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Continuous sensorimotor rhythm 
based brain computer interface 
learning in a large population
James R. Stieger1,2, Stephen A. Engel2 & Bin He  1 ✉

Brain computer interfaces (BCIs) are valuable tools that expand the nature of communication through 
bypassing traditional neuromuscular pathways. The non-invasive, intuitive, and continuous nature of 
sensorimotor rhythm (SMR) based BCIs enables individuals to control computers, robotic arms, wheel-
chairs, and even drones by decoding motor imagination from electroencephalography (EEG). Large 
and uniform datasets are needed to design, evaluate, and improve the BCI algorithms. In this work, we 
release a large and longitudinal dataset collected during a study that examined how individuals learn 
to control SMR-BCIs. The dataset contains over 600 hours of EEG recordings collected during online 
and continuous BCI control from 62 healthy adults, (mostly) right hand dominant participants, across 
(up to) 11 training sessions per participant. The data record consists of 598 recording sessions, and 
over 250,000 trials of 4 different motor-imagery-based BCI tasks. The current dataset presents one of 
the largest and most complex SMR-BCI datasets publicly available to date and should be useful for the 
development of improved algorithms for BCI control.

Background & Summary
Millions of individuals live with paralysis1. The emerging field of neural prosthetics seeks to provide relief to 
these individuals by forging new pathways of communication and control2–6. Invasive techniques directly record 
neural activity from the cortex and translate neural spiking into actionable commands such as moving a robotic 
arm or even individuals’ own muscles7–13. However, one major limitation of this approach is that roughly half of 
all implantations fail within the first year14.

A promising alternative to invasive techniques uses the electroencephalogram, or EEG, to provide brain 
recordings. One popular approach, the sensorimotor rhythm (SMR) based brain computer interface (BCI) detects 
characteristic changes in the SMR in response to motor imagery3–6,15,16. The mu rhythm, one of the most prom-
inent SMRs, is an oscillation in the alpha band and reduces in strength when we move (or think about mov-
ing), which is called event-related desynchronization (ERD)17,18. The reliable detection of ERD, and its converse 
event-related synchronization (ERS), enables the intuitive and continuous control of a BCI19,20, which has been 
used to control computer cursors, wheelchairs, drones, and robotic arms21–28.

However, mastery of SMR-BCIs requires extensive training, and even after training, 15–20% of the population 
remain unable to control these devices27,29. While the reasons for this remain obscure, the strength of the resting 
SMR has been found to predict BCI proficiency, and evidence suggests that the resting SMR can be enhanced 
through behavioral interventions such as mindfulness training30–32. Alternatively, better decoding strategies can 
also improve BCI performance33,34.

One encouraging trend in BCI is to use artificial neural networks to decode brain states13,35–37. Critically, 
progress in creating robust and generalizable BCI decoding systems is currently hindered by the limited data 
available to train these decoding models. Most deep learning BCI studies perform training and testing on the BCI 
Competition IV datasets38–42. While these datasets enable benchmarking performance, the BCI Competition IV 
datasets 2a and 2b are small (9 subjects, 2–5 sessions) and simple (2a—4 class, no online feedback, 2b—2 class 
with online feedback, but only 3 motor electrodes)43. Most other datasets available online (e.g., those that can 
be found at http://www.brainsignals.de, or http://bnci-horizon-2020.eu) share similar limitations. Fortunately, 
two recently published datasets have attempted to address these concerns44,45. Cho et al. provide a large EEG BCI 
dataset with full scalp coverage (64 electrodes) and 52 participants, but only 36 minutes and 240 samples of 2-class 
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motor imagery (i.e., left/right hand) per subject. Kaya et al. present a larger dataset (~60 hours of EEG recordings 
from 13 participants over 6 sessions, ~4.8 hours and 4600 trials per participant) with a more complicated design 
consisting of simple 2-classs motor imagery (left/right hand), 6-class motor imagery (left/right hand, left/right 
leg, tongue, rest), and motor imagery of individual fingers. However, the motor imaginations were only per-
formed once, which is not suitable for continuous control, and scalp coverage is limited (19 electrodes). Further, 
neither study provided continuous online feedback.

