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Abstract  

Background: Few metrics exist to describe phenotypic diversity within ophthalmic imaging 
datasets, with researchers often using ethnicity as an inappropriate marker for biological 
variability. 

Methods: We derived a continuous, measured metric, the retinal pigment score (RPS), that 
quantifies the degree of pigmentation from a colour fundus photograph of the eye. RPS was 
validated using two large epidemiological studies with demographic and genetic data (UK 
Biobank and EPIC-Norfolk Study). 

Findings: A genome-wide association study (GWAS) of RPS from UK Biobank identified 20 
loci with known associations with skin, iris and hair pigmentation, of which 8 were replicated in 
the EPIC-Norfolk cohort. There was a strong association between RPS and ethnicity, however, 
there was substantial overlap between each ethnicity and the respective distributions of RPS 
scores. 

Interpretation: RPS serves to decouple traditional demographic variables, such as ethnicity, 
from clinical imaging characteristics. RPS may serve as a useful metric to quantify the diversity 
of the training, validation, and testing datasets used in the development of AI algorithms to 
ensure adequate inclusion and explainability of the model performance, critical in evaluating all 
currently deployed AI models. The code to derive RPS is publicly available at: 
https://github.com/uw-biomedical-ml/retinal-pigmentation-score. 

Funding: The authors did not receive support from any organisation for the submitted work. 
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Research in context 

Evidence before this study 

Vision loss due to retinal disease is a global problem as populations age and diabetes becomes 
increasingly prevalent. AI algorithms developed for efficient diagnosis of diabetic retinopathy 
and age-related macular degeneration rely on large imaging datasets collected from clinical 
practice. A substantial proportion (more than 80%) of publicly available retinal imaging datasets 
lack data on participant demographic characteristics. Some ethnic groups are noticeably 
underrepresented in medical research. 

Previous findings in dermatology suggest that AI algorithms can show reduced performance on 
darker skin tones. Similar biases may exist in retinal imaging, where retinal colour has been 
shown to affect disease detection. 

Added value of this study 

We introduce the Retinal Pigment Score (RPS), a measure of retinal pigmentation from digital 
fundus photographs. This score showed strong, reproducible associations with genetic variants 
related to skin, eye, and hair colour. Additionally, we identify three genetic loci potentially 
unique to retinal pigmentation, which warrant further investigation. The RPS provides an 
accurate and objective metric to describe the biological variability of the retina directly derived 
from an image.   

Implications of all the available evidence 

The RPS method represents a valuable metric with importance to harness the detailed 
information of ophthalmic fundus imaging. Its application implies potential benefits, such as 
improved accuracy and inclusivity, over human-created sociodemographic classifications used in 
dataset compilation and in the processes of developing and validating models. The RPS could 
decouple the distinct social and political categorical constructs of race and ethnicity from image 
analysis. It is poised to both accurately describe the diversity of a population study dataset or an 
algorithm training dataset, and for investigate algorithmic bias by assessing outcomes. 

Further work is needed to characterise RPS across different populations, considering individual 
ocular factors and different camera types. The development of standard reporting practices using 
RPS for studies employing colour fundus photography is also critical. 
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Introduction  

Retinal diseases are a significant global cause of vision loss, but not all populations are affected 
equally. In 2020, there were estimated to be 103·1 million adults worldwide with diabetic 
retinopathy (DR) and 196 million people with age-related macular degeneration (AMD).[1] 
Studies have found DR prevalence is highest in Africa (35·9%), then North America and the 
Caribbean (33·3%). In contrast, AMD has a significantly higher prevalence in people of 
European than in those of Asian or African ancestry.[2,3] In response to the overwhelming 
global burden of disease, many artificial intelligence (AI) algorithms have been developed to 
enable more efficient care delivery. These AI algorithms have been widely published, and 
several are already in clinical practice for automated diagnoses for DR, AMD, and glaucoma.[4–
7]  

The success of AI algorithms in ophthalmology is partly due to the availability of large imaging 
datasets that have been collected from routine clinical practice.[8] Less than 20% of publicly 
available retinal imaging datasets contain patient characteristics such as age, sex, or ethnicity.[8] 
Studies that compare model performance across different populations are severely 
limited.[4,9,10] 

Bias in image-based AI algorithms is often worse among people with a greater degree of skin 
pigmentation, for instance, in skin cancer classification, facial recognition, and object 
detection.[11–13] Studies use a multi-step categorical pigmentation scale, or even a binary, 
“light” vs “dark” skin tone classification, and often with humans labelling images of other 
humans. These categories are then used to estimate relative performance of algorithms within 
subcategories of pigmentation.  

