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Abstract
Context: Thyroid eye disease (TED), a vision-threatening and disfiguring autoimmune process, has thwarted our efforts to understand its patho-
genesis and develop effective and safe treatments. Recent scientific advances have facilitated improved treatment options.
Objective: Review historically remote and recent advances in understanding TED.
Design/Setting/Participants: PubMed was scanned using search terms including thyroid-associated ophthalmopathy, thyroid eye disease, 
Graves’ orbitopathy, autoimmune thyroid disease, and orbital inflammation.
Main outcome measures: Strength of scientific evidence, size, scope, and controls of clinical trials/observations.
Results: Glucocorticoid steroids are widely prescribed systemic medical therapy. They can lessen inflammation-related manifestations of 
TED but fail to reliably reduce proptosis and diplopia, 2 major causes of morbidity. Other current therapies include mycophenolate, rituximab 
(anti-CD20 B cell-depleting monoclonal antibody), tocilizumab (interleukin-6 receptor antagonist), and teprotumumab (IGF-I receptor inhibitor). 
Several new therapeutic approaches have been proposed including targeting prostaglandin receptors, vascular endothelial growth factor, mTOR, 
and cholesterol pathways. Of potentially greater long-term importance are attempts to restore immune tolerance.
Conclusion: Despite their current wide use, steroids may no longer enjoy first-tier status for TED as more effective and better tolerated medical 
options become available. Multiple current and emerging therapies, the rationales for which are rooted in theoretical and experimental science, 
promise better options. These include teprotumumab, rituximab, and tocilizumab. Restoration of immune tolerance could ultimately become the 
most effective and safe medical management for TED.
Key Words: Graves’ disease, IL-6 receptor, orbit, ophthalmopathy, autoimmunity, IGF-I receptor, TSH receptor, teprotumumab, glucocorticoids
Abbreviations: AE, adverse event; CAS, clinical activity score; CD, cluster of differentiation; EUGOGO, European Group on Graves’ Orbitopathy; FcRn, neonatal 
fragment crystallizable receptor; GD, Graves’ disease; IGF-IR, IGR-I receptor; MHC, major histocompatibility complex; MMF, mycophenolate mofetil; OF, orbital 
fibroblasts; QoL, quality of life; RANTES, Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted; TED, thyroid eye disease; TSHR, thyro-
tropin receptor; VEGF, vascular endothelial growth factor

Thyroid eye disease (TED, also known as thyroid-associated 
ophthalmopathy and Graves’ orbitopathy) represents a 
disfiguring and potentially sight-threatening condition most 
commonly associated with Graves’ disease (GD) (1)(Fig. 1). In 
some instances, TED can accompany Hashimoto thyroiditis. 
It can inflict substantial physical and emotional morbidity, 
leading to reduced quality of life (2). Major shortfalls in the 
management of TED stem from health care provider un-
familiarity with the disease, leading to incorrect diagnosis 
and therapeutic delays. This is especially true in patients 
not manifesting obvious thyroid autoimmunity and those in 
whom subtle signs of periocular inflammation may be mis-
interpreted. Timely implementation of appropriate medical 
treatment appears to offer the best clinical outcomes.

TED follows a characteristic disease course, described more 
than 70 years ago by Rundle and Wilson (3). After typically 
presenting with subtle signs and symptoms of activity dom-
inated by eyelid retraction, inflammation, and tissue swelling/
congestion, some patients with more severe disease develop 
proptosis and/or diplopia. Mild TED usually does not require 

