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Abstract
Background: This study evaluated the predictive value of gene signatures for bio-
chemical recurrence (BCR) in primary prostate cancer (PCa) patients.
Methods: Clinical features and gene expression profiles of PCa patients were at-
tained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas 
(TCGA) datasets, which were further classified into a training set (n = 419), a valida-
tion set (n = 403). The least absolute shrinkage and selection operator Cox (LASSO-
Cox) method was used to select discriminative gene signatures in training set for 
biochemical recurrence-free survival (BCRFS). Selected gene signatures established 
a risk score system. Univariate and multivariate analyses of prognostic factors about 
BCRFS were performed using the Cox proportional hazards regression models. A 
nomogram based on multivariate analysis was plotted to facilitate clinical applica-
tion. Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) 
analyses were then executed for differentially expressed genes (DEGs).
Results: Notably, the risk score could significantly identify BCRFS by time-
dependent receiver operating characteristic (t-ROC) curves in the training set (3-year 
area under the curve (AUC) = 0.820, 5-year AUC = 0.809) and the validation set 
(3-year AUC = 0.723, 5-year AUC = 0.733).

www.wileyonlinelibrary.com/journal/cam4
https://orcid.org/0000-0003-3230-2882
mailto:﻿
mailto:﻿
https://orcid.org/0000-0003-0498-0432
http://creativecommons.org/licenses/by/4.0/
mailto:jie.tian@ia.ac.cn


      |  6493SU et al.

1  |   INTRODUCTION

The second most common male malignancy is prostate can-
cer (PCa) in the world.1 In 2020, estimated new cases and 
deaths of PCa in the United States will account for 21% and 
10%, respectively.2 Primary PCa is usually managed with 
radical prostatectomy (RP) or radical radiotherapy (RT).3 
Unfortunately, 30%–50% of patients with RT and 20%–40% 
of patients with RP will develop BCR within ten years.4,5 
BCR is defined as two consecutive rising prostate-specific 
antigen (PSA) values >0.2  ng/ml following RP or >2   
ng/ml higher than the PSA nadir value following RT.6 It 
is well known that BCR contributes to distant metastasis. 
Generally, 24%–34% of men with BCR will progress to me-
tastasis,7,8 who should be carefully monitored and endured 
salvage therapy. Most earlier studies have focused exclusively 
on the outcomes of PCa following RP or RT. Accordingly, 
more accurate rapid methods are eagerly needed to identify 
BCR of primary PCa patients after radical therapy (includ-
ing RP and RT).

In recent years, notable improvement has been made in 
precision oncology that applies molecular and medical im-
aging information to improve the diagnosis and therapy of 
urological malignancies.9,10 In particular, molecular infor-
mation has outstanding interpretability and discriminative 
power. For example, gene signatures exhibit an excellent 
discrimination power for BCR.11-13 Accumulating evidence 
has suggested gene deregulation related to the prognosis of 
PCa, such as CRTC2, MYC, and PTEN.14-18 However, gene 
signatures in the early identification of patients at high-
risk BCR of primary PCa after radical therapy have rarely 
been reported. Therefore, it is necessary to decipher gene 

signatures together with underlying molecular mechanisms 
predicting BCRFS based on genomic information from dif-
ferent platforms.

The current study applied four microarray datasets, which 
were obtained from GEO and TCGA. Three GEOs were 
merged as a training set and one dataset from TCGA as a val-
idation set. Afterward, LASSO-Cox was applied to identify 
prognostic gene signatures to predict BCRFS and to estab-
lish a risk score. Accordingly, the prognostic value of the risk 
score in both sets was verified. Then, a nomogram was built 
up to estimate BCRFS time. Finally, GO and KEGG on gene 
signatures were performed to explore molecular mechanisms 
and crucial genes.

2  |   MATERIALS AND METHODS

2.1  |  Data preprocessing

In this study, eligible datasets were selected based on the 
following inclusion criteria: (a) the dataset must include pa-
tients with primary prostate cancer (PCa) following radical 
therapy and (b) patients with clear clinical and pathological 
information (i.e., gene expression values, Gleason score, 
BCR event, time to BCR, total follow-up time). Exclusion 
criteria were as follows: (a) datasets with a small sample 
size (n  <  50) and (b) datasets without complete data for 
analysis. Gene expression and complete clinical data from 
822 (419  samples from GEO and 403 from TCGA) PCa 
samples that met the inclusion and exclusion criteria were 
downloaded from the three GEO (GSE70768, GSE70769, 
GSE11​6918) and TCGA datasets, serving as the training 

Conclusions: Clinically, the nomogram model, which incorporates Gleason score 
and the risk score, could effectively predict BCRFS and potentially be utilized as a 
useful tool for the screening of BCRFS in PCa.