In the eye, melanin is present in the uvea (iris, retina, and choroid) and is responsible for blue or 
brown iris colour as well as retinal pigmentation.[14,15] We aimed to develop a continuous 
scale, the Retinal Pigment Score (RPS), to quantify the background pigmentation of retinal 
colour fundus photographs. We then sought to validate the RPS by comparing with self-reported 
ethnicity and performing both genome-wide (GWAS) and phenome-wide (PheWAS) association 
studies. Mechanistic insight was attained through gene priorisation and functional annotation 
whilst causal associations with clinically relevant outcomes were tested using mendelian 
randomisation (MR). Finally, we validated our results with a replication GWAS study in a 
separate cohort.   

 

Methods 

Ethics 

We analysed data from UK Biobank participants who as part of their examinations underwent 
enhanced ophthalmic review. Ethics approval was obtained by the Northwest Multi-centre 
Research Ethics Committee (REC reference number 06/MRE08/65; approved project number 
28541). 
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The European Prospective Investigation into Cancer and Nutrition-Norfolk (EPIC-Norfolk) Eye 
Study was carried out following the principles of the Declaration of Helsinki and the Research 
Governance Framework for Health and Social Care and was approved by the Norfolk Local 
Research Ethics Committee (identifier: 05/Q0101/191) and the East Norfolk and Waveney 
National Health Service Research Governance Committee (identifier: 2005EC07L).  

Study population 

The UK Biobank is a national research resource aiming to improve prevention, diagnosis, and 
treatment of a wide range of diseases. More than 500,000 people aged 37-73 were recruited at 22 
study assessment centres across the UK between January-2006 and October-2010. The EPIC-
Norfolk Eye Study comprises 8,623 participants aged 40 to 79 years from Norfolk, England.[16] 
Participants were recruited from 35 participating general practices. Baseline examinations were 
carried out between 1993 and 1997.[16]  

Ophthalmic assessment 

In the UK Biobank, more than 133,000 participants underwent an enhanced ophthalmic 
assessment between 2009 and 2010 at 6 assessment centres, including ophthalmic imaging.[17] 
The right eye was imaged first. Single-field colour fundus photographs (45° field-of-view, 
centred to include both optic disc and macula) and macular OCT scans were captured using a 
digital Topcon-1000 integrated ophthalmic camera (Topcon 3D OCT1000 Mark II, Topcon 
Corp., Tokyo, Japan). Ophthalmic examination for 8,623 EPIC-Norfolk participants was 
performed between 2004 and 2011. Fundus photography was acquired using a TRC-NW6S non-
mydriatic retinal camera and IMAGEnet Telemedicine System (Topcon Corporation, Tokyo, 
Japan) with a 10 megapixel Nikon D80 camera (Nikon corporation, Tokyo, Japan).[16] 

Retinal Pigment Score 

Figure 1 represents a schematic of the pipeline. Each fundus image was run through the 
Automorph pipeline[18] to create a segmentation mask of the retinal vasculature and optic disc. 
In summary, each image is pre-processed then passed through an image quality classifier. Images 
of insufficient quality are excluded from the subsequent segmentation steps. We modified the 
Automorph code by changing the file system organisation between input and output nodes, 
adding in error handling, and reducing output file size.  

We added the segmentation masks for the disc segmentation and the binary vessel segmentations 
to make a combined disc/vessel mask. The background was identified by finding all pixels that 
were at or below the 0·5 percentile of the distribution of all grayscale pixels from the input 
image. The background mask was added to the combined vessel/disc mask. This mask was then 
successively dilated using a 2-dimensional binary structuring kernel with connectivity of 2. The 
number of dilation iterations was 4 multiplied by pixel width of the image divided by 600 
rounded to the nearest integer, which was derived empirically. All pixels not contained in dilated 
masks of the background/disc/segmentation mask were used to create a new retinal background 
mask.   