We recently collected, to our knowledge, the largest SMR-BCI dataset to date30. In total, this dataset comprises 
62 participants, 598 individual BCI sessions, and over 600 hours of high-density EEG recordings (64 channels) 
from 269,099 trials. Each individual participant completed 7–11 online BCI training sessions, and the dataset 
includes on average 4,340 trials and 9.9 hours’ worth of EEG data per participant. This dataset contains roughly 
4.5 times as many trials and 10 times as much data as the next largest dataset currently available for public use44.

We believe this dataset should be of particular value to the field for four reasons: (1) the amount of EEG data is 
sufficient to train large decoding models, (2) the sample size permits tests of how well decoding models and signal 
processing techniques will generalize, (3) the BCI decoding tasks are challenging (e.g., up to 4-class continuous 
2D control with online feedback), and (4) the longitudinal study design enables tests of how well decoding mod-
els and signal processing techniques adapt to session by session changes. This dataset may additionally provide 
new insights into how individuals control a SMR-BCI, respond to feedback, and learn to modulate their brain 
rhythms.

Methods
participants and Experimental procedure. The main goals of our original study were to characterize 
how individuals learn to control SMR-BCIs and to test whether this learning can be improved through behavioral 
interventions such as mindfulness training30. Participants were initially assessed for baseline BCI proficiency and 
then randomly assigned to an 8-week mindfulness intervention (Mindfulness-based stress reduction), or waitlist 
control condition where participants waited for the same duration as the MBSR class before starting BCI training, 
but were offered a comparable MBSR course after completing all experimental requirements46. Following the 
8-weeks, participants returned to the lab for 6–10 sessions of BCI training.

All experiments were approved by the institutional review boards of the University of Minnesota and Carnegie 
Mellon University. Informed consents were obtained from all subjects. In total, 144 participants were enrolled in 
the study and 76 participants completed all experimental requirements. Seventy-two participants were assigned 
to each intervention by block randomization, with 42 participants completing all sessions in the experimental 
group (MBSR before BCI training; MBSR subjects) and 34 completing experimentation in the control group. Four 
subjects were excluded from the analysis due to non-compliance with the task demands and one was excluded 
due to experimenter error. We were primarily interested in how individuals learn to control BCIs, therefore anal-
ysis focused on those that did not demonstrate ceiling performance in the baseline BCI assessment (accuracy 
above 90% in 1D control). The dataset descriptor presented here describes data collected from 62 participants: 
33 MBSR participants (Age = 42+/−15, (F)emale = 26) and 29 controls (Age = 36+/−13, F = 23). In the United 
States, women are twice as likely to practice meditation compared to men47,48. Therefore, the gender imbalance 
in our study may result from a greater likelihood of women to respond to flyers offering a meditation class in 
exchange for participating in our study.

For all BCI sessions, participants were seated comfortably in a chair and faced a computer monitor that was 
placed approximately 65 cm in front of them. After the EEG capping procedure (see data acquisition), the BCI 
tasks began. Before each task, participants received the appropriate instructions. During the BCI tasks, users 
attempted to steer a virtual cursor from the center of the screen out to one of four targets. Participants initially 
received the following instructions: “Imagine your left (right) hand opening and closing to move the cursor left 
(right). Imagine both hands opening and closing to move the cursor up. Finally, to move the cursor down, volun-
tarily rest; in other words, clear your mind.” In separate blocks of trials, participants directed the cursor toward 
a target that required left/right (LR) movement only, up/down (UD) only, and combined 2D movement (2D)30. 
Each experimental block (LR, UD, 2D) consisted of 3 runs, where each run was composed of 25 trials. After the 
first three blocks, participants were given a short break (5–10 minutes) that required rating comics by preference. 
The break task was chosen to standardize subject experience over the break interval. Following the break, partic-
ipants competed the same 3 blocks as before. In total, each session consisted of 2 blocks of each task (6 runs total 
of LR, UD, and 2D control), which culminated in 450 trials performed each day.