K E Y W O R D S

biochemical recurrence-free survival, gene signature, LASSO-Cox regression, primary prostate 
cancer, radical therapy

Dataset Country
Number of 
samples GPL

Number 
of genes

GSE70768 United Kingdom 110T GPL10558 48,107

GSE70769 United Kingdom 86T GPL10558 48,107

GSE11​6918 United Kingdom 223T GPL 25318 121,563

TCGA N/A 403T N/A 5,6754

Abbreviations: GPL, Gene Expression Omnibus Platform; GSE, Gene Expression Omnibus Series; N/A, not 
applicable; T, tumor samples; TCGA, The Cancer Genome Atlas.

T A B L E  1   Characteristics of the 
included datasets

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70768
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116918
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70768
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116918
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and validation sets, respectively. The main characteris-
tics of the datasets are shown in Table 1. To ensure data 
integrity for each indicator, incomplete raw informa-
tion (i.e., age in the training set) was excluded for further 
COX analysis. In addition to Gleason score and follow-up 
BCR information, the training set included preoperative 
PSA, clinical T (cT) stage, and radical therapy (RP = 196, 
RT = 223); meanwhile, the validation set included radical 
therapy (RP  =  403). The characteristics of patients with 
prostate cancer in the training set and validation set are 
shown in Table  2. We have made subgroup analyses for 
every variable in the training set, and the results are shown 
in Figure S1. Three GEO datasets were merged and applied 
function “Normalize Between Array” from the R package 
“limma” for standardization.

2.2  |  Identification of gene signatures

The batch influence was adjusted for GEO and TCGA by 
R package “sva.” Gene expression profiling was merged 
with clinical information for analyses. To select gene sig-
natures with predictive value, LASSO-Cox regression was 
applied using the R package “glmnet.”19,20 The risk score 
was founded by weighting individual normalized expression 
value of gene signature and LASSO coefficient.

2.3  |  Validation of gene signatures

According to the median value of risk score in the training 
set, both training and external validation sets were classi-
fied into high-risk and low-risk groups. Kaplan–Meier (K–
M) survival curves were drawn by R packages “survival” 
and “survminer.” Then, logarithmic rank (log-rank) tests 
were performed to compare differences in BCRFS time be-
tween the high- and low-risk groups. To visualize BCRFS 
differentially, a heatmap was constructed using the R pack-
age “pheatmap.” Multivariate and univariate Cox regression 
models were established using the R package “survival.” R 
package “timeROC” was applied to build a t-ROC curve, 
which was used to assess the predictive accuracy of the risk 
score system for BCRFS. Afterward, based on the results of 
multivariate models, a nomogram was depicted using the R 
package “rms.” To assess the performance of the nomogram, 
calibration plots and C-index were used in both training and 
validation sets.

2.4  |  Bioinformatical analysis

To estimate the potential functions of DEGs in low-risk 
versus (vs.) high-risk groups, the KEGG pathway and GO 
annotation were performed using the R package “cluster-
Profiler.”21 Briefly, GO and KEGG annotation sets were 
derived from the R package “org. Hs.eg.db.” GO reveals 
the catalogs of biological process (BP), cellular component 
(CC), and molecular function (MF). All visualizations were 
produced using R packages “ggplot2” and “GOplot.” After 
multiple-test correction, KEGG pathways and GO terms 
with corrected P (P.adjust) value <0.05 were considered to 
be prominently enriched in DEGs.

