within the model-free
realm more efficient information-extraction methods such
as Hindsight Experience Replay (HER) also bear a great
potential in reducing training time, given that well defined
goal descriptions are provided. In this context, the formula-
tion of structural performance goals could be considered. In
terms of performance evaluation, a multitude of aesthetic
and structural criteria is thinkable. In this regard, actions can
be used to further parametrize geometric modules to produce
visually more pleasing outcomes. The successful creation
of more complex architectural objects with the presented
approach stands or falls with a carefully crafted reward-
shaping method. There exists a tradeoff between allowing
unforeseeable scenarios to unfold and defining specific geo-
metric aspects of reward shaping to steer agent behavior.
Using SAC for training, we found that more action-specific
feedback (like rewarding a short effector distance to the cur-
rent tower tip) leads to more effective learning than higher-
level structural goals (like overall tower height or covered
floor area). The agent also benefits from a reward shaping
that encourages small consecutive improvements over dis-
tant high rewards. In our example, this succession was (1)
collision avoidance, (2) robot effector pointing downward,
(3) getting near the existing structure and finally (4) attach-
ing a new piece.

Fig. 15 Autonomously planned
towers using SAC

34 Construction Robotics (2022) 6:15–37

1 3

Big potential in terms of real-world application of our
approach lays in the use of larger, high-payload industrial
robots. Although readily available at the time, their use was
not favored due to the experimental nature of the study and
safety concerns. Deployment onto such machinery necessi-
tates serious considerations of appropriate safety measures.
The benefits of a real-world application could be less time-
consuming tool path generation, a more tightly integrated
manufacturing procedure that mediates between and opti-
mizes for structural criteria as well as fabrication constraints,
and ultimately a higher degree of construction automation
with benefits for efficiency and human health. In this con-
text the presented work can best be understood as a proof
of concept to be adapted for even more powerful learning
algorithms in the future whose actions are very closely mon-
itored by a human—the ultimate actor-critic.

Appendix

The learning parameters for DRL algorithms:

Training algorithm Case study A Case study B

Both
 Optimizer Adam Adam
 Reward range − 0.25 to 1.0 0.0 to 1.0
 Hidden layer sizes (all networks) [256, 256] [432, 360]
 Activation function ReLu ReLu
 Value net learning rate 0.0003 0.0003
 Soft Q learning rate 0.0003 0.0003
 Policy learning rate 0.0003 0.0003

TD3
 Discount 0.99 0.99a

 Batch size 256 256a

 Network gradient steps per action 0.625 1
 Actions between network updates 800 600

SAC
 Discount 0.99 0.9a, 0.99b

 Batch size 256 128a, 256b

Network gradient steps per action 1 1
 Actions between network updates 200 600
 Target smoothing coefficient (�) 0.005 0.05a, 0.005b

a Experiment in which agent was allowed to initialize new structures,
bagent was not allowed to initialize new structures

Fig. 16 A CAD script indicates whether a print is possible based on different environmental conditions and returns the appropriate tool path.
Potential support surfaces are shown in green, non-supportive intersection surfaces are magenta

35Construction Robotics (2022) 6:15–37

1 3

The optimizer parameters for CAE training for state
compression:

Optimizer Stochastic
gradient
descent

Optimizer momentum 0.7
Learning rate 0.02
Weight decay 0.0

See (Fig. 16).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s41693- 022- 00069-0.

Acknowledgements This study was conducted within the scope of a
temporary visiting research fellowship of the lead author in the Trans-
formative Technologies Group at the School of Architecture in the
Faculty of Design, Architecture and Building (DAB) at UTS funded
through a PhD scholarship from the German Academic Exchange Ser-
vice (DAAD): Jahresstipendium für Doktorandinnen und Doktoranden
Studienjahr, 2019/20 (57437987). Achim Menges acknowledges the
support by the German Research Foundation/Deutsche Forschungsge-
meinschaft (DFG) under Germanys Excellence Strategy EXC 2120/1
– 390831618. Furthermore, the authors would like to extend their
gratitude to Tran Dang (UTS-DAB) for his support in robotic setup,
3D printing hardware as well as design and implementation of the
EtherCAT control system, Nathan Gonsalves (UTS-DAB) for helping
to set up the block stacking arena, Teresa Vidal Calleja (Centre for
Autonomous Systems, UTS) and Nico Pietroni (School of Software,
UTS) for general advice and fruitful conversations, and Gwyn Jones,
Ella Williams and Nadja Krause of UTS-DAB for technical support.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest On behalf of all the authors, the corresponding au-
thor states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abbeel P, Coates A, Quigley M and YN Andrew (2007) An applica-
tion of reinforcement learning to aerobatic helicopter flight. In:

Schölkopf B, Platt JC and Hoffman T (eds) Advances in neural
information processing systems 19. MIT Press, pp 1–8. http://
papers. nips. cc/ paper/ 3151- an- appli cation- of- reinf orcem ent- learn
ing- to- aerob atic- helic opter- flight. pdf

Achiam J (2018) A taxonomy of RL Algorithms: a non-exhaustive,
but useful taxonomy of algorithms in modern RL. OpenAI Spin-
ning Up. https:// spinn ingup. openai. com/ en/ latest/ spinn ingup/ rl_
intro2. html# id20

Alvarez ME, Martínez-Parachini EE, Baharlou E, Krieg OD, Schwinn
T, Vasey L, Hua C, Menges A, Yuan PF (2019) Tailored struc-
tures, robotic sewing of wooden shells. In: Willmann J, Block P,
Hutter M, Byrne K, Schork T (eds) Robotic fabrication in archi-
tecture, art and design 2018. Springer International Publishing,
pp 405–420

Amarjyoti S (2017) Deep reinforcement learning for robotic manipula-
tion—the state of the art. http:// arxiv. org/ pdf/ 1701. 08878 v1

As I, Pal S, Basu P (2018) Artificial intelligence in architecture: gen-
erating conceptual design via deep learning. Int J Archit Comput
16(4):306–327. https:// doi. org/ 10. 1177/ 14780 77118 800982

Ballester-Ripoll R, Lindstrom P, Pajarola R (2019) TTHRESH: tensor
compression for multidimensional visual data. IEEE Trans Visual
Comput Graphics. https:// doi. org/ 10. 1109/ TVCG. 2019. 29040 63

Bonwetsch T, Gramazio F, Kohler M (2007) Digitally fabricating non-
standardised brick walls. In: ManuBuild, conference proceedings.
D. M. Sharp, Rotterdam, pp 191–196

Brugnaro G and Hanna S (2017) Adaptive robotic training methods
for subtractive manufacturing. In: Acadia 2017 disciplines and
disruption: proceedings of the 37th annual conference of the asso-
ciation for computer aided design in architecture, pp 164–169.
https:// disco very. ucl. ac. uk/ id/ eprint/ 10032 548/1/ ACADI A2017_
Brugn aroHa nna. pdf

Brugnaro G, Baharlou E, Vasey L and Menges A (2016) Robotic soft-
ness: an adaptive robotic fabrication process for woven structures

Carroll JD, Chang J-J (1970) Analysis of individual differences in
multidimensional scaling via an n-way generalization of “Eckart-
Young” decomposition. Psychometrika 35(3):283–319. https://
doi. org/ 10. 1007/ BF023 10791

Chaiyasarn K, Khan W, Ali L, Sharma M, Brackenbury D and Dejong
M(2018) Crack detection in masonry structures using convolu-
tional neural networks and support vector machines. In: Teizer
J (eds) Proceedings of the international symposium on automa-
tion and robotics in construction (IAARC), Proceedings of the
35th international symposium on automation and robotics in
construction (ISARC). International association for automation
and robotics in construction (IAARC). https:// doi. org/ 10. 22260/
ISARC 2018/ 0016

Chen J and Shapiro LG (2009) PCA vs. tensor-based dimension reduc-
tion methods: an empirical comparison on active shape models
of organs. In: 2009 Annual international conference of the IEEE
engineering in medicine and biology society

Cutellic P (2019) Towards encoding shape features with visual event-
related potential based brain–computer interface for generative
design. Int J Archit Comput 17(1):88–102. https:// doi. org/ 10.
1177/ 14780 77119 832465

Dai A, Qi CR and Nießner M (2016) Shape completion using
3D-encoder-predictor CNNs and shape synthesis.