From the retinal background mask, the median RGB pixel value was converted into CIE-LAB 
colour space which is a colour space designed to have luminance (L vector) stored in a separate 
vector from chromaticity (a,b vectors).[19] To reduce the effect of illumination, we only used the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.06.28.23291873doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.28.23291873
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6

a,b coordinates from the CIELAB space and ignored the L vector. To transform the two 
dimensional a,b chromaticity vectors for each eye, we used a principal component analysis 
(PCA) model to perform dimensionality reduction. For each dataset, a two component PCA 
model was fitted to the median a,b value of the retinal background for all images in the dataset. 
Then, each eye's median a,b value was transformed with the PCA model along the eigenvector 
with the greatest eigenvalue. This new transformed vector was stored as the 1-dimensional RPS 
vector. The image analysis to derive the RPS was performed with Python, version 3·8[20] and 
PyTorch, version 1·7.0.[21] The code to derive RPS is publicly available at: 
https://github.com/uw-biomedical-ml/retinal-pigmentation-score. 

Genome-Wide Association Study 

GWAS was performed to assess potential genetic associations with mean RPS (average score 
between right and left eyes per participant). A beta coefficient of 1 therefore corresponds to a 1 
standard deviation increase in standardised mean RPS. Analyses were conducted using a 
generalised linear mixed model, adjusting for age, sex, and the first ten principle components. 
The initial discovery GWAS analysis was performed in the UK Biobank cohort. Lead variants 
reaching genome-wide significance (p<5x10-8) were re-evaluated in a replication GWAS 
analysis, conducted in the EPIC-Norfolk cohort. 

Lead variants were furthermore investigated for previously identified associations with hair, skin 
and eye colour, by manually referring to the Open Targets Genetics[22,23] and 
PhenoScanner[24,25] resources, and listed in table 1. Further details for GWAS analysis are 
presented as supplements (supplementary methods). 

Phenome-Wide Association Study 

A PheWAS analysis was conducted within the discovery UK Biobank GWAS subcohort using 
308 CALIBER codelists drawing on the following diagnostic records: verbal interview 
responses, linked hospital episode statistics, death register, and primary care records. Read-2, 
ICD-10 and OPCS-4 clinical codelists were minimally adapted from the CALIBER Portal.[26] 
The former two coding systems were expanded to Read-3 and ICD-9 equivalents respectively, 
using the mapping files provided by UK Biobank Resource 592 
(https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=592). 

The PheWAS analysis performed logistic regression to assess potential disease associations with 
RPS, adjusting for age and sex. All available diagnostic records, both before and after the date of 
attendance for retinal imaging, were included. Conditions with fewer than 200 cases were 
excluded. Associations meeting the Bonferroni-corrected p-value threshold (p=0·05/308) were 
considered phenome-wide significant. 

Mendelian randomisation 

Main MR analyses (supplementary methods) were performed using a multiplicative random-
effects inverse-variance weighted approach.[27]. To account for invalid instrumental variables 
and pleiotropy, we conducted sensitivity analyses using three alternative MR methods: weighted 
median, weighted mode, and MR-Egger.  
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Sociodemographic and phenotypic associations of RPS 

Linear regression models with mean RPS adjusting for age, sex, self-reported ethnicity 
(categorised as white, black, Asian, mixed, Chinese, or other), hair colour (categorised as blonde, 
red, light brown, dark brown, black and other), skin colour (categorised as very fair, fair, light 
olive, dark olive, brown and black), spherical equivalent, height, quintiles of Townsend 
deprivation index (TDI) (where a higher quintile implies a greater degree of deprivation), and 
UK Biobank assessment centre were used to examine associations with RPS. Missing data points 
were categorised as “Missing” within each variable. 

 

Results 

Retinal Pigment Score  

 
A total of 135,592 colour fundus photographs (67,982 right eyes, 67,610 left eyes) from 68,504 
participants were available for analysis. From these, 74,851 images (40,329 right eyes, 34,388 
left eyes) of 44,320 participants (55% female) were gradable by our pipeline and included in the 
analysis. The cohort characteristics are summarised in supplementary table 1. The median age 
(IQR) was 56 years (49-63) and 92% (40,704/44,320) of participants self-described their 
ethnicity as white. The median RPS was -0·82 (-9·89, 10·39). Each ethnic group had images in 
each quintile of the range of RPS, except for Chinese in the lowest (less pigmented) quintile 
(figure 2).  

