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ABSTRACT
I am honoured to address as the seventh president of the Mycological Society of China.
Mycorrhizal research has a long history in China, including taxonomy, diversity, ecology, mole-
cular biology, and application. Particularly in the past four decades, great progress in mycorrhizal
field has been made by Chinese mycologists and ecologists. In this paper, through my own
experience, I summarised the main and important advance of recent mycorrhizal researches in
terms of mycorrhizal fungal diversity, community, responses to global environmental changes,
molecular biology, and function in China. Some perspectives are also proposed for future
mycorrhizal studies in China.
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Mycorrhizae

Mycorrhizae are symbiotic structures formed between
soil fungi and terrestrial plant roots (Smith and Read
2008). In these associations, the plants provide carbon
and lipids for the growth and function of fungi (Bago
et al. 2000; Jiang et al. 2017), and thus can influence the
fungal community via host specificity, producing
diverse organic substrates and modifying microhabi-
tats. In return, mycorrhizal fungi improve plant nutrient
(particularly in nitrogen and phosphorus) and water
uptake and resistance to biotic and abiotic stresses,
and they therefore influence plant diversity, productiv-
ity, and ecosystem functioning by forming under-
ground common mycorrhizal networks that
connected individuals of plants.

According to dissection characteristics and host
plants, mycorrhizae are divided into seven types, i.e.
arbuscular mycorrhiza (AM), ectomycorrhiza (EM),
ectendomycorrhiza, orchid mycorrhiza, arbutoid mycor-
rhiza, monotropoid mycorrhiza, and ericoid mycorrhiza
(Smith and Read 2008). Based on review of previous
studies, it estimates that ca. 50,000 fungal species form
mycorrhizal associations with ca. 250,000 plant species
in the world. For example, there are ca. 300 described
AM fungal species (Glomeromycota) based on morpho-
logical characteristics of the spores, and up to 1600 AM
fungal operational taxonomic units based on environ-
mental rDNA sequences by using molecular

techniques. These AM fungal taxa form symbiotic asso-
ciations with ca. 80% of plant species (Figure 1). It is
estimated that there are ca. 20,000 EM fungal species,
mainly belonging to Basidiomycota, followed by
Ascomycota and Zygomycota, according to morpholo-
gical and molecular techniques, which form symbiotic
associations with ca. 2% of plant species, such as
Pinaceace, Fagaceae, Betulaceae, Salicaceae, and
Dipterocarpaceae (Figure 1). The other mycorrhizal
types occupy ca. 10% of plant species (Figure 1).
There is ca. 8% of plant species belonging to non-
mycorrhizal plants, such as Brassicaceae, Crassulaceae,
Haemodoraceae, Orobanchaceae, Proteaceae, and
Restionaceae (Figure 1).

Mycorrhizal research progress in china

There is a long history of mycorrhizal research in China,
including taxonomy, diversity, ecology, molecular biol-
ogy, and application. For example, a total of 1893 science
citation index (SCI) papers (Web of Science Core
Collection) and 2272 papers in Chinese Journals (China
National Knowledge Infrastructure, CNKI) have been
published by Chinese scientists since 1980 (searched
on 6th December, 2017) (Figure 2). Particularly, the pub-
lished papers have greatly increased since 2000, indicat-
ing that progress inmycorrhizal researchwas apparently
boomed recently. In 2017, two special issues focusing on
“mycorrhizal fungi” and “mycorrhizal fungi and plant
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resistance” were published in Chinese mycological jour-
nals of “Mycosystema” and “Journal of Fungal Research”,
respectively, showing a portion of advances in taxon-
omy, species diversity, ecology, physiology, and func-
tioning of mycorrhizal fungi were made by Chinese
researchers. The recent progress of mycorrhizal research
in China was summarised in this paper.

