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ABSTRACT

m6A is a prevalent internal modification in mR-
NAs and has been linked to the diverse effects on
mRNA fate. To explore the landscape and evolu-
tion of human m6A, we generated 27 m6A methy-
lomes across major adult tissues. These data reveal
dynamic m6A methylation across tissue types, un-
cover both broadly or tissue-specifically methylated
sites, and identify an unexpected enrichment of m6A
methylation at non-canonical cleavage sites. A com-
parison of fetal and adult m6A methylomes reveals
that m6A preferentially occupies CDS regions in fetal
tissues. Moreover, the m6A sub-motifs vary between
fetal and adult tissues or across tissue types. From
the evolutionary perspective, we uncover that the se-
lection pressure on m6A sites varies and depends on
their genic locations. Unexpectedly, we found that
∼40% of the 3′UTR m6A sites are under negative se-
lection, which is higher than the evolutionary con-
straint on miRNA binding sites, and much higher
than that on A-to-I RNA modification. Moreover, the
recently gained m6A sites in human populations are
clearly under positive selection and associated with
traits or diseases. Our work provides a resource of
human m6A profile for future studies of m6A func-
tions, and suggests a role of m6A modification in
human evolutionary adaptation and disease suscep-
tibility.

INTRODUCTION

Chemical modifications on RNA have been recently appre-
ciated as an important regulatory feature (1). Recent tech-
nological breakthroughs, driven mainly by the sequencing-

based approaches, have enabled the genome-wide profiling
of such RNA modifications, particularly the RNA deami-
nation and methylation (2–6). However, except for A-to-I
(adenosine to inosine) RNA editing, which is the predom-
inant type of RNA deamination in animals (7–12), less is
known about the dynamics and evolution of most RNA
modifications.

m6A is one of the most prevalent internal modifica-
tions in mRNAs (2,13–16). It is present among eukary-
otic species that range from yeast, plants, flies to mam-
mals. m6A RNA methylation is catalyzed by a multicom-
ponent methyltransferase complex, including METTL3,
METTL14 and WTAP (17,18). It has a consensus motif
RRACH (in which R represents A or G, and H represents
A, C or U). m6A methylation regulates the splicing, expres-
sion, decay and translation of mRNAs (19–21), and plays
crucial roles in various cellular pathways and processes such
as cell differentiation, development and metabolism (15).
To date, m6A has been identified in several thousand hu-
man protein-coding genes. Although m6A profile of many
cultured human cell lines and fetal human tissues have been
reported (22,23), we still have limited information about the
global landscape and dynamics of m6A in adult human tis-
sues.

It has been hypothesized that gene regulation, ranging
from transcriptional processing to post-transcriptional reg-
ulation, has a central role in phenotypic evolution (24–
26). Therefore, a fundamental question in biology is to un-
derstand how natural selection has shaped the evolution
of gene regulation (27,28), including RNA modifications.
Some studies have shown that m6A peaks, which typically
span one to several hundred nt, are conserved between hu-
man and mouse (2) and the m6A peak regions have much
higher sequence conservation scores than those of ran-
domly selected regions (13). While others suggest that only
37% of the m6A peaks are conserved between human and
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rhesus macaque (29), and the sequence of m6A RAC cen-
tral motif is only slightly conserved than the control RAC
sites (30). In addition, a recent study suggested that most
m6A sites in CDS regions are evolutionarily unconserved
(31). However, those studies were limited in scope and scale,
thus, a systematic investigation of the selection pressure on
individual m6A sites is needed.

MATERIALS AND METHODS

Sample procurement

Samples of nine human adult tissues were obtained from
Chinese Brain Bank Center (Wuhan, China). These tis-
sues were collected post-mortem from individuals with no
known medical history. The consent of human tissue sam-
ples using autopsy was obtained from the patients’ families.
Samples were lysed and homogenized in TRIzol Reagent
(Invitrogen) using Precellys evolution tissue homogenizer
(Bertin). Total RNA was extracted using chloroform and
isopropanol following the manufacturer’s protocol. The
quality of the total RNAs was determined by agarose gel
electrophoresis and three biological replicates of RNA sam-
ples that with thick 28S and 18S ribosomal RNA (rRNA)
gel bands at an approximate mass ratio of 2:1 were se-
lected. These tissues are from five donors (N1–N5), includ-
ing frontal cortex (N1–N3), cerebellum (N1–N3), heart (N–
N3), liver (N1–N3), lung (N1, N3, N5), kidney (N1, N2,
N5), spleen (N1, N2, N5), muscle (N2–N4) and testis (N1-
N3). N1, male, age 39; N2, male, age 44; N3, male, age 47;
N4, male, age 57; N5, male, age 44.