systemic medical therapy and can be managed with local care, 
such as eyedrops, compresses, tobacco smoke avoidance, and 
eye protection against strong light and wind. Systemic med-
ical therapy, most frequently glucocorticoids administered 
either as oral or IV preparations, is typically implemented 
during the active phase of moderate to severe, symptomatic 
disease and urgently with development of compressive optic 
neuropathy. Steroids lessen inflammation-related signs and 
symptoms of TED (4). Other currently used medical therapies 
including mycophenolate (MMF), rituximab, selenium, and 
tocilizumab, may also reduce inflammation and other com-
ponents of TED activity. Importantly, none of these off-label 
medications reliably improves diplopia or proptosis and thus 
none reduces TED severity. Disease activity/progression cul-
minates after 1 to 4  years in chronic, stable disease, when 
worsening and clinical activity abate. It is during the chronic 
phase that surgical rehabilitation has been widely viewed as the 
only therapeutic option remaining for residual disease. These 
procedures, including orbital decompression, strabismus sur-
gery, eyelid repair, and a variety of cosmetic strategies, are 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-6279-9685
mailto:terrysmi@med.umich.edu?subject=


S14 The Journal of Clinical Endocrinology & Metabolism, 2022, Vol. 107, No. S1

typically performed sequentially (5). Any of these surgeries 
can reactivate TED and lead to imperfect results. Thus, better 
medical treatment options are very much necessary. But de-
velopment of targeted and optimally effective drugs requires 
more complete understanding of disease pathogenesis.

This paper attempts to briefly review basic and clinical re-
search leading directly to development of targeted therapies 
for TED. It should provide a roadmap followed as scientific 
insights have emerged from many laboratories. These devel-
opments have yielded an underlying rationale for specific 
TED treatments.

Deciphering the Pathogenesis of TED
Identifying Pathogenic Autoantigens
Detailed understanding of the molecular and cellular 
basis for TED has eluded investigators for many decades. 
The relationship between thyroid autoimmunity in GD 
and TED was explored in the past. Initial connections be-
tween thyroid and orbit were identified once shared thy-
roid autoantigen expression, including thyroglobulin and 
TSH receptor (TSHR), were detected in orbital tissues (6, 
7). Although the central role for TSHR in GD is now well 
established, its mechanistic involvement in TED is less clear 
cut (Fig. 2). There is generally good correlation between 
TED activity/severity and detectable anti-TSHR antibodies 
(8), although  thyroid-stimulating immunoglobulins (TSIs) 
are sometimes undetectable in rare patients with severe TED 
(9). But the importance of TSI actions within the orbit and 
tissues peripheral to thyroid can only be estimated, based 

largely on in vitro studies, in addition to inferences emerging 
from improved preclinical models (10).

IGF-I receptor (IGF-IR) has been implicated in TED devel-
opment, representing a second autoantigen (11). IGF-IR is 
overexpressed by orbital fibroblasts and B and T cells in GD 
(12-14). TSHR and IGF-IR form a physical and functional 
signaling complex (12). Importantly, pathogenic signaling 
initiated at either receptor is dependent on IGF-IR activity, 
suggesting a mechanism involving receptor:receptor cross-
talk and perhaps TSHR transactivation of IGF-IR (12). In 
addition, anti-IGF-IR autoantibodies have been detected by 
some investigators in patients with GD (11, 15-17). In con-
trast, other laboratory groups have failed to experimentally 
connect these autoantibodies to GD or TED pathogenesis 
(18, 19). The central involvement of IGF-IR in mediating 
GD autoantibody-provoked signaling provided the core ra-
tionale for targeting IGF-IR therapeutically. It remains uncer-
tain whether functional, activating autoantibodies directed 
at epitopes on IGF-IR play an important role in disease de-
velopment. That issue has generated substantial controversy 
that remains unresolved. The most likely explanation for 
disparate findings emerging from various laboratories con-
cerning IGF-IR activating autoantibodies is wide variation 
in experimental design, culture conditions, and target cell-
types used (12, 17, 18, 20-22). Although the precise mech-
anisms through which TED pathogenesis involves TSHR and 
IGF-IR remain to be clarified, important evidence clearly im-
plicates both pathways. Potential mechanisms through which 
TSHR:IGF-IR interactions occur and their impact on TED 
are detailed in another paper appearing in this issue (23). 
Importantly, targeting IGF-IR has yielded an effective thera-
peutic strategy.