2.5  |  Statistical analysis

Data analysis was implemented using the R program (ver-
sion 3.6.3, https://www.r-proje​ct.org) with the following 
libraries: base-package, survival-package, glmnet-package, 
survminer-package, timeROC-package, limma-package, 
rms-package, and clusterProfiler-package. Support Vector 
Machine (SVM) and Random Forest(RF) models were car-
ried out in Python, using the Scikit-learn (version 0.24.0). 
BCRFS curves were depicted by Kaplan–Meier plots, and 
the difference in BCRFS was assessed by the log-rank test. 
Multivariate and univariate Cox regression models were used 
to ascertain independent prognostic factors. Time-dependent 
ROC curves were constructed, and AUCs were used to pre-
dict the performance of BCRFS in 3, and 5  years, respec-
tively. Nomogram was validated with C-index. DEGs were 
defined as differential expression for |logFC| > 0.5 and an 

T A B L E  2   The characteristics of patients with prostate cancer in 
the training set and validation set

Characteristics
Training set 
(n = 419)

Validation set 
(n = 403)

cT stage n (%)

T1 151 (36.0) 150 (37.2)

T2 147 (35.1) 140 (34.7)

T3 117 (27.9) 45 (11.2)

T4 4 (1) 1 (0.3)

Unknow 0 (0) 67 (16.6)

Gleason n (%)

5 2 (0.5) 0 (0)

6 72 (17.2) 37 (9.2)

7 227 (54.2) 198 (49.1)

8 60 (14.3) 56 (13.9)

9 57 (13.6) 109 (27.0)

10 1 (0.2) 3 (0.8)

Biochemical recurrence n (%)

Yes 93 (22.2) 52 (12.9)

No 326 (77.8) 351 (87.1)

Follow-up time (months, 
mean ± SD)

45.61±19.49 28.53±17.70

Abbreviations: cT, clinical tumor; SD, standard deviation.

https://www.r-project.org
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adjusted P value <0.05. All P values <0.05 were considered 
statistically significant.

3  |   RESULTS

3.1  |  Prognostic gene signatures 
identification in the training set

Gene expression variables in the training set were submitted 
to high-throughput LASSO-Cox proportional hazards regres-
sion analysis. All gene variables were reduced to the most 
useful potential predictors for BCRFS. The optimal λ value 
was chosen by “Leave-one-out” cross-validation, and the λ 
value of 0.11517381 with log(λ) = −2.1613129 was selected 
(Figure 1A). Six BCRFS-associated gene signatures (NOX4, 
F12, TPX2, PHYHD1, AURKA, and YIPF1) were identified 
by LASSO-COX models. (Figure 1B).

3.2  |  Construction of the risk score

The risk score was established by the summating of every 
gene signature expression value multiplied by its correspond-
ing coefficient, as follows: risk score = (0.046043 × NOX4) 
+ (0.043807 × F12) + (0.066203 × TPX2) + (−0.027543 × 
PHYHD1) + (0.068834 × AURKA) + (−0.01182 × YIPF1). 
The expression value of every gene was log2-transformed 
and standardized. The distributions of risk scores for the 

training set and validation set were shown, respectively 
(Figure  2A,B). The distributions of BCRFS and BCR sta-
tus for both sets are shown in Figure 2C,D. The risk score 
was ranked and the high-risk score indicates poor BCRFS. 
The median risk score of the training set was used to clas-
sify all patients into high-risk (>0.183427) versus low-risk 
(<0.183427) groups. The heatmaps of six prognostic genes 
expression values were presented in Figure 2E,F.

3.3  |  Validation of the risk score

Based on multivariate and univariate Cox regression(CR) 
models, the risk score, which was adjusted by the clinical 
variables in both sets, was an independent prognostic factor 
for BCRFS (p < 0.05). Gleason score was prominently as-
sociated with BCR in the training set (n = 419) (p < 0.05) 
(Table 3). Conversely, no apparent association was observed 
between BCR and preoperative PSA or cT stage (Table S1; 
Figure S1). Similarly, in the validation set (n = 403), a high 
Gleason score was notably associated with BCR(p < 0.05). 
Based on Kaplan–Meier survival curves, there were mean-
ingful differences between high-risk and low-risk groups for 
both sets (p < 0.001) (Figure 3A,B). According to t-ROC, 
the risk score was a strong prognostic factor for BCRFS in 
the training set (3-year AUC = 0.82, 5-year AUC = 0.82) 
(Figure 3C) and the validation set (3-year AUC = 0.71, 5-
year AUC = 0.67) (Figure 3D). Python version with scikit-
learn 0.24.0 was used to construct support vector machine 