Data acquisition. Researchers applied a 64-channel EEG cap to each subject according to the international 
10–10 system. The distances between nasion, inion, preauricular points and the cap’s Cz electrode were measured 
using a measuring tape to ensure the correct positioning of the EEG cap to within ±0.25 cm. The impedance at 
each electrode was monitored and the capping procedure ensured that the electrodes’ impedance (excluding the 
rare dead electrode; see artifacts below) remained below 5 kΩ. EEG was acquired using SynAmps RT amplifi-
ers and Neuroscan acquisition software (Compumedics Neuroscan, VA). The scalp-recorded EEG signals were 
digitized at 1000 Hz and filtered between 0.1 to 200 Hz with an additional notch filter at 60 Hz and then stored 
for offline analysis. EEG electrode locations were recorded using a FASTRAK digitizer (Polhemus, Colchester, 
Vermont).

BCI recordings. Each trial is composed of 3 parts: the inter-trial interval, target presentation, and feedback 
control. Participants initially saw a blank screen (2 s). They were then shown a vertical or horizontal yellow bar 
(the target) that appeared in one of the cardinal directions at the edge of the screen for 2 s. After the target pres-
entation, a cursor (i.e., a pink ball) appeared in the center of the screen. The participants were then given up to 
6 s to contact the target by moving the cursor in the correct direction by modulating their SMRs. Trials were 
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classified as “hits” when the cursor contacted the correct target and “misses” when the cursor happened to contact 
one of the other 3 edges of the screen. “Timeouts” occurred when 6 s elapsed without selecting any target. An 
inter-trial interval of 2 s followed the end of a trial, and then a new trial began. Performance was quantified by a 
percent valid correct (PVC) metric and was defined as hits/(hits + misses). PVC was averaged across runs for each 
BCI session. Participants were considered proficient in a given task if their average block or session PVC crossed 
a given threshold (70% for 1D tasks [LR,UD] and 40% for the 2D task)49.

BCI experiments were conducted in BCI200020. Online control of the cursor proceeded in a series of steps. 
The first step, feature extraction, consisted of spatial filtering and spectrum estimation. During spatial filtering, 
the average signal of the 4 electrodes surrounding the hand knob of the motor cortex was subtracted from elec-
trodes C3 and C4 to reduce the spatial noise. Following spatial filtering, the power spectrum was estimated by 
fitting an autoregressive model of order 16 to the most recent 160 ms of data using the maximum entropy method. 
The goal of this method is to find the coefficients of a linear all-pole filter that, when applied to white noise, 
reproduces the data’s spectrum. The main advantage of this method is that it produces high frequency resolution 
estimates for short segments of data. The parameters are found by minimizing (through least squares) the forward 
and backward prediction errors on the input data subject to the constraint that the filter used for estimation shares 
the same autocorrelation sequence as the input data. Thus, the estimated power spectrum directly corresponds to 
this filter’s transfer function divided by the signal’s total power. Numerical integration was then used to find the 
power within a 3 Hz bin centered within the alpha rhythm (12 Hz).

The translation algorithm, the next step in the pipeline, then translated the user’s alpha power into cursor 
movement. Horizontal motion was controlled by lateralized alpha power (C4 − C3) and vertical motion was 
controlled by up and down regulating total alpha power (C4 + C3). These control signals were normalized to 
zero mean and unit variance across time by subtracting the signals’ mean and dividing by its standard deviation. 
A balanced estimate of the mean and standard deviation of the horizontal and vertical control signals was calcu-
lated by estimating these values across time from data derived from 30 s buffers of individual trial type (e.g., the 
normalized control signal should be positive for right trials and negative for left trials, but the average of left and 
right trials should be zero). Finally, the normalized control signals were used to update the position of the cursor 
every 40 ms.

Data Records
Distribution for use. The data files for the large electroencephalographic motor imagery dataset for EEG 
BCI have been uploaded to the figshare repository50. These files can be accessed at https://doi.org/10.6084/
m9.figshare.13123148.