Proposed Mechanisms Underlying Disease in the 
TED Orbit
Importance of circulating and orbit-infiltrating B cells, T cells, 
and mast cells in the pathogenesis of TED has been investi-
gated for many years by several laboratory groups (24-26). 
By virtue of their cytokine expression repertoires and inter-
actions with the residential fibroblast population within the 
orbit, lymphocytes are viewed as critical to the initiation and 
perpetuation of inflammation and tissue remodeling occurring 
in TED. Mast cells are also implicated in disease pathogenesis 
(27). HMC-1 mast cells activate orbital fibroblast production 
of hyaluronan and PGE2 (28).

Less well-studied in the context of TED have been mono-
cytes and their putative derivatives, cluster of differenti-
ation 34+ (CD34+) fibrocytes (29). The fibroblast population 
inhabiting the TED orbit comprises distinct subsets which 
can be segregated based on either CD90 (Thy-1) (30, 31) or 
the myeloid cell marker, CD34 (32). Thy-1+ orbital fibroblasts 
differentiate into myofibroblasts when activated by TGF-
β and the activation of the Smad signaling pathway (33), 
whereas Thy-1- fibroblasts differentiate into mature adipo-
cytes when exposed to peroxisome proliferator-activated re-
ceptor γ agonists (34). CD34+ orbital fibroblasts (CD34+ OF) 
are putative derivatives of circulating, bone marrow-derived 
CD34+ fibrocytes, and cells involved in wound healing, 
scar formation, and fibrosis. Fibrocytes cultivated from the 
blood exhibit a CD34+ CXCR4 + TSHRhigh Collagen 1+ pheno-
type. They possess substantial antigen presenting and T-cell 
costimulatory capacity (35, 36). CD34+ OF are uniquely 
identified in the TED orbit and express multiple thyroid 

Figure 1. Clinical manifestations of Graves’ disease. (A) Diffuse 
moderately enlarged goiter in a woman with hyperthyroidism from 
Graves’ disease. (B) Moderate to severe thyroid eye disease including 
bilateral proptosis, periorbital edema, scleral injection, and lid retraction 
in this patient. (C) Pretibial dermopathy of the plaque form affecting both 
legs in this patient. (D) Acropachy with fingernail clubbing. From N Engl 
J Med, Smith T.J. and Hegedus L. Graves’ disease. 375; 1552-1565. 
Copyright © (2016) Massachusetts Medical Society. Reprinted with 
permission.
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autoantigens (37, 38). These cells coexist with CD34- OF. The 
interplay between CD34+ OF and CD34- OF subsets results 
in modulation of the CD34+ OF gene expression repertoire, 
mediated through the Slit2/roundabout 1 pathway (39, 40). 
Slit2, a TSH-inducible glycoprotein, is expressed and released 
by CD34- OF and downregulates several immune-related 
proteins in CD34+ OF. These include thyroid autoantigens 
such as thyroglobulin, TSHR, thyroperoxidase, and sodium 
iodide symporter. Further, fibrocytes and, to a lesser degree, 
CD34+ OF, display CD80, CD86, PD-L1, and major histo-
compatibility complex II (MHC II) proteins, the levels of 
which are also downregulated by Slit2 (36). Fibrocytes and 
CD34+ OF express and release several important cytokines 
(40). These include IL-1β, IL-6, IL-8, IL-12, and IL-23. Levels 
of specific cytokines in CD34+ OF are regulated by Slit2 (41).