F I G U R E  1   Selection strategy for gene signatures. (A) “Leave-one-out” cross-validation for parameter selection in LASSO-COX regression 
models, and the optimal λ value of 0.11517381 with log(λ) = −2.1613129 was selected; (B) six BCRFS-associated gene signatures were selected 
by LASSO-COX models. LASSO, least absolute shrinkage and selection operator method; BCRFS, biochemical recurrence-free survival
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(SVM) and a random forest (RF) classifier model to calcu-
late risk score (RF, 3-year AUC score = 0.73, 5-year AUC 
score = 0.76; SVM, 3-year AUC score = 0.81, 5-year AUC 
score = 0.81). The best-performing model was the CR model, 
which was selected to calculate the risk score (Table S2).

3.4  |  Establishment of the nomogram

Following the results of multivariate and univariate Cox 
analyses, Gleason score and risk score were used to draw a 

nomogram in the training set. The nomogram predicted the 
probability of BCRFS in patients with PCa for 3 and 5 years, 
while the risk score was a dominant factor (Figure 4). The 
likelihood of BCRFS decreased with an increase in risk score, 
revealing that our gene signatures might hold promising pre-
dictive value for BCRFS. The calibration plots exhibited 
outstanding conformity between the actual observation and 
the nomogram prediction for 3- and 5-years BCRFS in the 
training set (Figure 5A,B) and validation set (Figure 5C,D).

The C-index of the constructed nomogram for estimat-
ing BCRFS was 0.793 in the training set. Compared to the 

F I G U R E  2   Risk score distribution, BCRFS status, and expression pattern of BCRFS-associated gene signatures in both cohorts. (A) The 
scattergram of the risk score in the training set; (B) the scattergram of the risk score in the validation set; (C) BCRFS time/BCR status in the 
training set; (D) BCRFS time/BCR status in the validation set; (E) the expression pattern of six BCRFS-associated gene signatures in the training 
set; (F) the expression pattern of six BCRFS-associated gene signatures in the validation set. BCRFS, biochemical recurrence-free survival

Variables

Univariate Cox analysis Multivariate Cox analysis

HR (95% CI) P value HR (95% CI) P value

Training set (n = 419)

Gleason score

Cont. 1.355 (1.108–1.656) 0.003** 1.426 (1.158–1.757) <0.001***

Risk score

Cont. 11.417 (7.160–18.206) <0.001*** 11.584 (7.313–18.349) <0.001***

Validation set (n = 403)

Gleason score

Cont. 2.036 (1.540–2.693) <0.001*** 1.639 (1.178–2.281) 0.003**

Risk score

Cont. 3.884 (2.383–6.331) <0.001*** 2.215 (1.181–4.154) 0.013*

Abbreviations: CI, confidence interval; Cont, continuous; HR, hazard ratio.
*P value < 0.05; **P value < 0.01; ***P value < 0.001.

T A B L E  3   Univariate and multivariate 
Cox proportional hazards regression 
analyses for predicting biochemical 
recurrence in the training set (n = 419) and 
validation set (n = 403)
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Gleason score (C-index of 0.588), risk score (C-index of 
0.790), the nomogram showed better predictive accuracy. For 
the validation set, the constructed nomogram had a C-index of 
0.722 that was also finer to Gleason score (C-index of 0.676) 
and risk score (C-index of 0.710) for BCRFS (Table 4).

3.5  |  Bioinformatics analysis

Above all, three DEGs (PHYHD1, AURKA, and TPX2) 
between low-risk (n = 210) and high-risk cases (n = 209) 
were identified using the R package “limma” in the train-
ing set, under cut-off criteria of an adjusted P value < 0.05 
and |logFC|  >  0.5 (Table  5). According to bioinformatics 
analysis, 145 enriched considerably GO terms belong to 

the molecular function (MF), biological process (BP), and 
cellular component (CC) categories (P adjusted  <  0.05) 
(Table S3). The most enriched BP terms were associated with 
mitotic spindle organization, spindle assembly, and microtu-
bule cytoskeleton organization involved in mitosis. The three 
most dominant terms in CC were mitotic spindle, spindle 
pole, and spindle. In the MF category, histone kinase activ-
ity was the most abundant term, followed by protein serine/
threonine/tyrosine kinase activity and dioxygenase activity 
(Figure 6a). Moreover, two significantly enriched GO terms 
belong to KEGG categories (P adjust  <  0.05). As shown 
in Figure 6B, the notably enriched KEGG pathways of the 
DEGs were “progesterone-mediated oocyte maturation” and 
“Oocyte meiosis.” Ultimate, a chord diagram, was created 
to measure the relationship between DEGs and GO terms. 