m6A-seq library preparation

m6A immunoprecipitation and library construction were
performed as described previously with some modifica-
tion (2). In brief, samples were lysed and homogenized in
TRIzol Reagent (Invitrogen) using Precellys evolution tis-
sue homogenizer (Bertin). Total RNA was extracted us-
ing chloroform and isopropanol following the manufac-
turer’s protocol. Polyadenylated mRNA was enriched from
total RNA using GenElute mRNA miniprep kit (Sigma-
Aldrich). RNA samples were fragmented in 1X Next Mag-
nesium RNA Fragmentation Buffer (NEB) at 94◦C for
5min and fragmented RNA was then cleaned up using
ethanol precipitation. 10ng fragmented RNA was used
to construct input control library with VAHTS Stranded
mRNA-seq library prep kit (Vazyme). 15–40 ug fragmented
RNA was further incubated with 5ug rabbit anti-m6A poly-
clonal antibody (Synaptic Systems, catalog number 202
003) in IPP buffer (150 mM NaCl, 0.1% Igepal CA-630,
10 mM Tris–HCl, Ph7.4) overnight at 4◦C. The m6A-Ab
mixture was then immunoprecipitated by incubation with
protein-G magnetic beads (Thermo Fisher, pre-blocked
with 0.5 mg ml−1 BSA at 4◦C for 2h) at 4◦C for another
2h. After washing with IPP buffer, bound RNA was com-
petitively eluted from the beads with 0.5 mg ml−1 N6-
methyladenosine (Sigma-Aldrich), followed by ethanol pre-
cipitation. RNA was resuspended in 8 �l water and used for
library construction. Libraries were sequenced on HiSeq X
(Illumina) to produce paired-end 150 bp reads.

MeRIP-seq of HEK293T cells

MeRIP-seq was performed as described previously (23). In
brief, total RNA of HEK293T cells was extracted and frag-
mented in Next Magnesium RNA Fragmentation Buffer
(NEB) at 94◦C for 5 min. 10 ng fragmented RNA was used
to construct the input library. 300 ug of fragmented RNA
was incubated with 5 ug rabbit anti-m6A polyclonal anti-
body (Abcam, catalog number ab151230) overnight at 4◦C.
After stringent washing, bound RNA was eluted by compe-
tition with N6-methyladenosine (Sigma-Aldrich), followed
by rRNA removal with QIAseq FastSelect RNA Removal
Kits (Qiagen). Both the input and IP libraries were con-
structed using NEBNext Ultra II Directional RNA Library
Prep Kit for Illumina (NEB). Libraries were sequenced on
HiSeq X (Illumina) to produce paired-end 150 bp reads.

METTL3 knockout cell generation

METTL3 knockout cell was generated via CRISPR/Cas9-
induced mutagenesis. In brief, a sgRNA sequence
(GCAGAAGCGGCGTGCAGAAC) was designed
using CRISPR-ERA (http://CRISPR-ERA.stanford.edu).
The sgRNA template oligonucleotide was synthesized and
cloned into lentiCRISPR v2 plasmid (Addgene#52961).
The plasmid was transfected into HEK293T cells. Trans-
fected cells were selected using puromycin (1 �g /ml).
Mutant clones were selected by Sanger sequencing. The
loss of METTL3 protein expression was verified with
the METTL3 antibody (Proteintech, catalog number
15073-1-AP) by western blot. The m6A levels of HEK293T
wild type and METTL3 knockout cells were measured
using EpiQuik m6A RNA Methylation Quantification
Kit (Epigentek). In brief, polyadenylated RNA was sep-
arated from total RNA using Oligo dT Magnetic Beads
(Vazyme). 300ng polyadenylated mRNA was used for m6A
quantification following the manufacturer’s protocol.

m6A-seq data analysis

m6A peak identification was performed as previously de-
scribed (32). In brief, we trimmed the adaptor and low qual-
ity reads using Cutadapt (33) (-e 0.3 –minimum-length 25;
–trim-n -q 20,20) and fastx toolkit (fastx trimmer -f 6; -t 5
-m 20). rRNA reads were then removed using SortMeRNA
(34). Next, clean reads were mapped to the human genome
(hg19) using TopHat2 (version 2.1.0) (35). Enriched peaks
were identified by scanning each gene using 100-nt sliding
windows, and calculating an enrichment score for each slid-
ing window (winscore).

winscore = log2
(

MeanWinIP/MedianGeneIP
MeanWinControl/MedianGeneControl

)

MeanWinIP and MeanWinControl are the mean cov-
erage for each window for immunoprecipitation and in-
put control, respectively. MedianGeneIP and Median-
GeneControl are gene median coverages for immunopre-
cipitation and input control, respectively. Windows with
RPKM ≥ 10 in the IP sample, enrichment score ≥2 in genes
with RPKM in the input sample ≥1 were defined as en-
riched windows. Last, only the peaks with winscore ≥2 in
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at least two samples of a tissue type were considered as real
m6A peaks.

To generate the metagene profile of m6A site distribu-
tion across transcripts, we first determined the number of
bins that need to be divided for a given gene based on rel-
ative lengths between 5′UTR, CDS and 3′UTR of the hu-
man transcriptome (GENCODE v26). The relative lengths
between 5′UTR, CDS and 3′UTR are 10:50:40, thus for
each gene, 10, 50 and 40 bins of equal length were made
for 5′UTR, CDS and 3′UTR, respectively. Next, for each
m6A site, we assigned it to the longest isoform of the cor-
responding gene and determined which bin it is located in.
Last, the number of sites for each bin was summarized and
the curve was fitted with polyfit.

The mapping statistics of all datasets were summarized
in Supplementary Table S1.

m6A peak call via exomePeak and MeTPeak

IP and input reads were mapped as described above. For
each tissue type, the consistent peaks in all replicates were
called using exomePeak (36) or MeTPeak (37) with default
parameters.

Tissue specificity analysis

For each site, we first calculated its average winscore in each
tissue type. Next, we calculated its tissue specificity index
tau (38) using the average winscore of each site:

tau =
∑n

i=1 1 − x̂i

n − 1
; x̂i = xi

max
1≤i≤n

xi

xi is the average winscore of a site in tissue i; n is the num-
ber of tissues.