EEG data organization for BCI tasks. This dataset (Citation 51) consists of 598 data files, each of which 
contains the complete data record of one BCI training session. Each file holds approximately 60 minutes of EEG 
data recorded during the 3 BCI tasks mentioned above and comprises 450 trials of online BCI control. Each 
datafile is from one subject and one session and is identified by their subject number and BCI session number.

All data files are shared in .mat format and contain MATLAB-readable records of the raw EEG data and 
the recording session’s metadata described below. The data in each file are represented as an instance of a 
Matlab structure named “BCI” having the following key fields “data,” “time,” “positionx,” “positiony,” “SRATE,” 
“TrialData,” “metadata,” and “chaninfo” (detailed in Table 1). The file naming system is designed to facilitate batch 
processing and scripted data analysis. The file names are initially grouped by subject number and then session 
number and can be easily accessed through nested for loops. For example, SX_Session_Y.mat is the filename for 
subject X’s data record of their Yth BCI training session. Participants are numbered 1 through 62 and sessions are 
numbered 1 (i.e., the baseline BCI session that occurs 8 weeks prior to the main BCI training) through 11 (or 7 if 
the participant only completed 6 post intervention training sessions).

The fields of the structure “BCI” comprising the data record of each file are as follows. The main field is “data,” 
where the EEG traces of each trial of the session are stored. Since each trial varies in length, the “time” data field 
contains a vector of the trial time (in ms) relative to target presentation. The two position fields, “positionx” and 
“positiony,” contain a vector documenting the cursor position on the screen for each trial. “SRATE” is a constant 
representing the sampling rate of the EEG recording, which was always 1000 Hz in these experiments. “TrialData” 
is a structure containing all the relevant descriptive information about a given trial (detailed in Table 2). The field 
“metadata” contains participant specific demographic information (detailed in Table 3). Finally, “chaninfo” is a 
data structure containing relevant information about individual EEG channels (detailed in Table 4).

Subfield Name Primary Data Secondary Data High-Level Description

data 1 × 450 cell nChannels × nTime matrix EEG data from each trial of the session

time 1 × 450 cell 1 × nTime vector vector of the trial time (in ms) relative to target presentation

positionx 1 × 450 cell 1 × nTime vector X position of cursor during feedback

positiony 1 × 450 cell 1 × nTime vector Y position of cursor during feedback

SRATE 1 × 1 scalar N/A Sampling rate of EEG recording

TrialData 450 × 15 struct See Table 2 Data structure describing trial level metrics

metadata 12 element struct See Table 3 Participant and session level demographic information

chaninfo 6 element struct See Table 4 Information about individual EEG channels

Table 1. Structure of the data record variable “BCI”.
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The “data” field contains the recording session’s EEG data in the format of a 1 × nTrials cell array, where each 
entry in the cell array is a 2D Matlab array of size nChannels × nTime. The number of trials per session, nTrials, is 
nearly always 450. Each row of a trial’s 2D data matrix is the time-series of voltage measurements (in μV) from a 
single EEG input lead such as C3 or C4. The “time” field contains the time data in the format of a 1 × nTrials cell 
array, where each entry is a 1 × nTime vector of the time index of the trial referenced to target presentation. Each 
trial begins with a 2 s inter-trial interval (index 1, t = −2000ms), followed by target presentation for 2 s (index 
2001, t = 0). Feedback begins after target presentation (index 4001, t = 2000ms) and continues until the end of the 

Subfield Name High-Level Description Values

MBSRsubject Did the participant attend the MBSR intervention? 1 = yes
0 = no

meditationpractice Hours of at-home meditation practiced outside of 
the MBSR intervention

Hours = MBSR group
NaN = control group

handedness The handedness of the participant
‘L’ = left handed
‘R’ = right handed
NaN = data not available

instrument Did the participant play a musical instrument?
‘Y’ = yes
‘N’ = no
‘U’ = used to
NaN = data not available

athlete Did the participant consider themselves to be an 
athlete?

‘Y’ = yes
‘N’ = no
‘U’ = used to
NaN = data not available

handsport Did the participant play a hand based sport?
‘Y’ = yes
‘N’ = no
‘U’ = used to
NaN = data not available

hobby Did the participant have a hobby that required fine 
motor movements of the hands?