Deisenroth M and Rasmussen C (2011) PILCO: a model-based and
data-efficient approach to policy search

Deisenroth M, Rasmussen C and Fox D (2011) Learning to control
a low-cost manipulator using data-efficient reinforcement learn-
ing. In: Robotics: science and systems VII. Robotics: Science and
Systems Foundation. https:// doi. org/ 10. 15607/ RSS. 2011. VII. 008

Doerstelmann M, Knippers J, Menges A, Parascho S, Prado M,
Schwinn T (2015) ICD/ITKE research pavilion 2013–14: modu-
lar coreless filament winding based on beetle elytra. Archit Des
85(5):54–59. https:// doi. org/ 10. 1002/ ad. 1954

https://doi.org/10.1007/s41693-022-00069-0
http://creativecommons.org/licenses/by/4.0/
http://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight.pdf
http://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight.pdf
http://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight.pdf
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20
http://arxiv.org/pdf/1701.08878v1
https://doi.org/10.1177/1478077118800982
https://doi.org/10.1109/TVCG.2019.2904063
https://discovery.ucl.ac.uk/id/eprint/10032548/1/ACADIA2017_BrugnaroHanna.pdf
https://discovery.ucl.ac.uk/id/eprint/10032548/1/ACADIA2017_BrugnaroHanna.pdf
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02310791
https://doi.org/10.22260/ISARC2018/0016
https://doi.org/10.22260/ISARC2018/0016
https://doi.org/10.1177/1478077119832465
https://doi.org/10.1177/1478077119832465
https://doi.org/10.15607/RSS.2011.VII.008
https://doi.org/10.1002/ad.1954

36 Construction Robotics (2022) 6:15–37

1 3

Duan Y, Andrychowicz M, Stadie B, Jonathan Ho O, Schneider J,
Sutskever I, Abbeel P and Zaremba W (2017) One-shot imitation
learning. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fer-
gus R, Vishwanathan S and Garnett R (eds) Advances in neural
information processing systems 30. Curran Associates, Inc., pp
1087–1098. http:// papers. nips. cc/ paper/ 6709- one- shot- imita tion-
learn ing. pdf

Felbrich B, Frueh N, Prado M, Saffarian S, Solly J, Vasey L, Knippers
J and Menges A (2017) Multi-machine fabrication: an integra-
tive design process utilising an autonomous UAV and industrial
robots for the fabrication of long-span composite structures. In
Acadia 2017 disciplines and disruption: proceedings of the 37th
annual conference of the association for computer aided design in
architecture (pp 248–259). http:// papers. cumin cad. org/ data/ works/
att/ acadi a17_ 248. pdf

Felbrich B, Wulle F, Allgaier C, Menges A, Verl A, Wurst K-H, Nebel-
sick JH (2018b) A novel rapid additive manufacturing concept for
architectural composite shell construction inspired by the shell
formation in land snails. Bioinspir Biomim 13(2):26010. https://
doi. org/ 10. 1088/ 1748- 3190/ aaa50d

Felbrich B, Jahn G, Newnham C and Menges A (2018a) Self-organ-
izing maps for intuitive gesture-based geometric modelling in
augmented reality. In: 2018a IEEE International Conference on
Artificial Intelligence and Virtual Reality (AIVR) (pp. 61–67).
IEEE. https:// doi. org/ 10. 1109/ AIVR. 2018a. 00016

Felbrich B (2019) HeinzBenjamin/FlexCLI: FlexCLI—FlexHopper
[Computer software]. https:// github. com/ Heinz Benja min/ FlexC LI

Feng C, Xiao Y, Willette A, Mcgee W and Kamat VR (2014) Towards
autonomous robotic in-situ assembly on unstructured construc-
tion sites using monocular vision. https:// doi. org/ 10. 13140/2. 1.
4746. 5605

