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ABSTRACT

A binary state on a graph means an assignment of binary values to its vertices. A time-
dependent sequence of binary states is referred to as binary dynamics. We describe a method
for the classification of binary dynamics of digraphs, using particular choices of closed
neighbourhoods. Our motivation and application comes from neuroscience, where a directed
graph is an abstraction of neurons and their connections, and where the simplification of large
amounts of data is key to any computation. We present a topological/graph theoretic method
for extracting information out of binary dynamics on a graph, based on a selection of a
relatively small number of vertices and their neighbourhoods. We consider existing and
introduce new real-valued functions on closed neighbourhoods, comparing them by their
ability to accurately classify different binary dynamics. We describe a classification algorithm
that uses two parameters and sets up a machine learning pipeline. We demonstrate the
effectiveness of the method on simulated activity on a digital reconstruction of cortical tissue of
a rat, and on a nonbiological random graph with similar density.

AUTHOR SUMMARY

We explore the mathematical concept of a closed neighbourhood in a digraph in relation to
classifying binary dynamics on a digraph, with particular emphasis on dynamics on a neuronal
network. Using methodology based on selecting neighbourhoods and vectorising them by
combinatorial and topological parameters, we experimented with a dataset implemented on
the Blue Brain Project reconstruction of a neocortical column, and on an artificial neural
network with random underlying graph implemented on the NEST simulator. In both cases the
outcome was run through a support vector machine algorithm reaching classification accuracy
of up to 88% for the Blue Brain Project data and up to 81% for the NEST data. This work is
open to generalisation to other types of networks and the dynamics on them.
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INTRODUCTION

A binary state on a graph means an assignment of binary values to its vertices. A motivating
example in this article appears in the context of neuroscience. If one encodes the connectivity
of a neuronal network as a directed graph, then the spikes produced by the neurons at an
instant of time is a binary state on the encoding graph. Allowing time to vary and recording
the spiking patterns of the neurons in the network produces an example of a binary dynamics
on the encoding graph, namely a one-parameter family of binary states on its vertices. A network
of neurons that receives external signals and responds to those signals thus generates a binary
dynamics. Binary dynamics appear in other contexts as well (Gleeson, 2008; Samuelsson &
Socolar, 2006), but in this paper we use networks of spiking neurons as a primary example.

The signal classification problem, that is, the task of correctly pairing a signal injected into a
neuronal network with the response of the network, or in other words, identifying the incom-
ing signal from the response, is generally very challenging. This paper proposes a methodology
by which this task can be approached and provides scenarios in which this methodology is
successful.

Considering raw binary states on a large graph is generally quite problematic for a number
of reasons. First, the sheer number of theoretically possible states makes analysing a collection
of them a daunting task (Churchland & Abbott, 2016; Fan & Markram, 2019). Moreover, nat-
ural systems such as neuronal networks tend to be very noisy, in the sense that the emerging
dynamics from the same stimulus may take a rather large variety of forms (Cunningham & Yu,
2014; Stein, Gossen, & Jones, 2005). Finally, it is a general working hypothesis in studying
network dynamics that the network structure affects its function (Bargmann & Marder, 2013;
Chambers & MacLean, 2016; Curto & Morrison, 2019; Rubinov & Sporns, 2010). This para-
digm in neuroscience is often encapsulated by the slogan “neurons that fire together tend to
wire together.” Hence, when studying dynamics on a neuronal network, it makes sense to
examine assemblies of vertices, or subgraphs, and the way in which they behave as dynamical
subunits, instead of considering individual vertices in the network (Babichev, Ji, Mémoli, &
Dabaghian, 2016; Curto & Itskov, 2008; Milo et al., 2002).

In previous studies we considered cliques in a directed graph, with various orientations of
the connections between nodes, as basic units from which one could extract information
about binary dynamics (Govc, Levi, & Smith, 2021; M. W. Reimann et al., 2017). However,
the results in these papers fell short of suggesting an efficient classifier of binary dynamics
(Govc et al., 2021, Sections 4.1–4.2). Indeed, when we applied the methods of Govc et al.
(2021) and M. W. Reimann et al. (2017) to the main dataset used in this paper, we obtained
unsatisfactory classification accuracy. This suggests that in a graph that models a natural sys-
tem, cliques may be too small to carry the amount of information required for classification of
a noisy signal. This motivates us to build our classification strategy on neuron assemblies,
where the richer structure serves a dual purpose of amalgamating dynamical information
and regulating the noise inherent in single neurons or cliques.

The guiding hypothesis of this paper is that a collection of vertex assemblies, forming a
subgraph of the ambient connectivity graph encoding a network, can be used in classification
of binary dynamics on the network. A network of spiking neurons is our primary example.
Taking this hypothesis as a guideline, we introduce a very flexible feature generation method-
ology that takes as input binary dynamics on a digraph G induced on a preselected collection
of subgraphs of G, and turns it into a feature vector, which an then be used in machine learning
classification. The neighbourhood of a vertex v in the graph G, namely the subgraph of G that is
induced by v and all its neighbours in G, suggests itself naturally as a type of subgraph to be

Binary state on a graph:
An assignment of binary values to the
vertices of the graph.

Binary dynamics on a graph:
A one-parameter family of binary
states on the graph.

One-parameter family:
A family of objects or numbers that
can be indexed by a single
parameter, for example, time.

Digraph:
A finite collection of points
connected to each other by directed
edges, without loops or multiple
edges in the same direction.
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considered in this procedure, and is a central object of study in this paper. Vertex neighbour-
hoods have been studied extensively in graph theory and its applications (Kartun-Giles &
Bianconi, 2019). An outline is given below and a full description in Methods.

The way we apply the method can be summarised as follows. Given a directed graph G, we
use a variety of real valued vertex functions that we refer to as selection parameters and are
derived from the neighbourhood of each vertex, to create a sorted list of the vertices. With
respect to each such parameter, we pick the “top performing” vertices and select their neigh-
bourhoods. To that collection of subgraphs we apply our feature generation method, which is
based again on applying the same parameters to the selected neighbourhoods, now in the role
of feature parameters. All the parameters we use are invariant under isomorphism of directed
graphs, that is, graph properties that remain unchanged when the vertices are permuted while
leaving their connectivity intact. Therefore we occasionally refer to certain parameters as
“graph invariants.”

The choice of parameters is related to measures of network connectivity and architecture.
For instance, the parameters fcc and tcc (see Table 1) are examples of measures of functional
segregation (Rubinov & Sporns, 2010). The parameters we refer to as spectral parameters arise
in spectral graph theory (Chung, 2005) and are prevalent in many applications, including in
neuroscience. For instance, the paper de Lange, de Reus, and van den Heuvel (2014) studies
the Laplacian spectrum of the macroscopic anatomical neural networks of macaques and cats,
and the microscopic network of the C. elegans. The topological parameters, such as the Euler
characteristic ec and Betti numbers are classical topological invariants. In M. W. Reimann
et al. (2017) these were used in various ways to extract information on structure and function

Table 1. A partial list of the selection and feature parameters examined in this project

Abbreviation Short Description
fcc Clustering coefficient (Fagiolo)

tcc Transitive clustering coefficient

ec Euler characteristic

nbc Normalised Betti coefficient

size Number of vertices in the graph

asg Adjacency spectral gap

asr Adjacency spectral radius

blsg Bauer Laplacian spectral gap

blsr Bauer Laplacian spectral radius

clsg Chung Laplacian spectral gap

clsr Chung Laplacian spectral radius

tpsg Transition probability spectral gap

tpsr Transition probability spectral radius

Note. See Supporting Information Table S1 for additional parameters.