Associations of RPS with Clinical Variables 

Supplementary figure 1 shows the association of RPS with the covariates of interest (deciles of 
continuous variables) adjusted for age, sex, and UK Biobank centre. Non-white self-described 
ethnicities were associated with increased RPS when compared to white individuals. A positive 
graded association was observed with increased skin pigmentation, hair pigmentation, and 
deprivation. An inverse linear association with RPS was evidenced for height.  

Next, the associations were tested with multivariable linear regression adjusting for age, sex, 
height, self-described ethnicity, self-described hair and skin colour, TDI, refractive status, and 
UK Biobank assessment centre (supplementary table 2). Every 5-year rise in age was associated 
with a 0·20 increase in RPS (p 1·3x10-8), and every 5cm increase in height conferred a -0·24 
change in RPS (p 3·6x10-8). A non-linear association was evidenced for refractive status. A 
higher RPS was observed in people with emmetropia (2·1, 95%CI 1·5-2·6; p 1·1x10-12), and 
hyperopia (1·4, 95%CI 0·84-2; p 1·1x10-6) when compared to people with high myopia. The 
most deprived TDI quintile showed a 0·81 increase in RPS when compared to the least deprived 
TDI (p-for-linear-trend 3x10-4). When compared to very fair skin colour, darker skin tones 
showed a graded increase in RPS (p-for-linear-trend 2·5x10-231). People with black skin colour 
showed an 11 unit increase in RPS (95%CI 9·4-12; p 5·7x10-48) when compared with people of 
very fair skin colour. Similarly, when compared to people with blonde hair, darker hair colours 
showed a graded positive association with RPS (p-for-linear-trend 2·2x10-155). People with black 
hair colour showed a 7-point increase in RPS when compared to people with blonde hair colour 
(p 4·8x10-122). There was a strong association of ethnicity with RPS. When compared to white 
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individuals, people self-described as non-white showed a more than 10 unit increase in RPS with 
Chinese (20, 95%CI 18-21; p 4·6x10-103) and black (15, 95%CI 14-16; p 1·6x10-158) people 
showing the largest effect sizes. However, within ethnic groups there was a wide spread of RPS 
values, overlapping with other groups (figure 2). Sex was not associated with RPS. 

Genome-Wide Association Study 

Discovery analysis 

A GWAS was performed to assess potential associations with standardised mean RPS. The 
discovery analysis included 37,067 individuals of European ancestry from the UK Biobank 
cohort. The genomic inflation factor was 1·071, and the linkage disequilibrium score regression 
intercept was 1·013 with a ratio of 0·09. Conditional analysis identified 20 independent 
autosomal genomic loci reaching genome-wide significance (p<5x10-8), the majority of which 
have previously been shown to associate with hair, skin and/or iris colour (table 1, figure 3).   

Positional and expression quantitative trait locus mapping in retina, skin and dermal fibroblasts 
were performed to identify candidate causal genes at each independent risk locus. This produced 
a set of 100 prioritised genes (supplementary table 3) which were then annotated in biological 
context. A number of these had existing entries in the GWAS Catalog[28], with enrichment for 
traits including hair, eye and skin colour, as well as various skin malignancies (supplementary 
figure 2). Enrichment for several Gene Ontology entries was also apparent, especially those 
related to melanin and pigmentation biological processes (supplementary figure 3). 

Replication analysis 

A replication GWAS was conducted in the independent EPIC-Norfolk Eye Study cohort.[16] 
The replication analysis included 4,273 individuals of European ancestry. Due to differences in 
genotyping platforms and imputation methods, three of the lead variants highlighted in the 
discovery GWAS were either unavailable or did not pass quality control in the replication dataset 
(rs173273, rs762948237, and rs766338951). Replication was therefore assessed for 17 out of the 
20 lead variants.  

The direction of effect was concordant for all 17 variants and highly correlated with estimates 
from the discovery analysis (Pearson’s rho 0·986 [95%CI: 0·961, 0·995]) (figure 4). Of the 17 
variants, 15 variants were significant at p<0·05, 8 remained significant after adjusting for 
multiple testing (p<0·05/17), and 2 achieved genome-wide significance (supplementary table 4).  