‘Y’ = yes
‘N’ = no
‘U’ = used to
NaN = data not available

gender Gender of the participant
‘M’ = male
‘F’ = female
NaN = data not available

age Age of the participant in years 18–63

date Date of BCI training session yearmonthday

day Day of the week of the BCI training session 1–7 starting with 1 = Monday

time Hour of the start of the BCI training session 7–19

Table 3. Structure of “BCI” subfield “metadata”.

Subfield Name High-Level Description Values

tasknumber Identification number for task type
1 = ‘LR’
2 = ‘UD’
3 = ‘2D’

runnumber The run to which a trial belongs 1–18

trialnumber The trial number of a given session 1–450

targetnumber Identification number for target presented
1 = right
2 = left
3 = up
4 = down

triallength The length of the feedback control period in s 0.04 s–6.04 s

targethitnumber Identification number for target selected by 
BCI control

1 = right
2 = left
3 = up
4 = down
NaN = no target selected; timeout

resultind Time index for the end of the feedback control 
portion of the trial Length(trial) − 1000

result Outcome of trial: success or failure?
1 = correct target selected
0 = incorrect target selected
NaN = no target selected; timeout

forcedresult Outcome of trial with forced target selection 
for timeout trials: success or failure?

1 = correct target selected or cursor closest to correct target
0 = incorrect target selected or cursor closest to incorrect target

artifact Does the trial contain an artifact? 1 = trial contains an artifact identified by technical validation
0 = trial does not contain an artifact identified by technical validation

Table 2. Structure of “BCI” subfield “TrialData”.
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trial. The end of the trial can be found in the “resultind” subfield of “TrialData” (see below). A post-trial interval 
of 1 s (1000 samples) follows target selection or the timeout signal.

While the length of the trial may vary, nTime (the number of time samples of the trial), the number of chan-
nels, nChannels, is always 62. The ordering of the channels can be found in the “chaninfo” structure’s subfield 
“label”, which lists the channel names of the 62 electrodes. If individual electrode positions were recorded, the 
subfield “positionsrecorded” will be set to 1 and the “electrodes,” “fiducials,” and “shape” subfields will be popu-
lated according to this information. “Electrodes” contains the electrode labels and their X, Y, and Z coordinates. 
The information in the “fiducials” subfield contains the X, Y, and Z locations of the nasion as well as the left and 
right preauricular points. The shape of the face was recorded by sweeping from ear to ear under the chin and then 
drawing arcs horizontally across the brow and vertically from the forehead to chin. This information is contained 
in the “shape” subfield. If the session specific individual electrode positions are not available, “positionsrecorded” 
will be set to zero, the “fiducials” and “shape” subfields will be empty, and the “electrodes” subfield will include 
generic electrode locations for the 10–10 system positioning of the Neuroscan Quik-Cap. Finally, the subfield 
“noisechan” identifies which channels were found to be particularly noisy during the BCI session (see Technical 
Validation) and can be used for easy exclusion of this data or channel interpolation.

The position subfields of the “BCI” structure, “positionx” and “positiony,” provide the cursor positions through-
out the trial in the format of a 1 × nTrials cell array. Each entry of this cell array is a 1 × nTime vector of the horizon-
tal or vertical position of the cursor throughout the trial. Positions are provided by BCI2000 starting with feedback 
control (index 4001) and continue through the end of the trial (TrialData(trial).resultind). The inter-trial intervals 
before and after feedback are padded with NaNs. The positional information ranges from 0 (left/bottom edge of 
the screen) to 1 (right/top edge of the screen), with the center of the screen at 0.5. During 1D tasks (LR/UD), the 
orthogonal position remains constant (e.g., in the LR task, positiony = 0.5 throughout the trial).