Laplacian:
A matrix associated to a digraph that
informs on various qualitative
properties of the digraph. In this
article two versions of the Laplacian
matrix are used.

Betti numbers and homology:
A sequence of algebraic objects
associated to a topological space that
measures, figuratively speaking, for
each n the number of n-dimensional
cavities or holes in the space. That
number is called the n-th Betti
number.
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and their interaction in the Blue Brain Project reconstruction on the neocortical column. The
parameter size is a natural parameter associated to any graph and is closely related to firing
rate in neuroscience. However, most of the parameters we tested were never examined in a
neuroscientific context. Our aim was to investigate which parameters may prove useful in
classification of binary dynamics without making any assumptions about their relevance. It
is exactly this approach that allowed us to discover that certain spectral parameters perform
strongly as selection parameters, while others do not. At the same time a newly introduced
topological parameter, “normalised Betti coefficient” nbc shows strong performance as a fea-
ture parameter when tested on neighbourhoods with low selection parameter values, but not
on high selection values.

The primary test of our methods in this paper is done on data generated by the Blue Brain
Project that was also used in M. Reimann et al. (2021) for signal classification by established
neuroscience methodology. The data consists of eight families of neuronal stimuli that are
injected in a random sequence to the digital reconstruction of the neocortical column of a
young rat. This reconstructed microcircuit consists of approximately 31,000 neurons and
8,000,000 synaptic connections, and is capable of receiving neuronal signals and responding
to them in a biologically accurate manner (Markram et al., 2015). We used 60% of the data to
train a support vector machine, and the remaining 40% for classification. With our methods
we are able to achieve classification accuracy of up to 88%.

In this article we did not attempt to explain the relevance of any of the mathematical con-
cepts we use to neuroscience, as our main aim was to discover and investigate the utility of
various concepts. However, in M. Reimann et al. (2021) the same dataset is studied by stan-
dard techniques of computational neuroscience combined with the ideas presented in this
paper. In particular, it is shown that an informed choice of neighbourhood improves classifi-
cation accuracy when compared to traditional methods. Interestingly, the selection of neigh-
bourhoods that improved performance with the technique presented in M. Reimann et al.
(2021) show reduced performance with the techniques presented in this article, and vice
versa. In both projects a classification accuracy of nearly 90% was achievable, but with dif-
ferent selection parameters (see Results). This suggests that considering vertex neighbourhoods
as computational units can be beneficial in more than one way.

To further test our methods in different settings, we used the NEST neural simulation tool
(Jordan et al., 2019) to generate neuronal networks. This software package simulates network
models of spiking neurons by using simplified neuron models to allow more flexibility and
faster processing speed. We created a collection of eight families of stimuli, but on random
graphs with varying densities, and applied our machinery to that dataset. Here again we
obtained classification accuracy of up to 81%.

Important work on (open) vertex neighbourhoods was reported recently in Kartun-Giles and
Bianconi (2019). Our approach is independent of this work and is different from it in a number
of ways. Most significantly, we do not study the structure of the entire graph and its dynamical
properties by means of its full neighbourhood structure. Instead, we aim to infer dynamical
properties of the graph from a relatively small collection of vertices, selected by certain graph
theoretic and topological properties, and their neighbourhoods.

High-resolution figures and supplementary material is available at the Aberdeen Neuroto-
pology Group webpage. In particular, we included a comprehensive visualization of spectral
graph invariants of the Blue Brain Project graph, as well as other types of stochastically gen-
erated graphs, animations of some of the background work for this project, and a list of links to
software implementing the methodology described in this paper.
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RESULTS

We start with a brief description of the mathematical formalism used in this article and our
approach to classification tasks. This is intended to make the section accessible to readers
without a strong mathematical background. We then proceed by describing our main data
source and the setup and implementation of our experiments. Following this preparation we
present our results, validation experiments, and an application of the same techniques in a
different setup.

A Brief Introduction to the Mathematical Formalism

In this article a digraph will always mean a finite collection of vertices (nodes) V and a finite
collection of oriented edges (arcs) E. Reciprocal edges between a pair of vertices are allowed,
but multiple edges in the same orientation between a fixed pair of vertices and self-loops are
not allowed.

The fundamental mathematical concept essential for our discussion is that of the neighbour-
hood of a vertex in a digraph (Figure 1). Let G be a digraph, and let v0 be any vertex in G. The
neighbours of v0 in G are all vertices that are “one step away” from v0, in either direction. The
neighbourhood of v0 in G is the subgraph of G induced by v0 and all its neighbours, which we
denote by NG(v0). The vertex v0 is referred to as the centre of its neighbourhood.

Numerical invariants of digraphs can be found in pure and applied graph theory literature,
many of those found their uses in theoretical neuroscience (see Rubinov & Sporns, 2010, for a
good survey). Some such invariants are used in this article, and a few are introduced here for
the first time (e.g., transitive clustering coefficient). Other parameters we used are defined by
using topological constructions that arise from digraphs. Such constructions are typically
invariant under digraph isomorphism. Standard tools of algebraic topology can then be used
to extract numerical invariants of graphs in ways that take emerging higher dimensional struc-
ture into account.

There are many ways in which one can associate a topological space with a digraph. In
this article we use the directed flag complex. It is a topological space made out of gluing
together simplices in different dimensions, starting at 0-simplices (points), 1-simplices (edges),
2-simplices (triangles), 3-simplices (tetrahedra), etc. The n-simplices in a directed flag complex
associated to a digraph are its directed (n + 1)-cliques, namely the ordered subsets of vertices
{v0, v1, …, vn}, such that there is an edge from vi to vj for all i < j. Figure 2 shows the directed
flag complex associated to a small digraph. The directed flag complex was introduced and
used for topologically analysing structural and functional properties of the Blue Brain Project
reconstruction of the neocortical columns of a rat (M. W. Reimann et al., 2017). The interested
reader may find a comprehensive survey of directed flag complexes and other topological
concepts in the Materials and Methods section of M. W. Reimann et al. (2017). If v0 is a vertex
in G, we denote by TRG(v0) the directed flag complex of NG(v0).

Figure 1. A neighbourhood in a digraph, marked in red, with its centre marked solid colour.

Algebraic topology:
The mathematical discipline of
studying certain properties of
topological spaces by means of
associated algebraic objects.
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The Classification Method

We now describe briefly our approach to classification of binary dynamics. For a precise math-
ematical definition of what we mean by binary dynamics see Methods. The task at hand can
be described as follows. We are given a large set of instantiations of binary dynamics on a
fixed digraph G, each of which is labelled by a symbol from some relatively small set. The
label of each binary dynamics is unique and known. The aim is to produce a machine learning
compatible topological summary for each binary dynamics, so that when the summaries are
introduced in a random order, one can train on part of the data with known labels and predict
the unknown labels of the remaining part.