Shared m6A sites were defined as sites with tau <0.15.
Tissue-specific m6A sites were defined as sites with tau >0.6.

m6A-RIP qPCR

RIP was performed as described above. Both the IP and in-
put RNAs were reverse transcribed and the m6A marked
mRNAs and NC (GAPDH) mRNA were detected by
qPCR. The enrichment fold of IP versus input of each gene
was calculated and normalized to NC. Primers were listed
as follows:

ATP5C1-F GGGAGCTTCGGCGCAT
ATP5C1-R CGCGCGAGAGAACATGGTAG
DCTN1-F GCACGGTTCCTGACAAGTCTA
DCTN1-R GACACAGAATCCTGCTTGCC
PSMB4-F ATGGAAGCGTTTTTGGGGTC
PSMB4-R GAGTGGACGGAATGCGGTAA
SDHAF2-F GCCTTGCTTCCGGCTTCTTA
SDHAF2-R TGTCCATCACTTGAGGCAGG
GAPDH-F TGCCAAATATGATGACATCAAGAA
GAPDH-R GGAGTGGGTGTCGCTGTTG

APA data analysis

Human APA cleavage sites were downloaded from
PolyA DB version 3.2 (http://exon.umdnj.edu/polya db/
v3/). PolyA DB version 3.2 catalogs polyA sites using deep
sequencing data.

3′ processing efficiency measurement assay

We used a bicistronic luciferase reporter construct, pPAS-
PORT, to measure 3′ processing efficiency (39). 3′UTR of
each selected gene was inserted into pPASPORT, between
Renilla and Firefly luciferase genes. Plasmids were trans-
fected into wild-type and METTL3 knockout HEK293T
cells using Lipofectamine 3000 (Thermo Fisher Scientific),
respectively. Renilla and Firefly luminescences were mea-
sured 24 h later using Dual-Glo Luciferase Assay Sys-
tem (Promega) on GloMax −96 Microplate Luminometer
(Promega). All primers used to construct the reporter genes
are listed in Supplementary Table S2.

Sub-motif analysis

To obtain the expected numbers of windows with both
GGACH and AAACH sub-motifs, the m6A sub-motif se-
quences were shuffled within all m6A peaks of a given sam-
ple. Next, the number of windows with both sub-motifs
was calculated. We repeated the shuffling analysis for 10
000 times and obtained 10 000 expected numbers. To plot
and compare results from different samples, we performed
normalization by mean-centering the values. In brief, for a
given sample, we first calculated the mean value of expected
window numbers (Mexpected). Next, both observed number
and the 10 000 expected numbers were divided by Mexpected.

Rejected substitution score acquisition

The rejected substitution score data were from Sidow lab
(http://mendel.stanford.edu/SidowLab/downloads/gerp/).

Cross-species analysis

To conduct the CDS m6A conservation analysis, we used
the method from a previous study (31) with some modifica-
tions. First, we required that the control A sites and the m6A
sites were in genes with similar dN/dS values (human ver-
sus mouse). Second, we required that the control A sites and
the m6A sites were with similar distances to the stop codon.
The human-mouse pairwise alignment file was downloaded
from UCSC genome browser, and human-mouse dN and
dS value table was obtained via Ensembl biomart.

The proportion of m6A sites in the third codon that are
under evolutionary constraints between human and mouse
was calculated as: (the evolutionary rate at m6A sites (1–
0.644)––the mean evolutionary rate at control sites (1 –
0.621))/(1 – 0.621).

To determine the age of individual m6A sites, pair-
wise alignment files were downloaded from UCSC genome
browser.

RNA editing site selection

Human RNA editing sites were downloaded from RADAR
database (40). RADAR version 2, which includes 16 464 hu-
man RNA editing sites located at 3′UTR region, was used
for analysis.

miRNA target site selection

miRNA binding sites were downloaded from TargetScan
database (Release 7.1 http://www.targetscan.org/). The Tar-

http://exon.umdnj.edu/polya_db/v3/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://www.targetscan.org/


6254 Nucleic Acids Research, 2020, Vol. 48, No. 11

getScan algorithm predicts biological targets of miRNAs
by searching for the presence of 8mer and 7mer sites that
match the seed region of each miRNA (41). A total of
669 927 and 601 858 target sites of conserved and broadly
conserved miRNA families were analyzed, separately. Con-
served miRNA families are conserved across most mam-
mals, but usually not beyond placental mammals. Broadly
conserved miRNA families are conserved across most ver-
tebrates, usually to zebrafish.

SNP data

We downloaded SNP and genotype data from the 1000
Genome Project (http://www.internationalgenome.org/).
We discarded all insertion and deletion polymorphisms,
SNPs with more than two alleles, SNPs monomorphic
(that is, having only one allele) in all populations and SNPs
that did not map uniquely to the human genome (hg19).
Finally, a total of 77 664 537 SNPs were used for analysis.

Derived allele frequency (DAF) analysis

For each SNP, we extracted the ancestral allele informa-
tion from the downloaded VCF files of the 1000 Genome
Project. For an RRAC motif containing an SNP, we defined
it as a gain of an m6A site if the derived allele created an
RRAC motif.

Fst calculation

VCFtools was used to calculate Fst between populations
(42).