Phenome-Wide Association Study  

A PheWAS was performed within the discovery UK Biobank GWAS sub-cohort (n=37,067) to 
assess potential associations between RPS with 308 diseases. After correction for multiple 
testing (p<0·05/308), significant associations were observed for higher RPS (indicating more 
pigmentation of the retina) with decreased odds of ‘Actinic keratosis’ (OR: 0·87, 95%CI: [0·81, 
0·93]), ‘Primary Malignancy-Other Skin and subcutaneous tissue’ (0·90 [0·86, 0·94]), and 
‘Migraine’ (0·91, [0·87, 0·95]). Higher RPS was associated with greater risk of chronic 
obstructive pulmonary disease; (1·11, [1·05, 1·16]). A further 26 diseases were significantly 
associated at p<0·05, including decreased odds for ‘Primary Malignancy-Malignant Melanoma’ 
(p 0·02) (supplementary figure 4, supplementary table 5). 
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Mendelian randomization 

Two-sample MR analyses were performed to probe potential causal relationships between 
genetically predicted retinal pigmentation with outcomes of particular interest, as highlighted by 
the PheWAS analysis, using outcome summary statistics from Finngen[29] (supplementary table 
6). MR estimates (OR per SD change in RPS [95%CI]) provided evidence for protective causal 
effects on actinic keratosis (0·44, [0·24, 0·83]; p 0·01), basal cell carcinoma of the skin (0·59, 
[0·38, 0·92]; p 0·02), squamous cell carcinoma of the skin (0·38, [0·20, 0·73]; p 0·003), non-
melanoma skin cancer (0·40, [0·22, 0·73]; p 0·03) and malignant melanoma of the skin (0·60, 
[0·38, 0·94]; p 0·003).  

 

Discussion 

We introduce a metric, the RPS, which quantifies the background pigmentation of the retina 
from colour photographs along a continuous scale and is strongly associated with genetic 
variants linked to human skin, eye, and hair phenotypes with replication in an additional cohort. 
We also found that clinical variables such as height and refractive error were associated with 
RPS. The RPS captures the biological variability of retinal colour without recourse to the 
distinct, social and political constructs of race and ethnicity. There is a significant overlap in the 
distribution of RPS among all ethnic groups and a wide range of RPS for each ethnicity (figure 
2). Other than Chinese participants (a relatively small cohort in this dataset), each ethnicity has 
RPS scores that fall within each quintile of the RPS distribution. 
 
The Fitzpatrick classification of skin types (FST) scale has been adopted in computer science to 
describe diversity in imaging datasets and exposes underlying biases within AI algorithms. 
Studies have found that facial recognition AI performs worse on individuals with higher FST 
(darker skin colour)[12] and object detection software is worse at detecting pedestrians with 
higher skin phototypes from street traffic-derived images.[11] This led the Google Ethical AI 
team to recommend that all computer vision models report their performance across the range of 
FST.[30]  

There is some evidence that retinal colour affects model performance. A deep learning model 
trained to predict AMD found that patients with the minor allele at the rs12913832/HERC2 
locus, which was found in our study to be associated with retinal pigmentation, were more likely 
to have false positives for AMD.[31] Additionally, saturation values from retinal oximetry vary 
according to retinal pigmentation.[32] 

We found associations between the RPS and multiple genetic loci previously associated with 
skin, hair, and iris colour, suggesting that the RPS reflects the degree of retinal pigmentation. Of 
the 20 genome-wide significant loci identified by conditional analysis in the discovery GWAS 
analysis, 17 had previously studied associations with hair, skin or iris pigmentation, including 3 
that are known to be associated with oculocutaneous albinism (TYR, OCA2 and TYRP1).[33]. 
Furthermore despite differences in populations and fundus cameras used, we observed  
replication for these loci in the EPIC-Norfolk cohort and strong correlation between beta 
coefficients in the two cohorts. This suggests that despite a range of input data characteristics. 
the RPS  is still estimating retinal pigmentation Post-GWAS analyses for a set of 100 prioritised 
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causal genes demonstrated enrichment for various melanin and pigmentation pathways, as well 
as enrichment for pigmentation-related traits in the GWAS catalog.[28]   