Mycorrhizal fungal diversity

A total of ca. 147 AM fungal species and ca. 500 EM
fungal species were described based on morpholo-
gical characteristics in China (He et al. 2010a; Wang
and Liu 2017). Although many studies have been
carried out in the identification of mycorrhizal fungi
based on morphological characteristics, higher spe-
cies diversity of mycorrhizal fungi was found from
soils and plant roots in various ecosystems using

molecular techniques. For example, a total of 66
and 26 EM fungal taxa were found from roots of
Quercus liaotungensis and Pinus tabulaeformis in a
temperate forest ecosystem using direct internal
transcribed spacer (ITS) sequencing of EM root tips
(Wang and Guo 2010; Wang et al. 2012). By using
454 pyrosequencing, an average of 37.8 AM fungi
was obtained from each of 17 woody plant species
(Chen et al. 2017), and an average of 32.8 EM fungi
was found in each of 12 mixed root samples (Gao
et al. 2015) in a subtropical forest. In the agro-
ecosystems, there were average 10−16 and 22−27
AM fungi observed in maize or rice root and soil
samples, by using terminal restriction fragment
length polymorphism and/or clone library analyses
(Liu et al. 2014, 2016; Wang et al. 2015), but an
average 29−49 AM fungi was detected in soil sam-
ples by using 454 pyrosequencing technique (Lin
et al. 2012). In the grassland ecosystems, a total of
34−37 AM fungi was obtained from mixed plant
root samples in alpine meadow ecosystems via
clone library method (Liu et al. 2012b; Yang et al.
2013). However, higher AM fungal richness of 48−54
and 72−79 were subsequently detected in soil sam-
ples collected from the alpine meadow (Zheng et al.
2014, 2016b) and semiarid steppe (Kim et al. 2015;
Li et al. 2015), using 454 pyrosequencing.

In maintenance mechanism of mycorrhizal fungal
diversity, Gao et al. (2013) investigated EM fungal diver-
sity in the plot of different diversity levels of host plants
and found host genus-level diversity could be the best
predictor of EM fungal diversity in a subtropical forest.
Further study in this subtropical forest ecosystem
showed that EM fungal diversity was significantly
affected by the basal area of the dominant host plant
species Castanopsis eyrei in the ridge habitat, but by the
basal area of total host plant species in the valley habitat,
and this study suggests that the relationship of EM
fungal diversity and plants is dependent on habitat
types (Gao et al. 2017). In addition, Wang et al. (2015)
reported that the AM fungal diversity in the roots of rice
increased with the growth of rice, due to progressive
colonisation and aerenchyma development of rice in
paddy wetland ecosystem.

Mycorrhizal fungal community

In the dynamics and assembly mechanism of mycor-
rhizal community, Wang et al. (2012) found that EM
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Figure 1. The proportion of different types of mycorrhizal plant
species.
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Figure 2. The publication on mycorrhizae by Chinese researchers
during years 1980−2017.
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fungal community composition of Q. liaotungensis
was not significantly different in different forest
ages and seasons in a temperate forest ecosystem.
The EM fungal community composition was signifi-
cantly different in young forest (<40 years) from
intermedium (41−80 years) and old (>80 years) for-
ests, and the EM fungal community assembly was
significantly structured by environmental selection in
the young and intermedium forests, but by environ-
mental selection and dispersal limitation in the old
forest in a subtropical ecosystem (Gao et al. 2015).
Further study in this subtropical forest ecosystem
showed that EM fungal composition was significantly
affected by plant species composition and geo-
graphic distance in the ridge habitat but by soil pH
in the valley habitat; in contrast, AM fungal commu-
nity composition was not significantly influenced by
any variables investigated in the ridge and valley
habitats (Gao et al. 2017). In addition, ecological net-
work study demonstrated that woody plant-AM
fungi mutualistic network was highly interconnected
and nested but in anti-modular and anti-specialised
manners, and the non-random pattern was explained
by plant and AM fungal phylogenies, with a ten-
dency for a stronger phylogenetic signal by plant
than AM fungal phylogeny in the subtropical forest
ecosystem (Chen et al. 2017).