Finn C, Yu T, Zhang T, Abbeel P and Levine S (2017)One-shot visual
imitation learning via meta-learning. http:// arxiv. org/ pdf/ 1709.
04905 v1

Fujimoto S, van Hoof H and Meger D (2018) Addressing function
approximation error in actor-critic methods. http:// arxiv. org/ pdf/
1802. 09477 v3

Gandia A, Parascho S, Rust R, Casas G, Gramazio F, Kohler M (2019)
Towards automatic path planning for robotically assembled spatial
structures. In: Willmann J, Block P, Hutter M, Byrne K, Schork
T (eds) Robotic fabrication in architecture, art and design 2018.
Springer International Publishing, pp 59–73

Goh GD, Sing SL, Yeong WY (2021) A review on machine learning
in 3D printing: applications, potential, and challenges. Artif Intell
Rev 54(1):63–94. https:// doi. org/ 10. 1007/ s10462- 020- 09876-9

Haarnoja T, Ha S, Zhou A, Tan J, Tucker G and Levine S (2018a)
Learning to walk via deep reinforcement learning. http:// arxiv.
org/ pdf/ 1812. 11103 v3

Haarnoja T, Zhou A, Abbeel P and Levine S (2018b) Soft actor-critic:
off-policy maximum entropy deep reinforcement learning with a
stochastic actor. http:// arxiv. org/ pdf/ 1801. 01290 v2

Hack N, Lauer WV (2014) Mesh-Mould: robotically fabricated spatial
meshes as reinforced concrete formwork. Archit Des 84(3):44–53.
https:// doi. org/ 10. 1002/ ad. 1753

Harichandran A, Raphael B, Mukherjee A (2019) Determination
of automated construction operations from sensor data using
machine learning. In: Proceedings of the 4th international con-
ference on civil and building engineering informatics.

Harshman RA (1970) Foundations of the PARAFAC procedure:
models and conditions for an “explanatory” multi-model factor
analysis. In

Heimig T, Kerber E, Stumm S, Mann S, Reisgen U, Brell-Cokcan S
(2020) Towards robotic steel construction through adaptive incre-
mental point welding. Advance online publication, Construction
Robotics. https:// doi. org/ 10. 1007/ s41693- 019- 00026-4

Hwangbo J, Lee J, Dosovitskiy A, Bellicoso D, Tsounis V, Koltun V,
Hutter M (2019) Learning agile and dynamic motor skills for leg-
ged robots. Sci Robot. https:// doi. org/ 10. 1126/ sciro botics. aau58 72

Jabi W, Johnson B and Woodbury R (2013) Parametric design for
architecture. Laurence King Publishing; Hachette Book Group
[Distributor]

Jin Z, Zhang Z, Demir K, Gu GX (2020) Machine learning for
advanced additive manufacturing. Matter 3(5):1541–1556. https://
doi. org/ 10. 1016/j. matt. 2020. 08. 023

Khoshnevis B, Hwang D, Yao KT, Yeh Z (2006) Mega-scale fabrica-
tion by contour crafting. Int J Ind Syst Eng 1(3):301. https:// doi.
org/ 10. 1504/ IJISE. 2006. 009791

Kober J, Peters J (2011) Policy search for motor primitives in robot-
ics. Mach Learn 84(1–2):171–203. https:// doi. org/ 10. 1007/
s10994- 010- 5223-6

Kyjanek O, Al Bahar B, Vasey L, Wannemacher B and Menges A
(2019) Implementation of an augmented reality AR workflow
for human robot collaboration in timber prefabrication. In: Al-
Hussein M (ed) Proceedings of the International Symposium on
Automation and Robotics in Construction (IAARC), Proceedings
of the 36th International Symposium on Automation and Robotics
in Construction (ISARC). International Association for Automa-
tion and Robotics in Construction (IAARC). https:// doi. org/ 10.
22260/ ISARC 2019/ 0164

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D and
Wierstra D (2015) Continuous control with deep reinforcement
learning. http:// arxiv. org/ pdf/ 1509. 02971 v6