Debate continues as to whether immune responses 
occurring in GD and TED are similar or identical in thy-
roid and orbit, respectively. Recent evidence suggests that 

peripheral Th1, Th2, and Th17 biased responses can dom-
inate GD, perhaps at different disease stages. Further, auto-
immune processes occurring in rodent models of GD may 
diverge from those in human beings. Th17 cells have been 
identified as playing potentially important roles in orbital 
tissue activation (42). IL-17A can induce Regulated upon 
Activation, Normal T Cell Expressed and Secreted (RANTES) 
expression in GD-OF (43) and may promote both inflamma-
tion and fibrosis in TED (44). Both autoreactive immuno-
globulins and T cells appear to promote inflammation and 
remodeling of TED orbital tissues (1, 45). CD4+ and CD8+ T 
cells infiltrate the orbit as do B cells, CD34+ fibrocytes, and 
mast cells (27, 32, 44, 46, 47). These infiltrating cells gen-
erate several cytokines that act on residential fibroblasts to 
induce TED-relevant cytokines. GD-OF exhibit particularly 
robust responses to molecular cues within the diseased orbit 
(48, 49). They generate prostanoids, including PGE2, when 
engaged with IL-1β or CD154. These responses suggest that 

Figure 2. Proposed theoretical model of thyroid eye disease (TED) pathogenesis. Orbital fibroblasts exhibiting robust responses to inflammatory 
mediators appear to represent the central effector cells. CD34+ fibroblasts derived from CD34+ CXCR4+ collagen 1 + fibrocytes, monocyte-derived 
progenitors traffic from bone marrow to the TED orbit. Fibrocytes express several thyroid-specific proteins, including thyrotropin receptor (TSHR), 
thyroglobulin, thyroperoxidase, and sodium-iodide symporter and express class II major histocompatibility complex (MHC). Fibrocytes and orbital 
fibroblasts undergo differentiation into myofibroblasts and adipocytes. Slit2 expressed and released by CD34- fibroblasts down regulates expression 
of many genes expressed by fibrocytes and CD34+ fibroblasts. Interleukins 1β, 6, 8, 10, 12, 16, and 23, tumor necrosis factor α, and Regulated 
on Activation, Normal T Expressed and Secreted (RANTES), CXCL-12, and CD40-CD154 are expressed in the TED orbit by various cell types and 
contribute to the inflammatory milieu. CD34+ and CD34- orbital fibroblasts cell-surface display insulin-like growth factor-I receptor (IGF-IR) and express 
3 mammalian hyaluronan synthase isoenzymes and UDP glucose dehydrogenase and synthesize hyaluronan. This glycosaminoglycan underlies in part 
orbital tissue expansion in TED. Hyaluronan synthesis localizes primarily to CD34- orbital fibroblasts.
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prostaglandin endoperoxide H synthase-2, the inflammatory 
cyclooxygenase, might be therapeutically targeted in TED 
(50, 51). A number of proinflammatory cytokines and their 
receptors remain relatively unexplored as clinical targets for 
TED, including IL-1β, IL-1 receptor, IL-1 receptor antagonist, 
IL-8, IL-12, IL-16, IL-17A, and IL-23, RANTES, and inter-
feron γ (40, 43, 52-55). Each appears potentially relevant to 
TED because all induce target genes in GD-OF at both tran-
scriptional and posttranscriptional levels (56, 57).

Because many of these cytokines comprise regulatory path-
ways mediating numerous types of immune responses, thera-
peutically altering their activities could result in off-target 
consequences. Thus, one could anticipate substantial barriers 
in bringing novel or repurposed cytokine-targeting medica-
tions for TED to the clinic.

Oxidative stress plays important roles in autoimmune 
disease (58). TED represents a process in which oxidative 
stress is likely to be involved (59) and therefore might be 
targeted therapeutically. Caveolin-1 is downregulated in or-
bital adipocytes, whereas deiodinase 3 and hypoxia-inducible 
factor-1α are upregulated in TED-derived orbital adipose 
tissue (60). Hypoxia-inducible factor-1α activation has been 
detected in cigarette smokers developing TED (61). Thiol-
disulfide homeostasis may be disrupted in active TED (62). 
The increased oxidative stress in TED has led some investiga-
tors to propose therapeutic antioxidants for the disease (63). 
It is possible that the benefit of dietary selenium supplemen-
tation in deficient patients with TED results from the antioxi-
dant properties of this element (64).