Mycorrhizal fungal response to global change

Global change affects plant species diversity, produc-
tion and community and ecosystem function.
Similarly, global change can influence mycorrhizal
fungi in ecosystems. For example, warming had neu-
tral, negative or positive effects on AM fungal root
colonisation rate, spore density, extra-radical hyphal
(ERH) density, and richness (Yang et al. 2013, 2016;
Kim et al. 2014, 2015; Gao et al. 2016; Shi et al.
2017a), and changed AM fungal community compo-
sition in soil rather than in root (Yang et al. 2013) in
grassland ecosystems. Fertilisation (nitrogen, phos-
phorus, or organic manure) significantly decreased
AM fungal root colonisation rate, spore density and
ERH diversity, and altered AM fungal community
composition in agricultural (Lin et al. 2012) and
grassland (Liu et al. 2012b; Zheng et al. 2014; Kim
et al. 2015) ecosystems. Increased precipitation could
significantly increase AM fungal root colonisation
rate, spore density, and ERH density, decrease AM

fungal diversity, and changed AM fungal community
composition in grassland ecosystems (Li et al. 2015;
Gao et al. 2016). Land use conversion from grassland
to farmland significantly reduced soil AM fungal ERH
density and richness, and altered AM fungal commu-
nity composition (Xiang et al. 2014). In addition,
grass (Elymus nutans, Avena sativa, and Vicia sativa)
plantation affected rhizosphere soil AM fungal ERH
density, richness and community composition
(Zheng et al. 2016b).

Molecular biology of mycorrhizal fungi

In the mycorrhizal molecular biology, Li et al. (2013)
firstly cloned and identified two aquaporin genes of
GintAQPF1 and GintAQPF2 from AM fungus Glomus
intraradices (syn. Rhizophagus intraradices) and con-
firmed their function under drought stress. Liu et al.
(2015) found that drought stress upregulated the
level of R. intraradices and soybean mitogen-acti-
vated protein kinase (MAPK) transcripts in mycorrhi-
zal soybean roots, indicating the possibility of a
molecular dialogue between AM fungus and host
plant and suggesting that they might cooperate to
improve soybean’s resistance to drought stress.
Concurrently, in terms of nutrient absorption, some
studies investigated the mycorrhiza-regulated phos-
phate transporters in host plants Astragalus sinicus
(Xie et al. 2013), Oryza sativa (Sun et al. 2012), P.
tabulaeformis (Zheng et al. 2016a), pepper and
tobacco (Chen et al. 2007), and reciprocal transporta-
tion of carbon and phosphorus amongst plants (Zea
mays and Medicago sativa), Rhizophagus irregularis
and phosphate-solubilising bacterium (Zhang et al.
2016; Wang et al. 2016a). Wang et al. (2014) demon-
strated that H+-ATPase played a key role in energis-
ing the periarbuscular membrane, thereby
facilitating nutrient exchange in arbusculated rice
and Medicago truncatula cells. Interestingly, GigmPT
from Gigaspora margarita was expressed in the
arbuscules and intraradical hyphae, and silencing of
this gene inhibited the arbuscule formation, suggest-
ing that GigmPT was involved in phosphate (Pi)
reuptake and was required for AM symbiosis (Xie
et al. 2016). From plant Lycium barbarum, a
drought-tolerant, perennial ligneous shrub, Hu et al.
(2017) characterised three proteins (LbPT3, LbPT4,
and LbPT5) which were involved in the mycorrhizal
Pi pathway and could be inhibited by Pi supply but
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not regulated by water stress. Jiang et al. (2017)
showed that AM fungus R. irregularis was a fatty
acid auxotroph and that fatty acids synthesised in
plant (M. truncatula) were transferred to the fungus.
Moreover, Chinese scientists have made significant
progress in terms of mycorrhizal signal transduction,
for example, some specific proteins such as DELLA
and CERK1, were found to be common components
of symbiotic mycorrhizal signalling pathways and to
play critical function during the establishment of
symbiosis between AM fungi and host plants (e.g.
Yu et al. 2014; Zhang et al. 2015; Jin et al. 2016).