Liu Y, Shamsi SM, Fang L, Chen C and Napp N (2018) Deep Q-learn-
ing for dry stacking irregular objects. In: 2018 IEEE/RSJ Inter-
national conference on intelligent robots and systems (IROS) (pp
1569–1576). IEEE. https:// doi. org/ 10. 1109/ IROS. 2018. 85936 19

Mahankali R, Johnson BR, Anderson AT (2018) Deep learning in
design workflows: the elusive design pixel. Int J Archit Comput
16(4):328–340. https:// doi. org/ 10. 1177/ 14780 77118 800888

Menges A (ed) (2015) Architectural design: vol. 85,5. Material synthe-
sis: fusing the physical and the computational. Wiley

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra
D and Riedmiller M (2013) Playing Atari with deep reinforcement
learning. http:// arxiv. org/ pdf/ 1312. 5602v1

Mordatch I, Mishra N, Eppner C and Abbeel P (2016) Combining
model-based policy search with online model learning for control
of physical humanoids. In: 2016 IEEE International Conference
on Robotics and Automation (ICRA)

Mozaffar M, Ebrahimi A and Cao J (2020) Toolpath design for additive
manufacturing using deep reinforcement learning. http:// arxiv. org/
pdf/ 2009. 14365 v1

Nagy D (2017) Embodied computation lab - Princeton school of archi-
tecture. http:// danil nagy. com/ embod ied- compu tation- lab

Nicholas P, Rossi G, Williams E, Bennett M, Schork T (2020) Integrat-
ing real-time multi-resolution scanning and machine learning for
Conformal Robotic 3D Printing in Architecture. Int J Archit Com-
put 18(4):371–384. https:// doi. org/ 10. 1177/ 14780 77120 948203

Norlander R, Grahn J and Maki A (2015) Wooden knot detection using
convnet transfer learning. In: Paulsen RR and Pedersen KSsss
(eds) Lecture notes in computer science. Image analysis, vol.
9127. Springer International Publishing, pp 263–274. https:// doi.
org/ 10. 1007/ 978-3- 319- 19665-7_ 22

Parascho S, Kohlhammer T, Coros S, Gramazio F and Kohler M (2018)
Computational design of robotically assembled spatial structures:
a sequence based method for the generation and evaluation of
structures fabricated with cooperating robots. In

Park JJ, Florence P, Straub J, Newcombe R and Lovegrove S (2019)
DeepSDF: learning continuous signed distance functions for
shape representation

Rossi G and Nicholas P (2018) Re/learning the wheel. methods to
utilize neural networks as design tools for doubly curved metal

http://papers.nips.cc/paper/6709-one-shot-imitation-learning.pdf
http://papers.nips.cc/paper/6709-one-shot-imitation-learning.pdf
http://papers.cumincad.org/data/works/att/acadia17_248.pdf
http://papers.cumincad.org/data/works/att/acadia17_248.pdf
https://doi.org/10.1088/1748-3190/aaa50d
https://doi.org/10.1088/1748-3190/aaa50d
https://doi.org/10.1109/AIVR.2018a.00016
https://github.com/HeinzBenjamin/FlexCLI
https://doi.org/10.13140/2.1.4746.5605
https://doi.org/10.13140/2.1.4746.5605
http://arxiv.org/pdf/1709.04905v1
http://arxiv.org/pdf/1709.04905v1
http://arxiv.org/pdf/1802.09477v3
http://arxiv.org/pdf/1802.09477v3
https://doi.org/10.1007/s10462-020-09876-9
http://arxiv.org/pdf/1812.11103v3
http://arxiv.org/pdf/1812.11103v3
http://arxiv.org/pdf/1801.01290v2
https://doi.org/10.1002/ad.1753
https://doi.org/10.1007/s41693-019-00026-4
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1016/j.matt.2020.08.023
https://doi.org/10.1016/j.matt.2020.08.023
https://doi.org/10.1504/IJISE.2006.009791
https://doi.org/10.1504/IJISE.2006.009791
https://doi.org/10.1007/s10994-010-5223-6
https://doi.org/10.1007/s10994-010-5223-6
https://doi.org/10.22260/ISARC2019/0164
https://doi.org/10.22260/ISARC2019/0164
http://arxiv.org/pdf/1509.02971v6
https://doi.org/10.1109/IROS.2018.8593619
https://doi.org/10.1177/1478077118800888
http://arxiv.org/pdf/1312.5602v1
http://arxiv.org/pdf/2009.14365v1
http://arxiv.org/pdf/2009.14365v1
http://danilnagy.com/embodied-computation-lab
https://doi.org/10.1177/1478077120948203
https://doi.org/10.1007/978-3-319-19665-7_22
https://doi.org/10.1007/978-3-319-19665-7_22