Haplotype homozygosity-based tests

The VCF files were obtained from 1000 Genome
Project. For each m6A SNP, we extracted SNPs within
±2 Mb to generate individual VCF files. The Perl
script vcf2impute legend haps.pl from impute2 (https:
//mathgen.stats.ox.ac.uk/impute/impute v2.html#scripts)
was used to convert a VCF file into reference panel format:
one legend file and one haplotype file. The VCF files of
some SNPs were failed to convert so these SNPs were
excluded from the further analysis. The hap format file
and map format file required by R package ‘rehh’ and
selscan were formatted using the legend and haplotype
files by in-house Perl scripts. iHS was calculated using the
‘ihh2ihs’ function of rehh package in R (43). XP-EHH was
calculated using the‘ies2xpehh’ function of rehh package.

Overlap with GTEx eQTL SNPs

GTEx v6p eQTL file was downloaded from GTEx web-
site (https://gtexportal.org/home/). Only significantly asso-
ciated SNPs were used.

Overlap with GWAS data

The NHGRI-EBI Catalog of Published GWAS (44), which
contains 68 741 trait-associated SNPs, was used to query
for overlaps with the 102 m6A SNPs.

To find proxy SNPs (nearby SNPs in linkage disequilib-
rium) of m6A SNPs that are GWAS hits, we identified all
SNPs in strong linkage disequilibrium with high Fst (Fst >
0.15) SNPs. This step was implemented via the VCFtools
by extracting all SNPs with pairwise r2 > 0.8 based on
CEU, YRI, CHB, PUR and GIH populations from the
1000 Genome Project.

Gene ontology (GO) term analysis

GO term enrichment analysis was performed using R pack-
ages clusterProfiler (45).

RESULTS

m6A profiles across human adult tissues

To explore the landscape of m6A in adult human tissues,
we constructed m6A-seq libraries from nine human adult
tissues, including cerebellum, frontal cortex, heart, kidney,
liver, lung, muscle, spleen and testis. For each tissue, three
individuals were profiled. m6A peaks were called in each
sample using a winscore approach as previously described
(32). m6A peaks found in at least 2 samples of a tissue type
were considered as real m6A peaks. On average, we found 19
100 m6A peaks per tissue (Supplementary Table S3). The
samples of the same tissue type clustered well according
to either their m6A levels or gene expression levels (Fig-
ure 1A, B). Sequence logo analysis of all datasets confirmed
that the called peaks are enriched in the m6A consensus mo-
tif RRACH (Supplementary Figure S1), consistent with the
previous observation (2). We next inferred the m6A sites by
searching for the RRACH motifs within the peaks (Mate-
rials and methods). As expected, m6A sites preferentially
appeared around stop codons (Figure 1C). To evaluate the
performance of the winscore peak call method we used, we
applied two additional peak calling algorithms (exomePeak
(36) and MeTPeak (37)) for m6A site call and compared
m6A sites called from different methods. Most sites iden-
tified in our method overlapped with those identified in ex-
omePeak or MeTPeak, and both exomePeak and MeTPeak
called a lot more uniquely identified peaks (Supplementary
Figure S2A-B). Compared with sites called by exomePeak
or MeTPeak, as expected, sites called from our method had
higher winscores (Supplementary Figure S2C). Thus, sites
called using the winscore approach seemed to represent a
more stringent set of m6A sites and were used for all fol-
lowing analyses. Combining all data together, we obtained
a union of 101 340 m6A sites that span various classes of
genic regions (Figure 1D, Supplementary Supplementary
Table S4).

To reveal the methylation landscape across adult tissues,
we examined to what extent the m6A sites are shared be-
tween tissues. We found that more than 36.7% of the sites
were found in one specific tissue type and only 5.5% of the
sites were shared in all tissues we studied (Figure 1E), thus
m6A methylation seems to have high tissue-specificity. The
profiles of four selected m6A peaks across tissues, as well as
the m6A-RIP qPCR validation results, were shown in Sup-
plementary Figure S3. To further investigate the effect of
differential gene expression on the tissue-specificity of m6A
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Figure 1. m6A profile in human adult tissues. (A, B) Heatmap of Pearson correlation on m6A peak winscores (A) or gene expression levels (B) of protein-
coding genes. Gene expression levels were quantified as the number of RNA-seq reads per kilobase of transcript per million mapped reads (RPKM). (C)
The distribution of m6A sites across the length of mRNA transcripts for nine adult tissues. 5′UTRs, CDSs and 3′UTRs of protein-coding genes were
individually grouped into 10, 50 and 40 bins of their total length, and the percentage of m6A sites that fall within each bin was determined. (D) Genic
locations of m6A sites of adult tissues. Sites in nine adult tissues were merged for analysis. Sites were annotated using Ensembl gene annotations and
ANNOVAR software. ncRNA, Noncoding RNA. (E) The distribution of the numbers of m6A sites that are methylated in one or more tissues. (F) The
distribution of the numbers of m6A sites that are methylated in one or more tissues. Only m6A sites within the ubiquitously expressed genes (FPKM
> 3 in all tissues) were analyzed. (G) The distribution of tissue-specific or shared m6A sites across the length of mRNA transcripts for 9 adult tissues.
Tissue-specific m6A sites, sites that are within the ubiquitously expressed genes and have a tau >0.6; shared m6A sites, sites that are within the ubiquitously
expressed genes and have a tau <0.15. (H) GO terms enriched in the ubiquitously expressed genes with shared m6A sites (tau < 0.15). GO term analysis
was performed using clusterProfiler. All ubiquitously expressed genes were used as the background. P values were corrected by Bonferroni adjustments
and the top 15 enriched go terms were shown.
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sites, we examined m6A sites that were located in the ubiq-
uitously expressed genes across human tissues. Of the 4063
ubiquitously expressed genes, 23 167 sites were identified.
Of these sites, 27.4% was methylated in only one tissue type
and 12.4% was shared by all tissue types (Figure 1F). These
data together suggest that both tissue-specific gene expres-
sion and tissue-specific methylation contribute to the ob-
served high tissue-specificity of m6A sites.