F I G U R E  3   Gene signatures can predict BCRFS in both cohorts. (A) K–M survival curves for the training set indicated that better BCRFS 
was associated with significantly lower risk score; (B) K–M survival curves for the validation set indicated that better BCRFS was associated with 
significantly lower risk score; (C) Time-dependent ROC revealed that the risk score was an excellent predictor for BCRFS in the training set; (D) 
Time-dependent ROC revealed that the risk score was an excellent predictor for BCRFS in the validation set. BCRFS, biochemical recurrence-free 
survival; K–M, Kaplan–Meier; ROC, receiver operating characteristic
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Figure 6C summarizes the top three pathways enriched in the 
BP, CC, and MF.

4  |   DISCUSSION

The current study focuses on appraising the potential prog-
nostic values of gene signatures in BCR using public datasets. 

Three GEOs associated with BCR are integrated as a train-
ing set to obtain optimal gene signatures. Besides, the TCGA 
dataset serves as an external validation set. The risk score 
system consisting of 6-gene signatures is significantly asso-
ciated with BCRFS by a series of bioinformatical and statisti-
cal analyses, which is consistently observed in the validation 
set. These results indicate that gene signatures have promis-
ing predictive value for BCRFS of primary PCa patients after 

F I G U R E  4   Nomogram prediction 
of BCRFS probability. The risk score and 
Gleason score were used to establish the 
nomogram for predicting 3 and 5-year 
BCRFS in the training set. The dominant 
factor was the risk score. BCRFS, 
biochemical recurrence-free survival

F I G U R E  5   Calibration plots of the nomogram. (A) Three-year calibration plot of nomogram in the training set; (B) 5-year calibration 
plot of nomogram in the training set; (C) 3-year calibration plot of nomogram in the validation set; (D) 5-year calibration plot of nomogram in 
the validation set; the nomogram's performance was excellent for predicting the 3-year BCRFS and 5-year BCRFS in both cohorts. BCRFS, 
biochemical recurrence-free survival
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radical therapy. DEGs are explored regarding MF, BP, CC, 
and KEGG pathways to understand better mechanisms un-
derlying BCR pathogenesis.

Based on uni- and multivariate Cox regression models, 
risk score and Gleason score can predict prognosis in both 
sets. In contrast, no significant association is observed be-
tween BCR and preoperative PSA in the training set. These 
findings are consistent with previous reports that a high 
Gleason score was appreciably related to early BCR,whereas 
factors (i.e., age at diagnosis, preoperative PSA) were not as-
sociated with BCRFS.22,23 However, our consequences were 
inconsistent with other reports.24,25 This inconsistency may 
be related to race and radical therapy.

Although radical therapy was a potential prognostic fac-
tor for the BCRFS in univariate and subgroup analyses, it 
was no longer a prognostic factor with multivariate analysis 
(Figure S1; Table S1). Similar results have been reported in 
low-intermediate risk patients with PCa.26,27 Nevertheless, 
this was inconsistent with some previous studies that the ther-
apeutic effect of RP was better than RT, and the probability 
of BCR after RP was lower than RT.4,5 The reason may be 
that the data came from different datasets and the sample size 
was small. The experimental results need to be further veri-
fied by larger sample size. BCR mainly arises from PCa pro-
cess itself or as a result of the side effects during treatment. 
For instance, positive surgical margins (PSM) and lymph 
node metastases were associated with BCRFS.28,29 However, 
some clinical and pathological parameters (i.e., surgical mar-
gin and extracapsular extension) were missing in the training 

set, so they could not be added for further analysis. In future 
experiments, more clinical and pathological parameters need 
to be analyzed. This article focus on the biological character-
istics of the disease itself rather than on the therapeutic effect. 
Furthermore, the predictive contribution of the therapeutic 
effect was much smaller than the risk score in this article. 
Thus, the therapeutic effect was not that substantial and did 
not affect the correctness and reliability of our conclusions.