The first step is selection of neighbourhoods. For each vertex v in the digraph Gwe consider its
neighbourhoodNG(v) and the associated directed flag complex TrG(v). We then compute a variety
of numerical graph parameters ofNG(v) and topological parameters of TrG(v). These parameters are
used to create a ranked list of vertices in G. We then select for each parameter 50 vertices that
obtained the top (or bottom) values with respect to that parameter.We now have a set of 50 neigh-
bourhoods corresponding to each parameter. A parameter that is used in this step is referred to as a
selection parameter, andwe denote it by P. A short summary of themain parameters we used with
their abbreviations is in Table 1. A detailed description of the parameters is given in Methods.

In the second step we introduce binary dynamics in G. Each instantiation of the dynamics
consists of several consecutive time bins (in our experiments we used two, but there is no
limitation). For each time bin we consider the neurons that were active and the subgraph that
they induce in each of the neighbourhoods we preselected. This gives us, for each selection
parameter and each time bin, a set of 50 subgraphs that correspond to a particular instantiation
of binary dynamics on G.

The third step is vectorising the data, that is, a computation of the same graph parameters
and topological parameters for each of the subgraphs resulting from the second step. When we
use our parameters in the vectorisation process they are referred to as feature parameters, and
are denoted by Q. This now gives a vector corresponding to each instantiation of the dynam-
ics, and the pair (P, Q) of selection and feature parameters.

The fourth and final step is injecting the data into a support vector machine. In this project
we used 60% of the data for training and the remaining for testing. See Figure 3 for a schematic
summary of the process.

Figure 2. A digraph (left), the associated directed flag complex as a topological space (centre), and its maximal cliques (right).

Graph parameter:
A real or complex number that can
be associated to any given graph by
some mathematical procedure.

Figure 3. A schematic description of the vector summary and classification pipeline.

Network Neuroscience 533

Neighbourhoods in dynamic digraphs



We note that the method described here is an example of a much more general method-
ology that is described in detail in the Methods section of this article. In particular, the graph
and topological parameters that we chose to work with are selected from within the abun-
dance of mathematical concepts that arise in graph theory, combinatorics, and topology.
We do not attempt in this article to associate a neuroscientific meaning to these parameters.

The Data

Our main source of data is a simulation that was run on a Blue Brain Project reconstruction of
the microcircuitry of the somatosensory cortex in the brain of a rat (Markram et al., 2015).
From this model we extract the connectivity of the microcircuit in the form of a digraph whose
vertices correspond to neurons, and with an edge from v to u if there is a synaptic connection
from the neuron corresponding to v to the one corresponding to u. We denote the Blue Brain
Project digraph by G. The digraph consists of 31,346 vertices and 7,803,528 edges. The con-
nectivity matrix of this specific circuit, as well as 41 other instantiations of the reconstruction,
is accessible on the Digital Reconstruction of Neocortical Microcircuitry website.

The binary dynamics we experimented with consists of eight stimuli families labelled 0–7.
For each stimulus a random subset (10%) of afferent neurons is activated. The stimuli differ
with respect to which subset of afferent neurons is activated, where afferents can be shared
between stimuli. The probability of a given afferent being associated with two given stimuli is
1%. In each stimulation time window one and only one stimulus is presented. The stimuli
were injected into the circuit in a random sequence of 200 milliseconds per stimulus, and
557 repeats for each stimulus label. The dataset thus consists of 4,456 binary dynamics func-
tions. The task is to determine the label of that stimulus, that is, the expected output is an
integer from 0 to 7. Thus, the chance level performance would be 12.5%. More detail on
the source of data, biological analysis, and an alternative approach to classification of the
same data is in M. Reimann et al. (2021).

Setup

We computed all the graph parameters listed in Table 1, as well as additional parameters listed
in the Supporting Information, for all neighbourhoods in the digraph (see Supporting Informa-
tion, Data and Code, for a brief description of computational methods and links to software).
We fixed a positive integer M, and for each selection parameter P we selected the vertices v1,
v2, …, vM, whose neighbourhoods NG(v1), …, NG(vM) obtained the top (or bottom) M values of
the parameter P (see Step II in Methods). We experimented with M = 20, 50, 100, and 200.
Here we report on the results we obtained for M = 50, which provided the highest classifica-
tion accuracy. For M = 20 performance was strong as well, but for M = 100 and 200 the
improvement compared to M = 50 was relatively minor, and not worth the additional time
and computation needed.

Vector Summaries

Each binary dynamics in our dataset has time parameter t between 0 and 200 milliseconds.
The subinterval [0, 60] is where almost all the spiking activity is concentrated across the inter-
val. Furthermore, the bulk of the stimulus is injected in the first 10 ms. Since we aimed to
classify the response to the stimulus rather than the stimulus itself, we chose Δ = [10, 60]
and divided that interval into two 25 ms subintervals, as experimentation showed that these
choices provide the highest classification accuracy (see Step I in Methods).
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We denote each instantiation of binary dynamics on G by Bn, for n = 1, …, 4,456. Each
instantiation consists of two binary states Bn

1 , B
n
2 corresponding to the neurons that fired in

each of the 25 ms subintervals. For each selection parameter P, and each of the corresponding
neighbourhoods NG(vm), m = 1, …, 50, we computed the subgraphs Nm,k of NG(vm) induced by
the binary state Bn

k, that is, the subgraph induced by the neurons that fired in the given interval.

This gave us, for each binary dynamics Bn and each graph parameter P, a 2 × 50 matrix UP
n of

subgraphs of G, whose (m, k) entry is Nn
m;k (see Step II in Methods).

Finally, for each graph parameter Q (from the same list of parameters) we applied Q to the

entries of the matrix UP
n to obtain a numerical feature matrix UP ;Q

n corresponding to the binary

dynamics function Bn, the selection parameter P, and the feature parameter Q. The matrix

UP ;Q
n is a vector summary of the binary dynamics Bn (see Step III in Methods).

Classification

For each pair of graph parameters (P, Q) the vector summaries {UP ;Q
n } were fed into a support

vector machine (SVM) algorithm. Our classification pipeline was implemented in Python
using the scikit-learn package and the SVC implementation therein. The SVC was initi-
alised with default settings and we used a 60/40 train/test split. The kernel used was Radial
Basis function. We used one-versus-one approach for multiclass classification. For cross-
validation we used standard fivefold cross-validation in scikit-learn, https://scikit-learn
.org/stable/about.html. The results are presented in Figure 4.

For each of the selection parameters we tested, we considered both the neighbourhoods
that obtained the top 50 values and those that obtained the bottom 50 values. In all the exper-
iments, four parameters gave markedly better performance when used as feature parameters
than all other parameters: Euler characteristic (ec), normalised Betti coefficient (nbc), size, and
Bauer Laplacian spectral radius (blsr). All four perform significantly better than other feature
parameters when the neighbourhoods were selected by bottom value parameters. With respect
to top value selection parameters, ec and size performed well, while nbc and blsr were sig-
nificantly weaker as feature parameters, except when coupled with Chung Laplacian spectral
gap (clsg). The neighbourhoods selected by top values of selection parameters gave best

Figure 4. Results of eight stimuli classification experiments. Range of cross-validated accuracy is indicated by four smaller squares in each
square. Left: Classification accuracy selecting the 50 neighbourhoods with highest parameter value. Right: Classification accuracy selecting the
50 neighbourhoods with lowest parameter value. Compare with Supporting Information Figure S3.
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results when the selection parameter was one of the spectral graph invariants, while selecting
by bottom value of selection parameters, the two types of clustering coefficients (cc and tcc)
and Euler characteristic (ec) performed best.