To better investigate the tissue-specificity of individual
m6A sites, we applied the widely used tissue specificity in-
dex tau to measure the tissue-specific methylation (Materi-
als and Methods). Tau varies from 0 to 1, where 0 means
broadly expressed, and 1 is specific. Interestingly, when ex-
amining the genic locations of tissue-specific (tau > 0.6) and
shared m6A sites (tau < 0.15), we found that shared sites
tended to be located around the stop codon, while tissue-
specific sites tended to be away from the stop codon (Fig-
ure 1G). This result suggests the m6A sites away from stop
codon may perform tissue-specific functions, while m6A
sites around stop codon are more likely to be required for
the maintenance of basic cellular function, thus methylated
in all cells of an organism. Consistently, the genes with
shared sites were enriched in essential functions such as
chromatin organization, cellular catabolic process and his-
tone modification (Figure 1H). This tissue-specific methyla-
tion pattern was confirmed using RNA-endoribonuclease–
facilitated sequencing data that identify m6A sites in three
human tissue types (Supplementary Figure S4). Moreover,
to control the potential difference in RIP efficiencies be-
tween samples, we normalized the winscores based on
the top 50 peaks in each sample (Supplementary Figure
S5A) and repeated the analysis. We found that the tissue-
specific methylation pattern still holds (Supplementary Fig-
ure S5B). Notably, an enrichment of tissue-specific sites was
found in 5′UTR (Figure 1G). To ask whether the signal in
5′UTR is m6Am, we performed the sequence logo analysis
for tissue-specific peaks in 5′UTR regions. We found that
the called peaks are enriched in the m6A consensus motif
RRACH (Supplementary Figure S5C). Moreover, we ex-
amined the distance of the tissue-specific m6A sites in the
5′UTR regions to the TSS. We found that <20% of the sites
are very close to TSS (Supplementary Figure S5D). These
results together suggest that most tissue-specific m6A peaks
in 5′UTRs are m6A, although we cannot exclude the possi-
bility that some of the peaks that are very close to TSS are
m6Am.

We also applied a lower or higher stringency to define
m6A sites (i.e. we required that the sites were found in at
least one sample or all samples of a tissue type) and re-
peated the tissue-specificity analysis. In the low stringency
condition, 45.6% of the sites were methylated in only one
tissue type and 4.3% of the sites were shared in all tissues;
in the high stringency condition, 50.9% of the sites were
methylated in only one tissue type and 0.9% of the sites were
shared in all tissues. In both conditions, we consistently
observed that shared sites tended to be located around
the stop codon, while tissue-specific sites tended to be
away from the stop codon (Supplementary Figure S6A, B).
Moreover, the genes with shared sites were enriched in es-
sential functions such as chromatin organization, cellular

catabolic process and histone modification (Supplementary
Figure S6C, D).

Taken together, these data reveal dynamic m6A methy-
lation across tissue types, uncover both broadly or tissue-
specifically methylated sites, and highlight the potentially
distinct regulatory effects for m6A sites around and away
from the stop codon.

m6A methylation is enriched at non-canonical cleavage sites
in 3′UTR

Polyadenylation processing of pre-mRNAs is an essential
step in the generation of mature mRNAs. It includes an en-
donucleolytic cleavage followed by polyadenylation (46). A
cleavage site is typically located in the downstream 15–30nt
of the poly(A) signal (PAS) (Figure 2A). Most eukaryotic
genes harbor multiple PASs, leading to expression of alter-
native polyadenylation (APA) isoforms. m6A is known to be
associated with APA selection (30,47,48), however, whether
m6A methylation directly regulates polyadenylation is un-
known. The generation of the comprehensive list of m6A
sites, along with the map of poly(A) cleavage sites in human
(49), enables us to systematically examine the relationship
between m6A methylation and cleavage. To do so, we first
examined the distribution of the distance between a cleav-
age site and the nearest m6A site. Unexpectedly, we found
that m6A sites are highly enriched in the cleavage site po-
sition (Figure 2B). This observation was confirmed using
miCLIP and RNA-endoribonuclease–facilitated sequenc-
ing data that identify m6A sites with single-nucleotide-
resolution (Supplementary Figure S7A). In addition, com-
pared with 3′UTR m6A sites that were not located at the
cleavage position, m6A sites at the cleavage position tended
to be enriched in AAACH sub-motif (Figure 2C).