Several studies highlighted different gene signatures as-
sociated with BCR following RP. In a case–control study, 
a 10-gene molecular signature(HDDA10) showed superior 
performance for predicting BCR in PCa patients with RP 
(AUC  =  0.65).12 Meanwhile, an original gene signature 
model predicted 3-years BCRFS in PCa patients after RP 
(AUC = 0.836).11 In addition, CDO1 promoter methylation 
was proposed as a feasible predictive biomarker for BCRFS 
in PCa patients following RP, even though it flunked to reach 
statistical significance in multivariate analysis.13 Our gene 
signatures may offer a broader range of possibilities for clin-
ical application.

A few biomarkers of our gene signatures have previously 
been studied in PCa. For example, TPX2, a risk biomarker 
in our study, positively associated with the BCR of PCa and 
played an essential role in the proliferation and aggression 
of PCa.30 TPX2 depletion led to the growth inhibition of 
PCa cells and reduced tumorigenesis.31 AURKA, another 
essential risk biomarker in our study, was correlated with 
poor prognosis in lethal treatment-related neuroendocrine 
prostate cancer.32 Also, the inhibition of TPX2 and AURKA 
stimulated mitotic catastrophe (MC) or apoptosis in PCa 
cells, and the possible mechanism might be the Glioma 
pathogenesis-related protein 1 (GLIPR1) through heat shock 
cognate protein 70 (Hsc70)-mediated suppression of TPX2 
and AURKA.33 Our conclusions show excellent agreement 
with these results.

Notably, PHYHD1, which has not been studied in PCa, 
may be involved in the process of BCR. PHYHD1 had been 
investigated in other tumors. For instance, one research had 
shown that the DNA methylation level of PHYHD1 was re-
lated to the invasion of non-functioning pituitary adenoma.34 
However, the underlying mechanism of its action in PCa re-
mains to be established.

There have been several studies that investigated the 
possible mechanisms of prostate cancer progression. For in-
stance, the centrosome was associated with cell mitosis, and 
its defects contributed to the change in cellular and gene that 
accompany the progression, dissemination, and lethality of 
prostate cancer.35 Another study demonstrated that spindle 
orientation controls cell fate of PCa.36 These results resonate 
well with GO and KEGG results where “mitotic spindle or-
ganization” and “Oocyte meiosis” have been the most sig-
nificantly enriched in prominent GO terms, suggesting their 
roles as significant progressive pathway signatures in BCR.

T A B L E  4   The C-index of the nomogram and other factors in the 
training and validation sets

Variables

Training set
Validation 
set

C-index C-index

Nomogram 0.793 0.722

Gleason score 0.588 0.676

Risk score 0.790 0.710

Abbreviation: C-index, concordance index.

T A B L E  5   DEGs between low-risk cases and high-risk cases in 
the training set, under cut-off criteria of |logFC| > 0.5 and adjusted P 
value < 0.05. For each gene, the LogFC, AveExpr, P value, and FDR 
from limma are given

Gene LogFC AveExpr P value FDR

TPX2 4.79279 5.08858 6.63E−55 3.98E−54

PHYHD1 −5.05780 8.83455 3.52E−43 1.06E−42

AURKA 0.79642 3.53217 1.81E−10 3.61E−10

Abbreviations: AveExpr, average expression; DEGs, differentially expressed 
genes; FDR, false discovery rate adjusted P value; LogFC, log fold change.
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F I G U R E  6   Bioinformatical analysis of three DEGs. (A) Three major categories were included in the bubble plots of GO analysis; (B) two 
enriched terms of KEGG pathway shown in bubble plot; (C) a chord plot was used to visualize the top three GO terms of BP, CC, and MF, 
respectively. DEGs, differentially expressed genes; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; 
KEGG, Kyoto Encyclopedia of Gene and Genomes
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This study has the following restrictions. First, this 
study is restricted by its retrospective proposal and valida-
tion. A prospective evaluation would improve the reliability 
of our findings. Second, experimental evidence to support 
this conclusion is not yet available and is worthy of further 
assessment.

In conclusion, the gene signatures in our study have a 
good fit and discrimination, so does risk score classification, 
indicating excellent predictive values for BCRFS. Besides, 
based on risk score and Gleason score, the nomogram can 
predict 3 and 5-year BCRFS rates precisely, thus providing 
evidence of treatment for PCa patients. It is worthy of wider 
clinical application.
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