Interestingly, the two best performing feature parameters, Euler characteristic and size, gave
good results across all selection parameters, and performed almost equally well, regardless of
whether the neighbourhoods were selected by top or bottom selection parameter value. This
suggests that, at least in this particular network, the choice of feature parameter plays a much
more important role in classification accuracy than any specific selection parameter. On the
other hand, examining the rows of the best performing feature parameters, in Figure 4, we see
a difference of up to 27% (top ec), 40% (top nbc), and 18% (top size) in classification accu-
racy, depending on which selection parameter is used, suggesting that, within a fixed choice of
a feature parameter, the selection parameter may play an important role in the capability of the
respective neighbourhoods to encode binary dynamics. Note that randomly classifying the
eight stimuli gives an accuracy of 12.5%.

Validation

In order to validate our methods, we created five experiments, the results of which we then
compared to a subset of the original tests. In each case we retrained the SVM algorithm and
then retested.

A motivating idea in neuroscience in general, and in this work in particular, is that structure
is strongly related to function. Our approach, using neighbourhoods sorted by graph param-
eters and using the same graph parameters as feature parameters is proposed in this article as a
useful way of discovering combinations of parameters that achieve good classification results
of binary dynamics. To test the validity of this proposal, we challenged our assumptions in five
different ways, as described below.

Random selection. In this simple control experiment we test the significance of the selection
parameter by comparing the results to a random choice of 50 vertices and performing the same
vector summary procedure on their neighbourhoods. Twenty iterations of this experiment were
performed, and the results for each feature parameter were compared to the outcome for the
same feature parameter and the selection parameter with respect to which this feature param-
eter performed best. The results are described in Figure 5.

Figure 5. The classification performance based on the neighbourhoods of 50 randomly selected vertices (blue), compared to the performance
of neighbourhoods selected by graph parameters with respect to a selection of feature parameters (red). Errors bars indicate range over 20
iterations. Labels on the red error bars indicate the selection parameter that performed best with respect to the indicated feature parameter.
Compare with Supporting Information Figure S2.
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We observe that in almost all cases reported here, a choice of neighbourhoods determined
by a selection parameter outperforms a random choice (in some cases marginally). We also
note that in all those cases the performance of a choice informed by one of these selection
parameters exhibits a more consistent behaviour in terms of classification accuracy. This can
be seen from the considerably larger error bars in the case neighbourhoods are selected at
random. On the other hand, for some feature parameters a random choice does not seem to
be a disadvantage, even compared to the best selection parameter with respect to this feature
parameter (Supporting Information Figure S3). This suggests that while selection and generation
of vector summary by objective parameters are advantageous, experimentation is generally
necessary in order to decide which parameters best fit the classification task.

Neighbourhood versus centre. Aworking hypothesis in this paper is that neighbourhoods carry
more information about a binary dynamics than individual vertices. We examined for each
selection of 50 neighbourhoods by a graph parameter, as described above, the classification
capability of the centres of these neighbourhoods. Specifically, this experiment is identical to
the original classification experiment, except for each selection parameter P the two rows of
the corresponding feature matrix have binary values, where the j-th entry in row i is set to be 1
if the j-th neuron in the sorted list fired in the i-th time bin at least once and 0 otherwise. These
feature vectors were then used in the classification task by using the same train and test meth-
odology. For each of the selection parameters we tested, we considered both the top 50 and
the bottom 50 neurons in the corresponding sorted list.

The results of this experiment were compared with the original experiments and are shown
in Figure 6. We note that in all cases a very significant drop in performance occurs. Interest-
ingly, some vertices in the top 50 of a sorted list show classification accuracy that is far better
than random, while the bottom 50 give performance comparable to random (for example, fcc).
In some cases, however, the bottom 50 vertices give better performance than the top 50. This
suggests that the selection parameters play a role in classification accuracy even before con-
sidering the activity in the neighbourhood of a vertex.

We also note that for almost all top valued selection parameters recorded in Figure 6 and
some of the bottom valued ones, the classification performance using the centre alone is sig-
nificantly better than random. This observation reinforces the idea that selection parameters
inform on the capability of neurons to inform on activity.

Neighbourhoods versus arbitrary subgraphs. For each selection parameter we considered the
degrees of the 50 selected centres. For a centre vi of degree di we then selected at random
di vertices in the ambient graph and considered the subgraph induced by those vertices and

Figure 6. Classification results by binary vectors using only the centres of each of the top and bottom 50 neighbourhoods for each parameter.
For comparison, the performance for each selection parameter classified by the highest performing feature parameter is included.
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the centre vi. We used these 50 subgraphs in place of the original neighbourhoods. In this way
we create for each centre a new subgraph with the same vertex count as the original neigh-
bourhoods that is unrelated to the centres in any other controllable way. We extracted feature
vectors by using these subgraphs for each of the selection parameters and repeated the clas-
sification experiment. The results were compared to the original results with respect to the
strongest performing feature parameter. Notice that these are always either ec or size, both
of which can be applied to an arbitrary digraph, not necessarily a neighbourhood.

The results of this experiment were compared with the original experiments, and are shown
in Figure 7. There is a clear drop in performance for all selection parameters except fcc
(Fagiolo’s clustering coefficient; see Methods). Furthermore, classification using these sub-
graphs shows considerably larger error bars. This suggests that using neighbourhoods with
our methodology is advantageous. One explanation for this may be the tighter correlation
of activity among neurons in a neighbourhood, compared to an arbitrary subgraph of the same
size in the network, but we did not attempt to verify this hypothesis.

Fake neighbourhoods. In this experiment we considered for each centre its degree and selected
at random the corresponding number of vertices from the ambient graph. We then modified
the adjacency matrix of the ambient graph so that the centre is connected to each of the ver-
tices selected in the appropriate direction, so as to preserve the centre’s in- and out-degree.
Computationally, this amounts to applying a random permutation to the row and the column
of each of the centres. The result is a new ambient graph, where the old centres are now cen-
tres of new neighbourhoods. We extracted feature vectors using these “fake neighbourhoods”
and repeated the classification experiment. The results were compared with the original clas-
sification. The outcome is illustrated in Figure 8.

Figure 7. Classification by subgraphs of the same vertex count as the neighbourhoods selected by the specified selection parameters. The
results of classification by the highest performing feature parameters are above each of the columns.

Figure 8. Classification by “fake neighbourhoods”: Original classification with respect to best performing feature parameter is given for
comparison.
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We note that with respect to almost all selection parameters there is a significant drop in
performance resulting from this modification. The one exception is fcc, where ec as a feature
parameter actually sometimes gives slightly better results, but with a large error bar. It is inter-
esting that the results are similar for some of the parameters to those observed in previous
experiment (Figure 7), but quite different for others. However, the drop in performance is sim-
ilar in both cases. We make no hypothesis attempting to explain these observations.

Shuffled activity. In this experiment we applied a random permutation σ of the neuron indices
in the Blue Brain Project microcircuit, so that neuron σ (i ) now receives the spike train (sequence
of spikes) of neuron i for each stimulus. That is, we precompose the binary dynamics with σ to
get a new binary dynamics, which still appears in eight varieties, since the operation of permut-
ing the neuron indices is bijective. In other words, we can reconstruct the original activity from
the shuffled activity by applying the inverse permutation σ−1. The same selection and feature
parameters were used and the resulting data was used for training and testing. The results are
shown in Figure 9.