To examine the effect of m6A on PAS regulation, we uti-
lized a PAS reporter assay to measure the impact of m6A on
poly(A) site processing efficiency (Figure 2D). We first gen-
erated METTL3 knockout HEK293T cells (Supplemen-
tary Figure S7B, C) and confirmed the reduced m6A level
(Supplementary Figure S7D). Next, we selected five m6A
sites that were in the cleavage site position and methylated
in HEK293T cells (Supplementary Figure S7E). We sub-
cloned ∼ 300 bp region around each m6A sites into the re-
porter plasmid and transfected each of the reporters into
both wild-type and METTL3 knockout cells. We found that
these m6A located PAS regions had a higher processing ef-
ficiency in the METTL3 knockout cells (Figure 2D). This
result suggests that m6A may repress polyadenylation pro-
cessing.

APA events can lead to the production of noncanonical
mRNA isoforms, affecting the fate of the transcript and
the nature of the products of translation (50). To ask if
m6A may be involved in such regulation, we divided APA
sites into canonical and noncanonical groups and examined
their association with m6A. Interestingly, we found that
m6A sites tended to be located at the noncanonical APA
sites (Figure 2E). An examination of the nucleotide com-
positions around the cleavage sites revealed that, compared
with canonical APA sites, noncanonical APA sites had an
enrichment of Cs at the immediate downstream of the cleav-
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age position (Figure 2F), thus are more likely to form the
RRACH motif required for m6A methylation.

Taken together, we unexpectedly observed an enrichment
of m6A sites in the cleavage position, particularly for the
noncanonical APA events. This observation raises the pos-
sibility that the methylation status of the cleavage position
may affect the cleavage efficiency directly, therefore regulat-
ing APA selection. Consequently, the dynamic methylation
of m6A at cleavage position across tissue types may con-
tribute to the dynamic regulation of APA across tissue types.

Developmental dynamics of m6A methylation

To understand the developmental dynamics of m6A methy-
lation, we compared the m6A profile between fetal and adult
tissues. m6A profiles of seven human fetal tissues, includ-

ing brain, heart, kidney, liver, lung, muscle and stomach,
were used for analysis (23). Among these tissues, 5 tissue
types were in common between fetal and adult samples.
m6A peaks and sites of fetal tissues were called as we did
in our adult tissue data. We confirmed that the samples
of the same tissue type clustered together according to ei-
ther their m6A levels or gene expression levels (Supplemen-
tary Figure S8A, B). In addition, the called peaks were en-
riched in the m6A consensus motif RRACH (Supplemen-
tary Figure S8C). In total, we obtained a union of 60 440
fetal m6A sites. These fetal m6A sites also preferentially ap-
peared around stop codons (Figure 3A) and spanned vari-
ous classes of genic regions (Figure 3B). Interestingly, fetal
and adult tissues showed distinct distributions of m6A sites
along the transcripts. Although m6A sites preferentially ap-
peared around stop codons in both fetal and adult tissues,
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the CDS regions of fetal tissues showed clearly higher m6A
proportions than that of adult tissues (Figure 3C). Because
the m6A profile data of fetal tissues were generated using
a different RIP procedure and antibody from our method,
to exclude the possibility that the observed difference is
due to technical issue, we performed two analyses. First, we
constructed m6A-seq libraries using the same RNA sample
with two different methods. We found that sites called from
both methods had the same distribution across the tran-
scripts (Supplementary Figure S9A), suggesting that the
use of different library construction methods had no sig-
nificant impact on m6A distribution analysis. Second, we
analyzed an independent fetal tissue m6A-seq data, which
include 3 post-conception week 11 (PCW11) fetal human
brain samples, 3 mouse developing brain (E13.5) samples
and 2 human 47 day forebrain organoid samples (51). These
m6A-seq data were generated with the same RIP proce-
dure as our data. The enrichment of CDS sites in fetal tis-
sues was confirmed in this data set (Supplementary Fig-
ure S9B). VIRMA is known to mediate preferential m6A
mRNA methylation in 3′UTR and near stop codon (48).
An examination of VIRMA expression revealed that, com-
pared with adult tissues, fetal tissues had higher expression
levels (Supplementary Figure S9C, D), thus the observed
difference between fetal and adult tissues may be due to
other unknown regulators.

The regulation of m6A motifs across tissue types or develop-
mental stages

We noted that although the m6A consensus motif RRACH
is enriched in all tissue types examined, the detailed motifs
vary between tissues (Supplementary Figure S1 and Sup-
plementary Figure S8C). To examine the motif dynamics
and regulation between tissues, we divided the RRACH
motif into four sub-motifs (GGACH, AGACH, GAACH
and AAACH) for analysis. We found that different tissues
had different sub-motif preferences (Figure 3D). For exam-
ple, AAACH was overrepresented in both fetal brain and
adult frontal cortex. Interestingly, we found that the propor-
tions of AAACH and GGACH sub-motifs were most vari-
able between tissues, while the proportion of AGACH and
GAACH sub-motifs were consistent across tissues (Figure
3E and Supplementary Figure S10A). Moreover, during de-
velopment, the sub-motifs of some tissues were changing
but others were not (Supplementary Figure S10B).

m6A is installed by a multicomponent methyltransferase
complex. Besides the core methyltransferase subunits, it
also contains other proteins that interact with core sub-
units to methylate specific positions (52). The combina-
tion of core methyltransferase subunits with different in-
teracting proteins may lead to different motif preference.
The observation above suggests that GGACH and AAACH
sub-motifs may be installed by core methyltransferase sub-
units with distinct interacting proteins. If so, we expect that
these two sub-motifs may tend to occur in different peak re-
gions. To ask if this is true, we shuffled the m6A sub-motif
sequence within the peaks and calculated the numbers of
peaks with both AAACH and GGACH sub-motifs (Ma-
terials and methods). We found that the observed number
of peaks with both AAACH and GGACH sub-motifs were

significantly less than the expected numbers in all tissues we
examined (Figure 3F), consistent with our expectation.