Among the emerging factors determining immune func-
tion and underlying autoimmune diseases are the microbio-
logical inhabitants of the human gut, oral mucosa, and other 
tissue niches (65-68). Attention has been paid to viral con-
stituents of the gut (69). In aggregate, findings to date suggest 
that probiotic therapies might benefit patients with auto-
immune phenotypes (70). The potential relationship between 
thyroid autoimmunity, TED, and microbiota has prompted 
several studies yielding interesting relationships (71). In 
animal models of TED, gut microbiota may in part deter-
mine immune responses associated with disease development 
(72). Changes in gut microbiota have been identified in pa-
tients with severe, active TED (73). Propionic acid production 
by gut bacteria has been linked to alterations in Th17/Treg 
balance in GD (74). Altering gut flora may alter the resulting 
disease phenotype in animal models of GD (75). Whether 
the impact of gut flora modification in animal models of GD 
will translate into treating patients with TED has yet to be 
demonstrated.

Vascular endothelial growth factor (VEGF) is elevated in 
patients with TED (76). Levels of VEGF receptor 2 mRNA 
and VEGF-A, VEGF-C, and VEGF-D are increased in or-
bital tissues from patients (77). Tear VEGF levels are elevated 
in patients with active TED and are reduced in response to 
glucocorticoids (78).

Current Therapeutic Landscape for TED
Medical treatments historically available for TED have gener-
ally failed to meet all needs of many patients, especially those 
with moderate to severe, debilitating, and vision-threatening 
disease (Fig. 3). Most cases of mild TED can be effectively 
managed with conservative, local measures and do not require 
systemic medications. For moderate to severe active TED, 
frequently used drugs exhibit broad anti-inflammatory and 

immune-suppressing properties, thus limiting both their dos-
ages and duration of exposure. The concerning properties and 
limitations of these drugs have driven attempts to identify new 
options for targeted therapy through better understanding of 
TED pathogenesis. The array of off-label medications cur-
rently in use represents in large part several “old standbys.” 
Many of these lack adequately powered, placebo-controlled 
studies validating their effectiveness. Newly introduced and 
repurposed drugs and others “waiting in the wings” promise 
a dramatically changed treatment paradigm for TED in the 
immediate future.

Steroids Remain the Most Frequently Used 
Systemic Medications for TED
Because inflammation is frequently a dominant presenting 
feature of TED, enthusiasm for steroid use, beginning decades 
ago, made good sense (79). Active, moderate to severe, pro-
gressive TED is frequently treated with relatively high-dosage, 
IV glucocorticoids (80, 81). Steroids exemplify the broadly 
targeted therapies currently in wide use for TED, given the ex-
tensive clinical experience with them, both in formal studies 
and in real-world patient care (82). In addition, they enjoy 
relatively low cost and wide availability. Like other nonspecific 
anti-inflammatory agents, steroids are used off-label for TED. 
Glucocorticoids act through both nuclear and plasma mem-
brane receptors (Fig. 4). They induce or attenuate expression 
of several genes, including those encoding proteins involved 
in proinflammatory pathways in T and B cells, GD-OF, and 
CD34+ fibrocytes. Many of these glucocorticoid steroid ef-
fects are mediated through their regulation of transcription 
factor, nuclear factor-κB (83-85). The multiple consequential 
genes lying downstream from glucocorticoid receptor/nuclear 
factor-κB interactions are likely to underly, in large part, the 
common side effects associated with steroid use in TED (86, 
87). These off-target consequences severely limit their dosages 
and treatment duration (1, 88-90).