We observe again that there is a significant drop in performance resulting from this shuf-
fling. This is quite surprising since the shuffled activity spike train should give eight families of
stimuli that carry some sort of internal resemblance, and since we retrained and tested with
these stimuli, one could expect that the classification results will be comparable to those of the
original experiments. That not being the case suggests that structure and function in the Blue
Brain Project reconstruction are indeed tightly related.

Testing the Method on an Artificial Neuronal Network

To test our methods in a nonbiological binary dynamics setting, we conducted a set of exper-
iments with the NEST simulator (Jordan et al., 2019). The NEST software simulates spiking neu-
ronal network models and offers a vast simplification of neuronal networks that are based on
the exact morphology of neurons (such as the Blue Brain Project reconstructions). It also pro-
vides great flexibility in the sense that it allows any connectivity graph to be implemented in it
and any initial stimulation to be injected into the system with the response modulated by var-
ious flexible parameters.

To move as far as possible from a strict biological setup, we generated a number of Erdős–
Rényi random digraphs on 1,000 vertices, which we implemented on NEST. We then created
eight distinct stimuli, each enervating a random selection of 100 vertices of the graph. A ran-
dom sequence of stimuli was then created, with each stimulus type repeated 500 times. Our
experiment consisted of injecting the sequence of stimuli into the simulator, for a duration of
5 ms, one every 200 ms, to reduce the influence of one stimulus on the next. To introduce

Figure 9. Classification of shuffled binary dynamics functions and comparison to the top results for the original dynamics.
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some randomness, the start time of each stimulus is randomly selected from the first 10 ms,
the strength of each stimulus is multiplied by a random number between 1 and 2, and back-
ground noise is included (using NEST’s noise_generator device with strength 3). For
each 200-ms interval, the first 10 ms were not included in the classification. As a result some
of the input may be included in the classified data, but never more than 4 ms, and for
approximately 60% of the 4,000 stimuli the input is completely excluded from classification.
The code used to create these experiments is available in Lazovskis (2021), and the exper-
iments are presented visually in Figure 10.

The spikes from this simulation were then extracted and were run through the same pipe-
line as the Blue Brain Project data. We experimented with graph densities of 0.08, 0.01, and
0.005, and with selections of 10, 20, and 50 neighbourhoods. Figure 11 shows the perfor-
mance by the selection parameters from Table 1. Size was used in all cases as a feature param-
eter. The best performance was obtained with 50 neighbourhoods, with graph density of 0.01
in almost all selection parameters. The results of experiments with all parameters can be seen
in Supporting Information Figure S5.

Interestingly, the middle graph density of 0.01 consistently performed equally as well or
better than both the denser 0.08 and less dense 0.005 across all feature parameters, except
neighbourhood size (size) and adjacency spectral gap (asg). Another interesting observation
is that the strongest selection parameter in this experiment turns out to be normalised Betti
coefficient (nbc), or transitive clustering coefficient (tcc), depending on if “strongest” is taken

Figure 10. Eight types of input stimuli for Erdős–Rényi random digraphs, executed as a single 800 second experiment. Top row: Sequence of
stimuli types, 500 of each, and relative strength of input for each stimulus. Second row: Spiking neurons on a 1,000-ms interval from the
experiment. Bottom left: Spiking neurons and length of external input on a 18-ms interval. Third row right: Random selections of 100 vertices
from 1,000 vertices, acting as receptors of external input. Bottom row right: Distribution of randomly selected relative strength and input
stimulus time offset over the whole experiment.
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to mean with the highest individual accuracy or with the highest average accuracy from cross-
validation, respectively. Both of these selection parameters in the Blue Brain Project experi-
ments exhibited rather mediocre performance (see Figure 4, left). This suggests that different
networks and binary dynamics on them may require experimentation with a collection of
selection (and feature) parameters, in order to optimise the classification accuracy.

DISCUSSION

In this paper we examined the concept of a closed neighbourhood in relation to the classifi-
cation of binary dynamics on a digraph. Regardless of what the source of the binary dynamics
is, but with the assumption that it is given in a time series of labelled instantiations, we ask how
can the dynamics be read off and classified. In the context of neuroscience, which is our pri-
mary motivation for this study, this is a question on the boundary between computational neu-
roscience and machine learning. Our methods provide a method of addressing this question.

We proposed a methodology that will take as input binary dynamics on a digraph and pro-
duce a vector summary of the dynamics by means of combinatorial and/or topological param-
eters of a relatively small number of neighbourhoods. Using this methodology we experimented
with a dataset implemented on the Blue Brain Project reconstruction of the neocortical column
of a rat, and on an artificial neural network with random underlying graph implemented on the
NEST simulator. In both cases the vector summaries were then run through a support vector
machine algorithm that was able to achieve a classification accuracy of up to 88% for the Blue
Brain Project data and up to 81% for the NEST data.

We used the same parameters both for selecting neighbourhoods and for the creation of
feature vectors. We saw that certain spectral graph parameters used as selection parameters
perform significantly better than more classical parameters such as degree and clustering coef-
ficients. We also observed that the parameters that performed best as feature parameters were
the simplest ones, namely size and Euler characteristic. Comparison to randomly selected
neighbourhoods showed that the methodology works reasonably well even without selecting
the neighbourhoods in an informed way, but that neighbourhoods selected in a way informed
by graph parameters gives in general a better performance with a much smaller error range.

Our aim was to demonstrate that certain selections of subgraphs, informed by objective
structural parameters, carry enough information to allow classification of noisy signals in a
network of spiking neurons. In this article the subgraphs selected are closed neighbourhoods,
and the selection criteria are our chosen selection parameters. We did not, however show, or
attempt to demonstrate, that the use of neighbourhoods as a concept, or graph parameters as a
selection mechanism, are the best methodology. The same techniques could be applied to

Figure 11. Classification of eight random signals on an Erdős–Rényi random digraph on 1,000 vertices and connection probabilities of 8%,
1%, and 0.5% and selection of 10, 20, and 50 neighbourhoods, modelled on a NEST simulator. Selection parameters are the same as in the
main example and feature parameter is always size. Graph Gmeans the BBP graph and its performance with respect to size as feature param-
eter is given for comparison. Compare with Supporting Information Figure S5.

Closed neighbourhood:
In a graph G, the closed
neighbourhood of a vertex v refers to
the set consisting of v and all its
immediate neighbours, as well as the
subgraph that this set induces in G.
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other subgraph selections and other vectorisation methods, which can be analysed by our
pipeline with relatively small modifications.

Another aspect of our ideas that was not exploited at all in this project is the use of more
than a single graph parameter in the selection procedure. We did show that different param-
eters are distributed differently in the Blue Brain Project graph, and hence one may hypothe-
sise that optimising neighbourhood selection by two or more parameters may give improved
classification accuracy.

As our aim was not to obtain the best classification, but rather to provide a good method-
ology for ingesting binary dynamics on a digraph and a producing machine learning digestible
data stream, we did not experiment with other more sophisticated machine learning algo-
rithms. It is conceivable that doing so may produce even better classification accuracy than
what is achieved here.