The two most significantly associated loci in the discovery GWAS analysis were at HERC2 
(rs12913832), and SLC45A2 (rs16891982). These also reached genome-wide significance in the 
replication analysis. The former is known to influence melanin production via effects on OCA2 
expression, and iris colour,[34,35] whilst rs16891982 is a missense mutation in the SLC45A2 
gene.[36] rs12913832 modulates human pigmentation by affecting chromatin-loop formation 
between a long-range enhancer and the OCA2 promoter, leading to decreased expression of 
OCA2 and lighter pigmentation.[34] This variant is strongly associated with brown iris colour in 
European populations.[35] The SLC45A2 gene encodes a membrane protein involved in the 
transport of solutes including tyrosine (a precursor to melanin synthesis), which is implicated in 
the regulation of skin, hair and iris colour.[37,38] rs16891982 encodes a missense mutation in 
SCL45A2, and has been associated with skin pigmentation as well as a strong association with 
risk for cutaneous malignant melanoma.[39] 

Interestingly, the lead variants at PDE3A, SIK1 and IFT122 have not been previously associated 
with skin, hair or iris pigmentation, thus these new variants may be specifically related to retinal 
pigmentation. PDE3A has been previously associated with arteriolar tortuosity[40], SIK1 with 
regulation of circadian rhythms[41], and in vitro work has implicated alternative splicing for 
IFT122 to play a role in PRPF31 retinitis pigmentosa pathogenesis.[42]   

Diseases associated with skin pigmentation were also associated with retinal pigmentation. 
Actinic keratosis and cutaneous malignancy were inversely associated with increased RPS at 
phenome-wide significance. Malignant melanoma was also inversely associated with increased 
RPS, albeit only nominally, possibly due to the limited number of participants (n=643) with 
malignant melanoma. MR analyses furthermore provided evidence that genetic predisposition to 
increased retinal pigmentation is causally protective for skin malignancies, including malignant 
melanoma.  

The RPS may be utilised for several indications in the future. First, reporting RPS for AI training 
or test datasets could allow immediate description of the phenotypic diversity. Second, it could 
be used as a standard metric in evaluating differences in AI algorithm performance across a 
diverse set of input images similar to how FST has been used in dermatology. This has 
implications not just for ophthalmic diseases, but also other diseases using retinal imaging 
biomarkers, such as Alzheimer’s disease[43] and cardiovascular disease.[44] Limitations of our 
study are as follows. Both the UK Biobank and EPIC-Norfolk participants are predominantly 
self-reported white and European. However, 7·5% of UK Biobank participants equates to over 
3,000 people reporting non-white ethnicity. The RPS method is open source to allow application 
to other datasets to address this limitation. Secondly, RPS is currently dataset specific, so that 
absolute RPS values from different cohorts cannot be directly compared. This may be resolved 
with standardisation of the metric between camera types, using device specific raw RGB values. 
Finally, the performance of the RPS in retinal disease states will need to be assessed in future 
work. 

In conclusion, the RPS is a continuous metric of retinal pigmentation derived directly from a 
retinal image with associations with genes implicated in hair, eye, and skin colour. The RPS is 
more task specific than ethnicity to estimate retinal pigmentation. This may have implications for 
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AI algorithm development, testing, and for inclusion and algorithmic fairness across all fields of 
medicine that use retinal imaging as a biomarker.  
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Figures and Tables 

 
Table 1 

 

Table 1. Genome-wide significant associations with retinal pigment score in the UK Biobank 
cohort. Variants that met the replication threshold in the EPIC-Norfolk replication GWAS are 
highlighted in the ‘Replicated’ column. The last 3 columns indicate which variants have 
previously been shown to be associated with hair, skin or iris colour. 

 

         

Rs identifier chr:pos 
[hg19] 

EA/OA 
(EAF) 

Beta 
(95% 
CI) 

P Nearest gene Hair colour Skin 
colour 

Eye 
colour 

rs6670870 1:205155177 A/T (0·76) 
-0·09 (-
0·11; -
0·08) 

8·7E-36 DSTYK Yes   

rs173273 1:212446689 G/T (0·41) 
0·04 
(0·02; 
0·05) 

2·9E-08 PPP2R5A Yes Yes  

rs762948237 3:129178587 
TCTTC/T 
(0·87) 

0·05 
(0·03; 
0·07) 

2·3E-08 IFT122    

rs16891982 5:33951693 C/G (0·02) 
0·52 
(0·48; 
0·56) 