Pulse IV administration of steroids is preferred over oral 
dosing based on studies showing greater efficacy and a re-
duced side effect profile (91, 92). Importantly, steroid popu-
larity, regardless of administration route, rests largely on 
common interpretations of results from studies/trials not 
involving placebo controls where clinical activity scores (CAS) 
improve. Unfortunately, little evidence exists demonstrating 
the reliable effectiveness of steroids in TED beyond reducing 
the consequences of inflammation, including pain and ocular 
discomfort. Many facets of clinical activity typically improve 
as a consequence of natural disease course, as is pictorialized 
by the Rundle curve (3). Only a single, placebo-controlled 
clinical study of steroids has been reported. That report by 
van Geest et  al (93) included 15 patients with moderate-
severe TED. The authors concluded steroid superiority over 
placebo based on responses observed in 6 patients treated 
with methylprednisolone (6 g total) over 3 months compared 
with 9 patients receiving placebo. Further, their conclusions 
were based on outcomes heavily weighted on inflammation 
and its consequences over a 48-week observation period. 
Improvement in other parameters, such as proptosis and dip-
lopia, which represent important sources of morbidity and 
diminished patient quality of life (QoL), were not essential for 
achieving response in this study. Many more recent studies of 
steroids have focused on establishing the most effective and 
safest dosage and route of administration. These have uni-
formly not included placebo controls (92).



The Journal of Clinical Endocrinology & Metabolism, 2022, Vol. 107, No. S1 S17

Widespread availability of glucocorticoids, prescriber fa-
miliarity with their use in TED, and limited access to newly 
developed biologicals perpetuate calls for their first-line 
status in Europe. The recently published European Group 
on Graves’ Orbitopathy (EUGOGO) guidelines for medical 
treatment of TED list high-dosage steroids in combination 
with MMF as “first-line therapy” (94). Recommendation for 
this 2-drug approach appears to rest on a single study at 4 dif-
ferent institutions where the medications were combined (95). 
The relative strength of evidence supporting this combined 
therapy for TED is discussed in the following section. Another 
aspect of European preference for steroids stems from the un-
availability of 1 newly available therapy. Teprotumumab has 
not yet been approved for clinical use outside of the United 
States. Many authors agree that steroids may be very useful in 
patients acutely experiencing vision threatening compressive 
optic neuropathy.

Steroid therapy in TED is frequently associated with devel-
opment or worsening carbohydrate intolerance/diabetes mel-
litus, hypertension, Cushing syndrome, increased infections, 
thrush, psychiatric events, and accelerated bone loss (88, 96). 
These side effects are similar to those widely recognized in 
patients undergoing systemic, supraphysiological steroid 
therapy for other medical indications. In addition, high-dose 
IV pulse steroids can result in severe liver toxicity, although 
this is rare (89, 90). From aggregate evidence, one can con-
clude that high dosages of steroids, administered either orally 

or IV, are associated with increased incidence of side effects 
(4, 80).

In summary, many steroid-treated patients with TED ex-
perience reduced CAS by  diminishing inflammatory-related 
signs and symptoms of active, progressive TED. Benefit of 
steroids is limited by the lack of consistent response regarding 
proptosis and diplopia, both of which greatly impact the 
morbidity of TED. Importantly, steroid therapy in TED does 
not appear to improve disease outcomes or alter its clinical 
course. Thus, many steroid-treated patients with relatively 
severe TED must undergo subsequent surgical procedures, 
typically performed once the active phase has run its course. 
Further, exposure to therapeutic dosages of glucocorticoids 
can be associated with potentially serious side effects. Recent 
progress in identifying more effective and safer therapeutic 
options has stirred controversy as to the likely future role of 
systemic steroids in TED (80).

Mycophenolate
Antimetabolites such as MMF have been used for some time 
to immunosuppress renal transplant patients and thus reduce 
organ rejection (97). MMF is the pro-drug of mycophenolic 
acid that inhibits type II inosine monophosphate dehydro-
genase, the rate limiting-enzyme in de novo GTP nucleotide 
synthesis. This enzyme is expressed widely in activated B and 
T lymphocytes (98-100). MMF inhibits PI3K/AKT/mTOR 
and thus attenuates the actions of IL-2 and IL-1β (101). Thus, 