Finally, our approach is closely related to graph neural networks where convolution is per-
formed by aggregating information from neighbourhoods, that is, for every vertex, features are
learned from all the adjacent vertices. The pipeline presented in this paper also takes as input
sequences of neural firings and sequences of neuron assemblies that turn the firing patterns
into feature values. The interaction of our work and the modelling perspectives from graph
neural networks and sequence-to-sequence learning might thus pose an interesting future
research question.

METHODS

Mathematical Concepts and Definitions

We introduce the basic concepts and notation that are used throughout this article. By a
digraph we mean a finite, directed simple graph, that is, where reciprocal edges between a
pair of vertices are allowed, but multiple edges in the same orientation between a fixed pair
of vertices and self-loops are not allowed.

Topology is the study of topological spaces—a vast generalisation of geometric objects. In
this paper we only consider spaces that are built out of simplices. Simplices occur in any
dimension n ≥ 0, where a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex
is a triangle, a 3-simplex a tetrahedron, and so forth in higher dimensions. Simplices can be
glued together to form a topological space. A good survey for this material intended primarily
for readers with a neuroscience background can be found in the Materials and Methods sec-
tion of M. W. Reimann et al. (2017).

We now describe a general setup that associates a family of topological objects with a
digraph. A particular case of this setup is the main object of study in this paper.

Definition 1. A topological operator on digraphs is an algorithm that associates with a
digraph G a topological space Γ(G), such that if H ⊆ G is a subgraph then Γ(H) ⊆ Γ(G) as a
closed subspace.

That is, a topological operator on digraphs is a functor from the category of digraphs and
digraph inclusions to the category of topological spaces and inclusions. The flag complex of G
(ignoring orientation), the directed flag complex (Lütgehetmann, Govc, Smith, & Levi, 2020),
and the flag tournaplex (Govc et al., 2021) are examples of such operators.

Definition 2. Let G = (V, E ) be a digraph, and let v0 2 V be any vertex.

▪ The neighbours of v0 in G are all vertices v0 ≠ v 2 V that are incident to v0.

Topological space:
A generalisation of a geometric
object. In this article topological
spaces are objects built out of
simplices.

Simplex (plural: simplices):
A basic building block for certain
types of geometric objects. A
0-simplex is a point, a 1-simplex is
a line segment, a 2-simplex is a
triangle, and so on for all dimensions.
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▪ The open neighbourhood of v0 is the subgraph of G induced by the neighbours of v0 in G. The
closed neighbourhood of v0 in G is the subgraph induced by the neighbours of v0 and v0 itself.

We denote the open and closed neighbourhoods of v0 in G by N ○

G(v0) and NG (v0), respec-

tively (Figure 12). More generally:

▪ Let S ⊆ V be a subset of vertices. Then N ○

G(S ) denotes the union of open neighbourhoods of
all v 2 S. Similarly NG(S ) is the union of all closed neighbourhoods of vertices v 2 S.

Notice that if S = {v0, v1}, and v0 and v1 are incident in G, then N ○

G(S ) = NG(S ). In this article

we will mostly consider closed neighbourhoods. Neighbourhoods are also used in the paper
M. Reimann et al. (2021), which is closely related to this article.

Terminology 1. Let G be a digraph and let S be a subset of vertices in G. Unless explicitly stated
otherwise, we shall from now on refer to the closed neighbourhood of S in G simply as the
neighbourhood of S in G. In the case where S contains a single vertex v0, we will refer to v0
as the centre of NG(v0).

The topological operator we consider in this article is the directed flag complex of a digraph
which we recall next. See Figure 2 for an example.

Definition 3. A directed n-clique is a digraph, whose underlying undirected graph is an
n-clique, and such that the orientation of its edges determines a linear order on its vertices. An
ordered simplicial complex is a collection X of finite ordered sets that is closed under subsets.
The n-simplices of an ordered simplicial complex X are the sets of cardinality n + 1. If G is a
digraph, then the directed flag complex associated to G is the ordered simplicial complex
whose n-simplices are the directed (n + 1)-cliques in G. We denote the directed flag complex
of a digraph G by |G|.

Encoding Binary Dynamics on Neighbourhoods

We now describe our approach to classification of binary dynamics on a graph in general
terms.

Definition 4. Let G = (V, E ) be a graph (directed or undirected). A binary state on G is a
function β : V → {0, 1}. Equivalently, a binary state on G is a partition of V into two disjoint
subsets that correspond to β−1(0) and β−1(1), or alternatively as a choice of an element of the
power set P(V ) of V. A binary dynamics on G is a function B : ℝ≥0 → P(V ) that satisfies the
following condition:

▪ There is a partition ofℝ≥0 into finitely many half open intervals {[ai, bi)gPi¼1 for some P≥ 1,
such that B is constant on [ai, bi), for all i = 1, …, P.

Figure 12. An open neighbourhood (left) and a closed neighbourhood (right) in a digraph, marked
in red, with its central vertex marked solid colour.

Simplicial complex:
A topological space made out of
gluing simplices together.
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Activity in a network of neurons, both natural and artificial, is a canonical example of a
binary dynamics on a directed network.

Setup. The task we address in this section is a general classification methodology for binary
dynamics functions. Namely, suppose one is given

▪ a set of binary dynamics functions {Bi | i ≥ 1} on a fixed ambient graph G,
▪ a set of labels L = {L1, L2, …, Ln}, and
▪ a labelling function L : {Bi | i ≥ 1} → L.

In addition, we operate under the assumption that functions labeled by the same label are
variants of the same event (without specifying what the event is, or in what way its variants
are similar). The aim is to produce a topological summary for each Bi in a way that will make
the outcome applicable to standard machine learning algorithms. We next describe our pro-
posed mechanism.

Creation of vector summary. Fix a graph G and a real-valued graph parameter Q, that is, a real-
valued function taking digraphs as input and whose values are invariant under graph isomor-

phisms. Suppose that a set of labeled binary dynamics functions {BngNn¼1 on G is given. Select

an M-tuple (H1, H2, …, HM) of subgraphs of G, for some fixed positive integer M.

Fix a time interval and divide it into time bins. In each bin, record the vertex set that showed
the value 1, that is, was active at some point during that time bin. For each 1 ≤ m ≤ M, restrict
that set to Hm and record the subgraph induced by the active vertices. Apply Q to obtain a
numerical M-tuple, and concatenate the vectors into a long vector, which encodes all time
bins corresponding to the given dynamics.

We now describe the procedure more accurately in three steps.

I) Interval partition uniformising. Fix an interval I = [a, b] ⊂ ℝ≥0 and a positive integer
K. Let Δ = b−a

K . For 1 ≤ k ≤ K , let Ik denote the subinterval

Ik ¼def aþ k − 1ð ÞΔ; aþ kΔ½ � ⊆ a; b½ �:
II) Subgraph extraction. For 1 ≤ n ≤ N and each 1 ≤ m ≤ M , let βn

m;k denote the binary
state on Hm defined by

βn
m;k ¼def v 2 Hmj∃t 2 Ik ; such that v 2 Bn tð Þf g:

LetHn
m;k ⊆Hm be the subgraph induced by all vertices in the set βn

m;k. We refer toHn
m;k

as the active subgraph of Hm with respect to the binary dynamics function Bn.