37Construction Robotics (2022) 6:15–37

1 3

surfaces. In: Proceedings of the 38th Annual Conference of
the Association for Computer Aided Design in Architecture
(ACADIA) ISBN 978–0–692–17729–7] Mexico City, Mexico
18–20 October, Vol. 2, pp 146–155. http:// papers. cumin cad. org/
cgi- bin/ works/ Show? acadi a18_ 146

Rossi G and Nicholas P (2019) Haptic learning: towards neural-network-
based adaptive Cobot path-planning for unstructured spaces. In:
Sousa JP, Xavier JP and Castro Henriques G (eds) Architecture in
the age of the 4th industrial revolution—proceedings of the 37th
eCAADe and 23rd SIGraDi conference, vol. 2, pp. 201–210. http://
papers. cumin cad. org/ cgi- bin/ works/ paper/ ecaad esigr adi20 19_ 280

Schwinn T, Krieg O and Menges A (2016) Robotic sewing: a textile
approach towards the computational design and fabrication of
lightweight timber shells. In

Senge P, Kleiner A, Roberts C, Ross RB, Smith BJ (1994) The Fifth
Discipline Fieldbook: strategies and tools for building a learning
organization. Nicholas Brearley Pub

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez
A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui
F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017)
Mastering the game of Go without human knowledge. Nature
550(7676):354–359. https:// doi. org/ 10. 1038/ natur e24270

Smigielska M (2018) Application of machine learning within the inte-
grative design and fabrication of robotic rod bending processes.
In: de Rycke K, Gengnagel C, Baverel O, Burry J, Mueller C,
Nguyen MM, Rahm P, Thomsen MR (eds) Humanizing digital
reality, vol 126. Springer, Singapore, pp 523–536. https:// doi. org/
10. 1007/ 978- 981- 10- 6611-5_ 44

Sutjipto S, Tish D, Paul G, Vidal Calleja T, Schork T (2019) Towards
visual feedback loops for robot-controlled additive manufactur-
ing. Robot Fabric Architect Art Design. https:// doi. org/ 10. 1007/
978-3- 319- 92294-2_7 (Advance online publication)

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction,
1st edn. The MIT Press (A Bradford book)

Tamke M, Nicholas P, Zwierzycki M (2018) Machine learning for archi-
tectural design: Ppactices and infrastructure. Int J Archit Comput
16(2):123–143. https:// doi. org/ 10. 1177/ 14780 77118 778580

Tarabishy S, Psarras S, Kosicki M, Tsigkari M (2020) Deep learning
surrogate models for spatial and visual connectivity. Int J Archit
Comput 18(1):53–66. https:// doi. org/ 10. 1177/ 14780 77119 894483

van Belzen F, Weiland S (2012) A tensor decomposition approach
to data compression and approximation of ND systems. Multidi-
mension Syst Signal Process 23(1–2):209–236. https:// doi. org/ 10.
1007/ s11045- 010- 0144-x

Vasey L, Baharlou E, Dörstelmann M, Koslowski, Marshall Prado V,
Schieber G, Menges A and Knippers J (2015) Behavioral design
and adaptive robotic fabrication of a fiber composite compres-
sion shell with pneumatic formwork. In: Proceedings of the 35th
annual conference of the association for computer aided design
in architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati
19–25 October, pp 297–309. http:// papers. cumin cad. org/ data/
works/ att/ acadi a15_ 297. pdf

Wahby M, Heinrich MK, Hofstadler DN, Zahadat P, Risi S, Ayres P,
Schmickl T and Hamann H (2018) A robot to shape your natural
plant. In Takadama K and Aguirre H (eds) Proceedings of the
Genetic and Evolutionary Computation Conference on - GECCO
'18 (pp 165–172). ACM Press. https:// doi. org/ 10. 1145/ 32054 55.
32055 16