The “TrialData” structure subfield of “BCI” provides valuable information for analysis and supervised machine 
learning (detailed in Table 2). This structure contains the subfields “tasknumber,” “runnumber,” “trialnumber,” 
“targetnumber,” “triallength,” “targethitnumber,” “resultind,” “result,” “forcedresult,” and “artifact.” Tasknumber 
is used to identify the individual BCI tasks (1 = ‘LR’, 2 = ‘UD’, 3 = ‘2D’). Targetnumber is used to identify which 

Subfield Name Data type High-level Description

positionsrecorded bool 1 = subject specific electrode positions were recorded
0 = subject specific electrode positions were not recorded

labels 1 × 62 cell Electrode names of the EEG channels that form rows of the trial data matrix

noisechan nNoisyChannels × 1 vector A vector of the channels labeled as noisy from automatic artifact detection. Empty if no 
channels were identified as noisy.

electrodes nChannels × 4 struct
(Columns: Label, X, Y, Z)

3D positions of electrodes recorded individually for each session. If this data is not 
available, generic positions from the 10–10 system will be included.

fiducials 3 × 4 struct
(Columns: Label, X, Y, Z)

If positionsrecorded = 1 provides the location of the nasion and left/right preauricular 
points, otherwise empty

shape nPoints × 3 struct
(Columns: X, Y, Z)

If positionsrecorded = 1 provides the location of the face shape information, otherwise 
empty.

Table 4. Structure of “BCI” subfield “chaninfo”.

Fig. 1 Histograms of data records containing noisy data (a) Most data records have few channels automatically 
labeled as containing excessive variance. (b) Most data records have few trials containing artifacts.
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target was presented to the participants (1 = right, 2 = left, 3 = up, 4 = down). “Triallength” is the length of the 
feedback control period in seconds, with the maximum length of 6.04 s occurring in timeout trials. “Resultind” 
is the time index that indicates when the feedback ended (when a target was selected or the trial was consid-
ered a timeout). To easily extract the feedback portion of the EEG data, you simply define an iterator variable 
(e.g., trial = 5) and index into the data subfield [e.g., trial_feedback = BCI.data{trial}(4001:BCI.TrialData(trial).
resultind)]. “Targethitnumber” identifies which target was selected during feedback and takes the same values as 
“targetnumber” mentioned above. These values will be identical to “targetnumber” when the trial is a hit, different 
when the trial is a miss, and NaN when a trial is a timeout. “Result” is a label for the outcome of the trial which 
takes values of 1 when the correct target was selected, 0 when an incorrect target is selected and NaN if the trial 
was labeled as a timeout. “Forcedresult” takes the same values as before, however in timeout trials, the final cursor 
position is used to select the target closest to the cursor thereby imposing the BCI system’s best guess onto time-
out trials. Finally the “artifact” subfield of the “TrialData” structure is a bool indicating whether an artifact was 
present in the EEG recording (see Technical Validation).

Lastly, the “metadata” field of the “BCI” data structure includes participant and session level demographic 
information (detailed in Table 3). “Metadata” contains information related to the participant as an individual, 
factors that could influence motor imagery, information regarding the mindfulness intervention, and individ-
ual session factors. Participant demographic information includes “age” (in years), “gender” (‘M’, ‘F’ NaN if not 

Fig. 2 Online BCI performance across sessions (a) Following the baseline assessment, the average online BCI 
performance exceeds chance level across all tasks suggesting decodable motor imagery patterns are present in 
the EEG data records. As BCI training continues, participants produce better linearly classifiable signals in the 
alpha band. The shaded area represents ±1 standard error of the mean (SEM). (b) Group-level BCI proficiency 
throughout training. This curve shows the percentage of participants that are proficient in BCI control as a 
function of BCI training session. At the end of training, approximately 90% of all subjects were considered 
proficient in each task of BCI control.
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available), and “handedness” (‘R’, ‘L’, NaN). Motor imagery factors include “instrument”, “athlete”, “handsport”, 
and “hobby.” These factors are reported as ‘Y’ for yes, ‘N’ for no, ‘U’ for used to, and NaN if not available. Subfields 
for the mindfulness intervention include “MBSRsubject” “meditationpractice”. Finally, session factors included 
“date, “day”, and “time”.