Mycorrhizal function

Mycorrhizal fungi play an important role in promoting
plant growth and resistance to abiotic stresses. For
example, AM fungi can efficiently improve crop
growth, biomass, and productivity particularly in extre-
mely P-limited soil (Hu et al. 2009), due to enhanced
nutritional assimilation of plant as well as improved soil
organic matter content and total nitrogen (Wu et al.
2005). AM fungi can enhance plant resistance to
drought (Li et al. 2013; Liu et al. 2015) and heavymetals
(Dong et al. 2008; Zhang et al. 2009). AM fungus
Glomus mosseae (syn. Funneliformis mosseae) could
alleviate the side effects induced by fungicide chlor-
othalonil on upland rice growth (Zhang et al. 2006).
Moreover, AM fungus R. intraradices (formly G. intrar-
adices) was found to significantly decrease the concen-
tration of organophosphate insecticide named phoxim
in shoots and roots of carrot and green onion (Wang
et al. 2011). Liu et al. (2012a) demonstrated that dual
inoculation of specific AM fungi and plant growth-
promoting rhizobacteria (PGPR) could stimulate each
other and that the combination of G. mosseae (syn.
F. mosseae) and PGPR Bacillus sp. could interact to
maximally suppress the root-knot nematode (i.e.
Meloidogyne incognita) and tomato disease develop-
ment. Recently, He et al. (2017) reported that AM
fungi and their indirect interactions with insect
(Spodoptera exigua) altered the photosynthesis and
plant endogenous hormones of peanut and tomato.
Additionally, the application of mycorrhizal inoculation
was found to improve carbon sequestration of coalfield
soils and thus to be beneficial for the ecological recla-
mation in mine region (Wang et al. 2016b). The gloma-
lin-related soil protein produced by AM fungi is not
only an important carbon sink, but alsomay it be useful

indicators for evaluating soil quality and function of
desert ecosystem (He et al. 2010b).

Mycorrhizal fungi play important roles in interspe-
cific competition in a subtropical forest ecosystem. For
example, AM fungi (i.e. Diversispora eburnea,
Claroideoglomus lamellosum, F. mosseae, and
Diversispora sp.) significantly promoted a competitive
advantage of Rhus chinensis over both Celtis sinensis
and Cinnamomum camphora (Shi et al. 2016). EM fungi
(Paxillus involutus, Pisolithus tinctorius, Cenococcum
geophilum, and Laccaria bicolor) significantly pro-
moted a competitive ability of the mid-successional
tree Cyclobalanopsis glauca over the pioneer tree Pinus
massoniana compared with the uninoculated control
treatment (Shi et al. 2017b). These findings suggest
that the extent to which mycorrhizal fungi affected
interspecific plant competition outcomes was depen-
dent on mycorrhizal fungus identity.

In summary, despite many innovative studies
and great progresses in mycorrhizal field have
been made in the past several decades in China,
we still need to make efforts, at least, in the fol-
lowing aspects: (1) to conduct more wide and
deep researches on the mechanism of mycorrhizal
fungal diversity maintenance and community
assembly, (2) to strengthen the studies on molecu-
lar interaction mechanisms between mycorrhizal
fungi, host plants, and other organisms, (3) to
improve understanding of mycorrhizal fungal
response and adaptive mechanisms under global
environmental changes, especially to uncover pos-
sible alterations of ecological functioning under
interactive conditions of multiple global change
factors, and (4) to increase the application of
mycorrhizae. I believe that, with increasing of
joined Chinese young mycorrhizal scientists and
financial support by Chinese government, Chinese
scientists will make great progress in mycorrhizal
field in future.
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