Wang J and Olson E (2016) AprilTag 2: efficient and robust fiducial
detection. In: 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS) (pp 4193–4198). IEEE. https://
doi. org/ 10. 1109/ IROS. 2016. 77596 17

Wannemacher B (2017) Augmented design manufacturing. Institute for
computational design and construction. https:// formf ollow syou.
com/ augme nted- design- manuf actur ing/

Willmann J, Kohler M, Gramazio F (2014) The robotic touch: How
robots change architecture. Park Books

Yuan PF, Meng H, Yu L, Zhang L (2016) Robotic multi-dimen-
sional printing based on structural performance. In: Rein-
hardt D, Saunders R, Burry J (eds) Robotic fabrication in
architecture, art and design 2016, vol 10. Springer Interna-
tional Publishing, Berlin, pp 92–105. https:// doi. org/ 10. 1007/
978-3- 319- 26378-6_7

Zhang M, Vikram S, Smith L, Abbeel P, Johnson MJ and Levine S
(2019) SOLAR: deep structured representations for model-based
reinforcement learning. http:// arxiv. org/ pdf/ 1808. 09105 v4

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://papers.cumincad.org/cgi-bin/works/Show?acadia18_146
http://papers.cumincad.org/cgi-bin/works/Show?acadia18_146
http://papers.cumincad.org/cgi-bin/works/paper/ecaadesigradi2019_280
http://papers.cumincad.org/cgi-bin/works/paper/ecaadesigradi2019_280
https://doi.org/10.1038/nature24270
https://doi.org/10.1007/978-981-10-6611-5_44
https://doi.org/10.1007/978-981-10-6611-5_44
https://doi.org/10.1007/978-3-319-92294-2_7
https://doi.org/10.1007/978-3-319-92294-2_7
https://doi.org/10.1177/1478077118778580
https://doi.org/10.1177/1478077119894483
https://doi.org/10.1007/s11045-010-0144-x
https://doi.org/10.1007/s11045-010-0144-x
http://papers.cumincad.org/data/works/att/acadia15_297.pdf
http://papers.cumincad.org/data/works/att/acadia15_297.pdf
https://doi.org/10.1145/3205455.3205516
https://doi.org/10.1145/3205455.3205516
https://doi.org/10.1109/IROS.2016.7759617
https://doi.org/10.1109/IROS.2016.7759617
https://formfollowsyou.com/augmented-design-manufacturing/
https://formfollowsyou.com/augmented-design-manufacturing/
https://doi.org/10.1007/978-3-319-26378-6_7
https://doi.org/10.1007/978-3-319-26378-6_7
http://arxiv.org/pdf/1808.09105v4

	Autonomous robotic additive manufacturing through distributed model‐free deep reinforcement learning in computational design environments
	Abstract
	1 Introduction and context
	1.1 Planning and autonomy in computational design and robotic fabrication
	1.2 Deep reinforcement learning in robotics
	1.3 Motivation
	1.4 Related studies

	2 Methods
	2.1 Distributed training-fabrication framework
	2.1.1 Design principles
	2.1.2 System overview
	2.1.3 System components
	2.1.3.1 ROS setup3
	2.1.3.2 Sensor integration
	2.1.3.3 CAD instance management
	2.1.3.4 TwinCAT-Http-server6

	2.2 Choice of RL algorithms

	3 Case studies
	3.1 Case study A: block stacking
	3.1.1 Setup
	3.1.2 Task description
	3.1.3 Training protocol
	3.1.4 Reward shaping
	3.1.5 Learning results
	3.1.6 Robotic execution
	3.1.7 Conclusion

	3.2 Case study B: sensor-adaptive 3D printing
	3.2.1 Setup
	3.2.2 Task description
	3.2.3 Trainingexecution protocol
	3.2.4 Learning results

	4 Conclusion
	4.1 Achievements
	4.2 Shortcomings
	4.3 Future work

	Acknowledgements
	References