While the data is formatted for ease of use with Matlab, this software is not required. The data structure is 
compatible with Octave. However, to open the data in python, the fields of the BCI structure should be saved in 
separate variables. For example, the cell BCI.data can be saved as ‘data’ in a.mat file and then loaded into python 
as an ndarray with the scypy.io function loadmat. The TrialData structure can also be converted to a matrix and 
cell of column names then converted to a pandas dataframe.

technical Validation
Automatic artifact detection was used to demonstrate the high quality of the individual data records45,51. First, 
the EEG data were bandpass filtered between 8 Hz and 30 Hz. If the variance (across time) of the bandpass fil-
tered signals exceeded a z-score threshold of 5 (z-scored between electrodes), these electrodes were labeled as 
artifact channels for a given session. This information can be found in BCI.chaninfo.noisechan. Overall, only 
3% of sessions contained more than 4 artifact channels (Fig. 1a). These channels were excluded from the subse-
quent artifact detection step and their values were interpolated spatially with splines for the ERD topographies 
shown below52. Then, if the bandpass filtered data from any remaining electrode crossed a threshold of ±100 μV  
throughout a trial, this trial was labeled as containing an artifact. Artifact trials are labeled in the TrialData 

Fig. 3 Event-related desynchronization during BCI control (a) ERD averaged across participants and training 
sessions. These curves show the change in alpha power (8–14 Hz) over the left (C3; red) and right (C4; blue) 
motor cortex relative to the power in the inter-trial interval. The ERD curves show the expected responses to 
motor imagery such as stronger desynchronization (negative values) in the contralateral motor cortex during 
motor imagery and stronger synchronization during rest (positive values). The rectangles at the bottom of 
each plot display the different phases of each trial with red, yellow, and green representing the inter-trial 
interval, target presentation, and feedback control periods, respectively. The shaded are represents ± 1 SEM. (b) 
Topographies of ERD values across the cortex for each trial type. T-values were found by testing the ERD values 
across the population in our study. Cooler colors represent more desynchronization during motor imagery and 
warmer colors represent more synchronization.
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structure (BCI.TrialData.artifact). Again, only 3% of sessions had more than 5% of trials labeled as containing 
artifacts (Fig. 1b).

More research is needed to understand how individuals learn to control brain computer interfaces27, and this 
dataset provides a unique opportunity to study this process. Not only does the online BCI performance demon-
strate that motor imagery can be decoded from the EEG data records, it also shows that the decidability of the 
participants’ EEG rhythms improves as individuals learn to control the device (Fig. 2a). BCI proficiency is also an 
active area of study53, and, by the end of training, roughly 90% of all the participants in our study were considered 
proficient in each task (Fig. 2b). However, the sample size of this dataset is large enough that 7–8 participants can 
still be examined for BCI inefficiency in each task. This dataset additionally enables the study of the transition 
from BCI inefficiency to proficiency.

Event-Related Desynchronization (ERD) was calculated to verify the quality of the EEG signals collected 
during BCI control17,45. To calculate ERD for each channel, the EEG data were first highpass filtered above 1 Hz to 
remove drifts, then bandpass filtered between 8 Hz and 14 Hz52. The Hilbert transform was then applied to all of 
the trials and the absolute magnitude was taken for each complex value of each trial. The magnitudes of the 
Hilbert-transformed samples were averaged across all trials. Finally, these averages were baseline corrected to 
obtain a percentage value for ERD/ERS according to the formula = ∗−ERD% 100%A R

R
, where A is each time 

sample and R is the mean value of the baseline period (−1 s to 0 s). The participant averaged ERD signal for chan-
nels C3 and C4, and for each trial type, are shown in Fig. 3a. ERD values were averaged over the feedback portion 
of trials to create the topography images in Fig. 3b. The ERD curves and scalp topographies show the expected 
responses to motor imagery such as stronger desynchronization in the contralateral motor cortex during motor 
imagery and stronger synchronization during rest.

Code availability
The code used to produce the figures in this manuscript is available at https://github.com/bfinl/BCI_Data_Paper.
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