III) Numerical featurisation. For each 1 ≤ n ≤ N, let qn
m;k denote the value ofQ applied to

Hn
m;k. Let F

n denote the M × K matrix corresponding to the binary dynamics function
Bn, that is (Fn)m,k = qn

m;k .

For use in standard machine learning technology such as support vector machines, we turn
the output of the procedure into a single vector by column concatenation. The output of this

procedure is what we refer to as a vector summary of the collection {BngNn¼1 (Figure 3). It allows

great flexibility as its outcome depends on a number of important choices:

▪ the ambient graph G,
▪ the selection procedure of subgraphs,
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▪ the interval I and the binning factor K, and
▪ the graph parameter Q.

All these choices may be critical to the task of classifying binary dynamics functions, as our
use case shows, and have to be determined by experimentation with the data.

Selection and Feature Parameters

In this section we describe the graph parameters used in this article. Some of these parameters
are well known in the literature. All of them are invariant under digraph isomorphism. The
parameters presented in this section are the primary parameters used for both selection and
generation of vector summaries. We chose these particular parameters either because of their
prevalence in the literature, or for their strong performance as either selection or feature
parameters in classification tasks. Other parameters we examined are mentioned in the Sup-
porting Information.

Throughout this section, we let G = (V, E ) denote a locally finite digraph (that is, such that
every vertex is of finite degree). For k ≥ 1 and v0 2 V , we let Sk(v0) denote the number of
directed (k + 1)-cliques that contain v0. In particular S1(v0) = deg(v0).

Clustering coefficients. Watts and Strogatz (1998) introduced an invariant for undirected graphs
they called clustering coefficient. For each vertex v0 in the graph G, one considers the quotient

of the number tv0 of triangles in G that contain v0 as a vertex by the number
deg v0ð Þ

2

� �
of

triangles in the complete graph on v0 and its neighbourhood in G. The clustering coefficient
of G is then defined as the average across all v0 2 G of that number. Clustering coefficients are
used in applied graph theory as measures of segregation (Rubinov & Sporns, 2010).

Clustering coefficient for digraphs. The Watts–Strogatz clustering coefficient was generalised by
Fagiolo (2007) to the case of directed graphs. Fagiolo considers for a vertex v0 every possible
3-clique that contains v0, and then identifies pairs of them according to the role played by v0,
as a source, a sink, or an intermediate vertex (see Figure 13A–C) and (C). Fagiolo also con-
siders cyclical triangles at v0 and identifies the two possible cases of such triangles (see
Figure 13D). The Fagiolo clustering coefficient at v0 is thus the quotient of the number of

equivalence classes of directed triangles at v0, denoted by t
→
v0, by the number of such classes

Figure 13. Eight possible directed triangles on the same three vertices. The pairs correspond to the identifications made by Fagiolo, with
changes denoted by dotted edges. In the definition of the transitive clustering coefficient, the triangles in panels A, B, and C are counted
individually, and those in panel D are ignored.
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in the complete graph on v0 and all its neighbours in G. Thus, if v0 is the i-th vertex in G with
respect to some fixed ordering on the vertices, and A = (ai,j) is the adjacency matrix for G, then

t
→
v0 ¼

def 1
2

X
j;k

ai;j þ aj;i
� �

ai;k þ ak;i
� �

aj;k þ ak;j
� �

;

and the clustering coefficient at v0 is defined by

CF v0ð Þ ¼def t
→
v0

deg v0ð Þ deg v0ð Þ − 1ð Þ − 2
P

jai;jaj;i
:

Transitive clustering coefficient. A directed 3-clique is also known in the literature as a transitive
3-tournament. Our variation on the clustering coefficient, the transitive clustering coefficient of
a vertex v0 in a digraph G, is the quotient of the number of directed 3-cliques in G that contain
v0 as a vertex by the number of theoretically possible such 3-cliques.

Let ind(v0) and oud(v0) denote the in-degree and out-degree of v0. Let Iv0, Ov0, and Rv0

denote the number of in-neighbours (that are not out-neighbours), out-neighbours (that are
not in-neighbours), and reciprocal neighbours of v0, respectively. Notice that

ind v0ð Þ ¼ Iv0 þ Rv0 and oud v0ð Þ ¼ Ov0 þ Rv0 : (1)

We introduce our variation on Fagiolo’s clustering coefficient.

Definition 5. Define the transitive clustering coefficient at v0 by

CT v0ð Þ ¼def S2 v0ð Þ
deg v0ð Þ deg v0ð Þ − 1ð Þ − ind v0ð Þoud v0ð Þ þ Rv0ð Þ :

A justification for the denominator in the definition is needed and is the content of the
Lemma 1 in Supporting Information.

Let A = (ai,j) denote the adjacency matrix for G with respect to some fixed ordering on its
vertices. Then for each vertex v0 2 G that is the i-th vertex in this ordering, S2(v0) can be com-
puted by the formula

S2 v0ð Þ ¼
X
j;k

ai;j þ aj;i
� �

ai;k þ ak;i
� �

aj;k þ ak;j
� �

− ai;jaj;kak;i ¼ 2t
→
v0 −

X
j;k

ai;jaj;kak;i : (2)

Euler characteristic and normalised Betti coefficient. The Betti numbers of the various topological
constructions one can associate to a digraph have been shown in many works to give infor-
mation about structure and function in a graph. A particular example, using Blue Brain Project
data is M. W. Reimann et al. (2017).

Euler characteristic. The Euler characteristic of a complex is possibly the oldest and most use-
ful topological parameter, and has been proven to be useful to theory and applications. In the
setup of a directed flag complex (or any finite semi-simplicial set) the Euler characteristic is
given as the alternating sum of simplex counts across all dimensions:

EC Xð Þ ¼def
X
n≥0

−1ð Þn Xnj j;

where |Xn| is the number of n-simplices in X. Alternatively, the Euler characteristic can be
defined using the homology of X by

EC Xð Þ ¼def
X
n≥0

−1ð Þn dimF Hn X ;Fð Þð Þ;
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where F is any field of coefficients. The Euler characteristic is a homotopy invariant, and can
take positive or negative values according to the dominance of odd- or even-dimensional cells
in the complex in question.

Normalised Betti coefficient. The normalised Betti coefficient is based on a similar idea to the
Euler characteristic. It is invariant under graph isomorphism, but is not a homotopy invariant.
Also, unlike the Euler characteristic, it is not independent of the chosen field of coefficients.
We view the normalised Betti coefficient as a measure of how “efficient” a digraph is in gen-
erating homology, without reference to any particular dimension, but with giving increasing
weight to higher dimensional Betti numbers.

Let G be a digraph, and for each k ≥ 0, let sk(G) denote the number of k-simplices in the
directed flag complex |G|. Fix some field F. By the Betti number βi of Gwe mean the dimension
of the homology vector space Hi (|G|, F).
Definition 6. Let G be a locally finite digraph. Define the normalised Betti coefficient of G
to be

B Gð Þ ¼def
X∞
i¼0

i þ 1ð Þβi Gð Þ
si Gð Þ :

Normalised Betti coefficients can be defined by any linear combination of Betti numbers, and
also in a much more general context (simplicial posets), which we did not explore. Both the
Euler characteristic and the normalised Betti coefficients are invariants of digraphs, and to use
them as vertex functions we consider their value on the neighbourhood of a vertex.