1·5E-135 SLC45A2 Yes Yes Yes 

rs12203592 6:396321 C/T (0·79) 
0·13 
(0·11; 
0·14) 

2·4E-59 IRF4 Yes Yes Yes 

rs62425803 6:134330249 G/A (0·81) 
0·05 
(0·04; 
0·07) 

1·4E-11 TCF21 Yes   

rs117756744 7:100277212 G/A (0·98) 
0·18 
(0·14; 
0·23) 

5·4E-17 GNB2 Yes Yes  

rs1325117 9:12613472 G/A (0·36) 
0·06 
(0·05; 
0·07) 

3·0E-19 TYRP1;LURAP1L Yes Yes  
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rs11023814 11:16007053 C/G (0·43) 
0·04 
(0·03; 
0·06) 

2·2E-12 SOX6  Yes  

rs150527451 11:68817897 G/A (0·89) 
0·16 
(0·14; 
0·18) 

1·7E-53 TPCN2 Yes Yes  

rs1060435 11:68855595 A/G (0·59) 
0·07 
(0·05; 
0·08) 

1·1E-24 TPCN2 Yes Yes Yes 

rs747572 11:87885082 A/G (0·63) 
0·05 
(0·04; 
0·06) 

4·9E-14 CTSC Yes Yes  

rs1126809 11:89017961 G/A (0·7) 
0·07 
(0·06; 
0·09) 

5·0E-27 TYR Yes Yes Yes 

rs4762973 12:20710145 A/G (0·75) 
0·06 
(0·04; 
0·07) 

7·8E-15 PDE3A    

rs10771034 12:23979199 T/A (0·45) 
-0·04 (-
0·06; -
0·03) 

1·1E-12 SOX5 Yes Yes  

rs766338951 13:95169060 
CT/C 
(0·69) 

0·08 
(0·06; 
0·09) 

4·6E-30 DCT Yes Yes  

rs1800407 15:28230318 C/T (0·91) 
0·11 
(0·09; 
0·13) 

1·8E-23 OCA2 Yes Yes Yes 

rs12913832 15:28365618 A/G (0·22) 
0·44 
(0·43; 
0·46) 

0·0E+00 HERC2 Yes Yes Yes 

rs7220155 17:79606020 C/T (0·62) 
-0·06 (-
0·07; -
0·05) 

9·2E-22 TSPAN10 Yes Yes  

rs1785433 21:44783282 A/G (0·65) 
-0·04 (-
0·05; -
0·02) 

1·3E-08 SIK1    
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Figure 1 

 

Figure 1. Schematic showing the method to generate the retinal pigmentation score (RPS) from a 
colour fundus image. Input images are fed into the deep learning algorithm to generate 
segmentation masks. These are added together to make a retinal background mask, which is then 
transformed into L,a,b colorspace. The chromaticity vectors are then extracted and transformed 
by a principal component analysis model to create the RPS.  
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Figure 2 

 

Figure 2. a. Randomly sampled colour fundus photographs from each self-reported ethnicities by 
quintiles of retinal pigment score (RPS) across the entire distribution of RPS for the UK Biobank 
cohort and each associated self-reported ethnicity of the participant. The retinal background 
colour and the RPS is shown at the bottom of each fundus photograph. b. Normalised kernel 
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density estimation plot of the distribution of RPS for all participants grouped by self-reported 
ethnicity as reported in the UK Biobank. Relative frequencies are normalised so the area under 
each curve is equal for each ethnicity. 

 

Figure 3 

 

Figure 3. Manhattan plot of GWAS results. Lead variants identified by GCTA-COJO are 
annotated with the nearest gene. Points are truncated at -log10(p) = 70 for clarity. The dashed 
red line indicates genome-wide significance (p = 5 x 10-8). 
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Figure 4 

Figure 4. Comparison of betas expressed as change in standard deviation of mean RPS for lead 
variants identified from the discovery (UK Biobank) genome-wide association study (GWAS) 
with their corresponding betas in the replication (EPIC-Norfolk) analysis, with 95% confidence 
intervals. Variants meeting the Bonferroni-adjusted replication significance threshold (p = 
0·05/17 variants) in the EPIC-Norfolk GWAS are shaded black. The nearest gene is annotated 
for variants achieving genome-wide significance. 
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