Figure 3. Use of current therapies and those under development in active and stable, moderate to severe TED. Medical treatment for mild active TED 
is typically limited to local, nonsurgical measures. In contrast, management of moderate to severe, active TED often involves systemic medications. 
Some of these drugs can reduce disease activity (signs and symptoms related to inflammation) but most appear relatively ineffective in stable 
TED. Preliminary reports suggest that teprotumumab may also be effective during stable disease, but clinical trials will be necessary to establish its 
effectiveness in nonprogressive TED. Relative size of question marks reflects the relative uncertainty of specific treatment effectiveness in stable TED. 
Surgery is typically reserved for TED reaching the stable phase. The exception is the development of vision loss from compressive optic neuropathy 
or severe anterior eye surface deterioration. Rituximab (anti-CD20 displayed on B cells), tocilizumab (IL-6 receptor inhibitor), teprotumumab, VRDN-001, 
linsitinib (IGF-IR inhibitors), K1-70 (TSHR inhibitor), RVT-1401 and HBM9161 (FcRn antagonists), CFZ533 (anti-CD40 antagonist), and TSHR and IGF-IR 
vaccines (for potentially restoring immune tolerance).

Glucocorticoids
Hydroxychloroquine

Mycophenolate
Rituximab

Statins

CFZ533
Bimatoprost

HBM9161
IGF-1R vaccines

K1-70
Linsitinib
RVT-1401

Tocilizumab
TSHR vaccines

VRDN-001

Teprotumumab

Surgery
• Orbital decompression
• Strabismus surgery
• Eyelid repair
• Cosmetic procedures

Medical therapy and/or orbital radiation

Urgent decompression for optic neuropathy

Thyroid Eye Disease Duration

Active phase Stable phase



S18 The Journal of Clinical Endocrinology & Metabolism, 2022, Vol. 107, No. S1

its cellular targets, by and large, are indiscriminate, leading to 
a wide scope of immunologic consequences.

MMF was repurposed for use in TED, a practice with 
thinly documented benefit as the rationale derives from 
limited studies. A randomized clinical trial comparing MMF 
and steroids in 174 patients with moderate to severe TED 
was conducted in China (96). The primary outcome was 
“overall response,” consisting of at least 3 of the following 
elements: improvement in CAS ≥ 2 points/disease inactiva-
tion (CAS ≤ 3), soft-tissue improvement by 1 grade of eyelid 
swelling, eyelid erythema, conjunctival redness/edema, prop-
tosis improvement ≥ 2  mm, eye movement improvement, 
diplopia improvement, and increased visual acuity ≥ 2/10, ad-
judicated at weeks 12 and 24. Analysis of week 24 data indi-
cates a higher overall response rate for MMF compared with 
steroids. CAS, diplopia, and proptosis (2-3  mm reduction) 
responses were greater in those receiving MMF. The same 
study found more modest but sizable improvement in these 
parameters following glucocorticoid therapy. Another, ran-
domized, single masked study compared methylprednisolone 

(cumulative 4.5 g) alone over 6 weeks versus in combination 
with MMF (cumulative 120  g) for 24 weeks (EUDRACT 
number 2008-002123-93) in 164 patients at 4 European cen-
ters (95). The primary outcome was response rate at 12 and 
24 weeks, including CAS reduction of > 2 parameters (eyelid 
swelling, proptosis, lid width, diplopia grade) in the absence of 
worsening of any parameter, and sustained response at week 
36. Addition of MMF to steroid offered no additional benefit 
to glucocorticoids alone in the intention-to-treat population 
at weeks 12 and 24 and week 46 relapse rates. Post hoc ana-
lysis of week 24 data suggested that MMF combined with 
methylprednisolone increased response rate compared with 
steroids alone. Safety evaluation of MMF in TED, whether as 
a single agent or combined with steroids, was also limited in 
terms of observational duration and numbers of patients fol-
lowed. Importantly, primary responses in the European study 
did not require meeting disease severity endpoints. Because 
neither study was placebo controlled, the potential contribu-
tions of either medication, administered as a single agent or 
in combination, to naturally occurring clinical improvement 