Size (vertex count). The size of a digraph can be interpreted in a number of ways. One stan-
dard way to do so is for a fixed simplicial object associated to a digraph, one counts the num-
ber of simplices in each dimension. This will typically produce a vector of positive integers,
the (euclidean) size of which one can consider as the size of the digraph. Alternatively, the
simplex count in any dimension can also be considered as a measure of size. In this article
we interpret size as the number of vertices in the digraph. Thus by size of a vertex v0 2 G we
mean the vertex count in NG(v0). When working with binary states on a digraph, neighbour-
hood size means the number of vertices that obtain the value 1 in NG(v0).

Spectral invariants. The spectrum of a (real valued) square matrix or a linear operator A is the
collection of its eigenvalues. Spectral graph theory is the study of spectra of matrices associ-
ated to graphs. It is a well developed part of combinatorial graph theory and one that finds
many applications in network theory, computer science, chemistry, and many other subjects
(see a collection of web links on Applications of Spectral Graph Theory website: https://sites
.google.com/site/spectralgraphtheory/home?authuser=0). The various versions of the Lapla-
cian matrix associated to a graph plays a particularly important role. An interesting work relat-
ing neuroscience and the Laplacian spectrum is de Lange et al. (2014).

The spectral gap is generally defined as the difference between the two largest moduli of
eigenvalues of A. In some situations, for instance in the case of the Laplacian matrix, the spec-
tral gap is defined to be the smallest modulus of nonzero eigenvalues. Given a matrix and its
spectrum, either number can be computed. As a standard in this article, spectral gaps are con-
sidered as the first type described above, except for the Chung Laplacian spectrum, where the
spectral gap is defined to be the value of the minimal nonzero eigenvalue. However, in several
cases we considered both options. To emphasise which option is taken we decorated the
parameter codes from Table 1 with a subscript “high” (referring to the difference between
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the two largest moduli) or “low” (referring to the smallest modulus of a nonzero eigenvalue).
For example, Figures 7, 8, and 9 have blslow as a parameter, indicating the lowest nonzero
value in the Bauer Laplacian spectrum (that is, the minimal nonzero eigenvalue of the Bauer
Laplacian matrix). Another variant of the standard concepts of spectra is what we call the
reversed spectral gap (Definitions 7 and 9).

Yet another common invariant we considered is the spectral radius, which is the largest
eigenvalue modulus of the matrix in question. We consider here four matrices associated to
digraphs: the adjacency matrix, the transition probability matrix, the Chung Laplacian, and the
Bauer Laplacian, with details to follow.

The adjacency and transition probability matrices. Let G = (V, E ) be a weighted directed graph
with weights wu,v on the edge (u, v) in G, where wu,v = 0 if (u, v) is not an edge in G. Let
WG = (wu,v) denote the weighted adjacency matrix of G. Let oud(u) denote the out-degree
of a vertex u. The transition probability matrix for G is defined, up to an ordering of the vertex
set V, to be the matrix PG, with

PG ¼def D−1
out Gð Þ ⋅WG; (3)

where D−1(G ) is the diagonal matrix with the reciprocal out-degree 1/out(u) as the (u, u) entry,
if out(u) ≠ 0, else the (u, u) entry is 0.

Definition 7. Let G be a digraph with adjacency matrix AG and transition probability matrix PG.
The adjacency spectral gap and the transition probability spectral gap of G are defined in each
case to be the difference between the two largest moduli of its eigenvalues.

If we replace in the definition of PG the matrix Dout(G) by Din(G) of in-degrees, we obtain a
variant of the transition probability matrix, which we denote by P rev

G , and its spectral gap is

referred to as the reversed transition probability spectral gap.

For our specific application we considered the ordinary (as opposed to weighted) adja-
cency matrix, namely, where all weights wu,v are binary. We considered as parameters the
spectral radius of the adjacency and transition probability matrices.

The Chung Laplacian. Chung defined the directed Laplacian for a weighted directed graph in
Chung (2005). The Perron–Frobenius theorem (Horn & Johnson, 1990) states that any real val-
ued irreducible square matrix M with nonnegative entries admits a unique eigenvector, all of
whose entries are positive. The eigenvalue for this eigenvector is routinely denoted by ρ, and it
is an upper bound for any other eigenvalue of M.

If G is strongly connected (that is, when there is a directed path between any two vertices in
G), then its transition probability matrix is irreducible, and hence satisfies the conditions of the
Perron–Frobenius theorem. Thus PG has an eigenvector, all of whose entries are positive. The
Perron vector is such an eigenvector � that is normalised in the sense that �v2V �(v) = 1. Let Φ
denote the diagonal matrix with the v-th diagonal entry given by �(v), and let P denote the
transition probability matrix PG.

Definition 8. Let G be a strongly connected digraph. The Chung Laplacian matrix for G is
defined by

L ¼def I − Φ
1
2PΦ−1

2 þ Φ−1
2P�Φ

1
2

2
; (4)

where P* denotes the Hermitian transpose of a matrix P. The Chung Laplacian spectral gap λ
for a digraph G is defined to be the smallest nonzero eigenvalue of the Laplacian matrix.
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The Chung Laplacian spectral gap λ of a strongly connected digraph G is related to the
spectrum of its transition probability matrix P by Chung (2005, Theorem 4.3), which states that
the inequalities

min
i≠0

1 − ρij jf g≤ λ≤ min
i≠0

1 − Re ρið Þf g (5)

hold, where the minima are taken over all eigenvalues of P. The theory in Chung (2005)
applies for strongly connected graphs and we therefore defined the Laplacian spectral gap
of a neighbourhood to be that of its largest strongly connected component.

We use the spectral gap of the Chung Laplacian for the largest strongly connected compo-
nent of a neighbourhood as a selection parameter. When used as a feature parameter we con-
sider the spectral gap of the largest strongly connected component of the active subgraph of
the neighbourhood. We also use the spectral radius of the Chung Laplacian, both as selection
and feature parameter.

The Bauer Laplacian. The requirement that G is strongly connected is a nontrivial restriction,
but it is required in order to guarantee that the eigenvalues are real. An alternative definition of
a Laplacian matrix for directed graphs that does not require strong connectivity was introduced
in Bauer (2012). Let C(V ) denote the vector space of complex valued functions on V. The
Bauer Laplacian for G is the transformation ΔG : C(V ) → C(V ) defined by

ΔG fð Þ vð Þ ¼def f vð Þ − 1
ind vð Þ

X
vwv ;uf uð Þ; if ind vð Þ ≠ 0;

0; otherwise:

8<
: (6)

If ind(v) ≠ 0 for all v 2 V, thenΔG corresponds to the matrixΔG= I −D−1
in (G) ·WG, whereD−1

in (G) is
defined analogously to D−1

out(G) in Definition 7, andWG is the weighted adjacency matrix. In our

case W is again taken to be the ordinary binary adjacency matrix.

Definition 9. The Bauer Laplacian spectral gap is the difference between the two largest moduli
of eigenvalues in the spectrum.

We also considered the spectral radius of the Bauer Laplacian. Both are used as selection as
well as feature parameters. If we replace in the definition Din(G) by Dout(G), we obtain a matrix
Δrev
G , whose spectral gap we refer to as the reversed Bauer Laplacian spectral gap.
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