The evolutionary landscape of human m6A methylation

Having revealed the dynamics of m6A methylation across
human tissues, we next investigated its evolution. First, we
examined the cross-species conservation of m6A sites to as-
sess the strength of selective pressure on individual m6A
sites.

For CDS sites, we examined the selection pressure of m6A
sites in different codon positions, as they may be subject to
different evolutionary constraints. To estimate the strength
of selection pressure, we chose to compare the fraction of
conserved m6A sites between human and mouse with that of
the control A sites, as previously described (31). It is known
that different genes are subject to different selection pres-
sure. To control such effect, for control A sites in non-m6A
RRACH motifs, we selected sites in genes with similar se-
lection pressure, i.e. similar dN/dS ratio, as the m6A sites.
In addition, m6A sites tended to be located in the 3′end of
the CDS region. An examination of evolutionary constraint
across the CDS region revealed that As in different CDS
regions are subject to different levels of evolutionary con-
straint (Supplementary Figure S11). To control such effect,
for each gene, we grouped the CDS regions into 20 bins and
required that the control A sites were located in the same
bin as the m6A sites. We found that m6A sites in different
codon positions had different conservation patterns, con-
sistent with a previous study (31). The m6A sites in the first
codon position were less conserved than control A sites,
while m6A sites in the third codon were much conserved
than control A sites (Figure 4A). We estimated that 6% of
the m6A sites in the third codon are under evolutionary
constraints (Materials and methods), therefore likely func-
tional. m6A methylation is known as a barrier to tRNA
accommodation and translation elongation, and m6A in
the first codon position has the strongest effect on delaying
tRNA accommodation (53). Therefore, the effect of m6A
modification in the first codon position may be generally
detrimental, and more likely to be less conserved.

For 3′UTR sites, we used INSIGHT (Inference of Natu-
ral Selection from Interspersed Genomically coHerent ele-
menTs) (54), a method for measuring the influence of natu-
ral selection for short, widely scattered noncoding elements,
to estimate the proportion of m6A sites that are under neg-
ative selection (in other words, are functional). INSIGHT
obtains information about natural selection by contrasting
patterns of polymorphism and divergence in m6A motifs
(RRACH) with those in flanking neutral regions. We ob-
tained estimate of � that range from 0.33 to 0.56 for differ-
ent tissues (Figure 4B). As a comparison, we examined two
additional classes of regulatory elements in 3′UTR region:
A-to-I RNA editing sites and miRNA binding sites. For
RNA editing sites, we examined the editing site triplet mo-
tif (11,55) and estimated � = 0.03 (Figure 4B). For miRNA
binding sites identified using Targetscan algorithm (41),
we obtained an average estimate of � = 0.21 and 0.24 for
conserved and broadly conserved miRNA families, respec-
tively (Figure 4B). Thus, unexpectedly, we detected a much
stronger signature of natural selection in m6A motifs com-
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Figure 3. Developmental dynamics of m6A profile. (A) The distribution of m6A sites across the length of mRNA transcripts for 7 fetal tissues. (B) Genic
locations of m6A sites of fetal tissues. Sites in seven fetal tissues were merged for analysis. (C) The ratio between the CDS m6A site number and 3′UTR
m6A site number in fetal and adult tissues. (D) Heatmap showing the normalized proportion (the values were centered and scaled in the row direction) of
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pared with other post-transcriptional regulatory elements,
with about half of the nucleotides estimated to be under
negative selection. Next, we ask if the selection pressure
on 3′UTR m6A sites is associated with their locations. We
grouped m6A sites into 10 bins based on their locations and
used phylostratigraphy data (Figure 4C) to examine the age
of human m6A sites in each bin. We found that m6A sites

had an older age than the control sites in all bins, suggest-
ing that 3′UTR m6A sites are generally subject to negative
selection (Figure 4D).

Second, we examined the relationship between m6A level
and m6A site conservation. We obtained the rejected substi-
tution scores, a score to measure the nucleotide-level con-
straint (56), of all m6A sites, and compared the methylation
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Figure 5. Positive selection inferred from SNP genotype data. (A) Comparison of the m6A allele ratio between IP and input samples of heterozygote m6A
SNPs. Only heterozygote SNPs with one genotype matching the RRACH motif and the other genotype not matching the RRACH motif were considered.
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levels between m6A sites under stronger constraints and
weaker constraints. Interestingly, we found that m6A sites
under stronger constraints had higher methylation levels
(Figure 4E). This observation suggests that the conserved
m6A sites are optimized for m6A writer binding and methy-
lation, thus likely functional.

Positive selection of m6A sites inferred from population ge-
nomic analysis

To ask if the m6A sites that were recently gained during hu-
man evolution were under positive selection, we analyzed
SNP genotype data from the 1,000 Genome Project (Mate-
rials and methods). To prevent the ascertainment bias be-
tween functional classes, 5′UTR, 3′UTR of protein-coding
genes and ncRNAs were analyzed. CDS region was ex-
cluded from this analysis, because it is difficult to distin-
guish if the selection signals are from m6A methylation or
other factors unrelated to m6A methylation, such as amino
acid changes. First, we asked if SNPs located within the
RRACH motifs do affect methylation. To do so, we first
identified all heterogeneous m6A SNPs in 27 adult tissue
samples using the input RNA-seq data. Next, we calculated
the m6A allele ratio (m6A allele read number/ total read

number) using reads covered the selected SNPs for both
IP and input samples. Last, we compared the m6A allele
ratios between IP and input samples and each position of
the RRACH motif was examined separately. We found that
m6A allele had higher ratios in IP samples for SNPs located
in the RRAC positions (Figure 5A). Thus SNPs located at
the RRAC positions but not the H position affect methy-
lation status. The read coverages of two representative het-
erogeneous m6A SNPs in IP and input samples were shown
in Figure 5B. Next, we examined the DAF spectrums for a
derived allele that are located in the RRAC positions and
create an m6A motif. Different DAF distributions were di-
rectly compared using a Mann-Whitney test, as previously
described (27). Interestingly, the DAF distribution for the
SNPs of which the derived allele creates m6A motifs was
significantly skewed toward high-frequency alleles relative
to matched control or neutral sites, suggesting that some of
these SNPs are subject to positive selection (Figure 5C).

The excess of high-frequency derived alleles that create
m6A motifs promotes us to further characterize the m6A
site SNPs that are likely under positive selection. To have
a comprehensive scan of positively selected SNPs related to
m6A modification, we examined not only the SNPs of which
the derived allele is m6A allele but also those of which the
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ancestral allele is m6A allele. Because it is plausible that se-
lection may sometimes switch to favor an ancestral allele
that has been segregating in the population. We first identi-
fied m6A SNPs that have been highly differentiated among
populations (measured by the Fst parameter) and then de-
termined where these differentiation events might be driven
by positive selection during human evolution. In total, we
identified 102 highly differentiated SNPs (Fst > 0.15) (Sup-
plementary Table S5). Of these SNPs, 37 showed evidence
of selection in iHS (the integrated Haplotype Scores) (57)
and/or XP-EHH (Cross Population Extended Haplotype
Homozogysity) (58) tests (Supplementary Tables S6–S7).

Among these differentiated SNPs, 81 SNPs are located in
protein-coding genes. The remaining 21 SNPs are located in
ncRNA genes, suggesting that m6A sites in ncRNA genes
may be another class of targets of recent positive selection.
The protein-coding gene list contains a number of genes in-
volved in biological pathways thought to be recently tar-
geted by positive selection, such as metabolism of carbo-
hydrates, lipids and brain development (57). Particularly, it
includes 25 genes that have previously been characterized
as positively selected genes in the human lineage or across
human populations (Supplementary Table S5).

As m6A is known to affect mRNA stability, to fur-
ther understand the potential regulatory effects of these
SNPs, we examined the overlaps between these variants and
eQTL SNPs from the Genotype-Tissue Expression (GTEx)
project. Of the 102 SNPs, 60 are associated with gene ex-
pression abundance (Supplementary Table S8), suggesting
that these m6A SNPs may contribute to the expression
changes. Last, we characterized the potential phenotypic
effect of these variants. Using Genome-wide association
study (GWAS) data, we found that a substantial proportion
of the 102 m6A SNPs is disease- or trait- associated SNPs
(Supplementary Table S8), such as those associated with
HDL cholesterol levels, body mass index, and atheroscle-
rosis.

DISCUSSION

The importance of m6A as a post-transcriptional modifica-
tion has been appreciated, but the evolution, function and
regulation of individual m6A sites remain largely unknown,
in part because of insufficient data about its prevalence and
dynamics. Here, we compiled the m6A methylomes of ma-
jor adult human tissues, providing a valuable resource for
future studies of the regulation and functions of this modi-
fication. We reveal that the distribution and motifs of m6A
vary across tissue types or during development, suggesting
that m6A is widely regulated by trans factors and involved in
human development. Notably, it is known that the variation
of postmortem conditions in different samples may affect
RNA integrity and gene expression quantification. Since it
is unknown that whether m6A in post-mortem tissues rep-
resents the in-situ state and whether m6A is more unstable
than RNA itself, caution needs to be taken when using the
m6A maps generated with postmortem tissues.

We used comparative genomics and population genetics
approaches to show that a significant negative selection has
acted on m6A sites, particularly the ones in the third codon
position and 3′UTR. Current opinion on m6A modification

believes that despite the functional importance of this mod-
ification, the single m6A site seems dispensable, as long as
a transcript is methylated and can be recognized by a mem-
ber of the major m6A reader YTH family (20,59,60). Our
data, however, do not support this view and suggest that
many of the single sites should be functionally important,
most likely because their functions are position-dependent.
Furthermore, with 1,000 Genome Project data, we identi-
fied a number of m6A SNPs whose patterns of allelic varia-
tion are not consistent with neutrality. There is a functional
difference between alleles and finally the functional differ-
ence would result in a phenotypic effect that would be in-
fluenced by selection. These SNPs are enriched in the genes
related to the immune system, dietary fatty acid processing
and neuronal functions, consistent with the recently identi-
fied functions of m6A modification (16,61–64).

In summary, our work provides a resource of m6A pro-
file in humans for future studies of m6A regulation and
functions. Furthermore, our data provide independent ev-
idence for the functional importance of m6A modification
from the evolutionary perspective, and also suggests an un-
expected role of m6A modification in recent human evolu-
tionary adaptation and disease susceptibility.
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