Figure 4. Putative molecular targets for current medical therapies and those under development. Glucocorticoid steroids target many cell types, where 
they induce several target genes while inhibiting the expression of others. Many of their anti-inflammatory actions are mediated through nuclear factor-
κB. Other agents are more target-specific, such as mycophenolate (targets inosine monophosphate dehydrogenase [IMPDH] and GTP synthesis in 
lymphocytes), rituximab (anti-CD20 displayed on B cells), tocilizumab (IL-6 receptor inhibitor), teprotumumab, VRDN-001, linsitinib (IGF-IR inhibitors), K1-70 
(TSHR inhibitor), RVT-1401, HBM9161 (FcRn antagonists), CFZ533 (anti-CD40 antagonist), and TSHR and IGF-IR vaccines. It is possible that additional, 
as-yet unidentified targets may play important roles in mediating clinical responses.
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cannot be determined unambiguously. The Chinese study re-
vealed improved proptosis and diplopia, responses not seen 
in reports from other clinical studies. Smith (102) commented 
on what he considered to be important weaknesses in the ex-
isting evidence supporting the 2-drug therapy proposed by 
EUGOGO (94). Those comments stressed the importance 
of evenhandedness in evaluating newly introduced medica-
tions for TED, a goal he felt was not achieved by the guide-
line authors. Those authors have in turn responded, noting 
that teprotumumab availability is currently limited to North 
America. Importantly, they left unaddressed the limited evi-
dence for efficacy and lack of adequate long-term follow-up 
specifically regarding combined steroid and MMF therapy 
(103). An analysis of safety data from the published trials 
with MMF suggests that the drug, alone or in combination 
with steroids, may be well-tolerated (104).

Untargeted Therapies
Hypercholesterolemia has been associated with a seemingly 
vast array of human diseases, including those of established 
or putative autoimmune nature (105, 106). An approach to 
potentially enhance the effectiveness of steroids in TED was 
examined in a study in which statins were administered as 
therapy in 88 patients with TED and low-density lipopro-
tein cholesterol levels between 2.97 and 4.88 mmol/L in an 
open label, phase 2 trial conducted at a single institution 
(STAGO) (107). Patients were randomized to receive either 
methylprednisolone 500  mg/wk for 6 weeks followed by 
250 mg/wk for an additional 6 weeks alone or in combin-
ation with oral atorvastatin (20 mg/d) for 24 weeks. Primary 
response was achieving 2 of the following: (1) exophthalmos 
reduction ≥ 2 mm or more; (2) clinical activity score reduc-
tion ≥ 2 points; (3) eyelid aperture reduction ≥ 2  mm; (4) 
disappearance/improvement of diplopia; and (5) improved 
visual acuity ≥ 0.2 decimals. The investigators interpreted 
their study results as demonstrating that the addition of 
atorvastatin to high-dose steroids improves the clinical out-
comes of patients with TED and hypercholesterolemia. They 
further state an intention to conduct a phase 3 trial where 
patients with TED are included, regardless of whether they 
exhibited elevated serum cholesterol levels. Concern arises for 
administering 2 medications with potentially severe side ef-
fects, especially to patients without medically indicated treat-
ments for lipid abnormalities. Such an approach could limit 
enthusiasm for participation in such a study. The potential for 
statins to cause autoimmune diseases (108, 109) makes them 
a particularly dubious choice as therapy for TED. Several ex-
perimental studies suggest that lowering serum cholesterol 
levels, in and of themselves, may be ineffective in altering the 
development or activity/severity of autoimmune diseases such 
as TED (110). In any event, calls for caution in the use of 
statins in individuals with autoimmune diseases have been 
voiced (111).

Hydroxychloroquine has been used to treat cultured 
GD-OF and OFs from healthy donors. The drug inhibited 
cell proliferation, adipogenesis, hyaluronan accumulation, 
and autophagy while enhancing apoptosis in GD-OF (112). 
Whether these observations suggest therapeutic utility in TED 
is uncertain.

Steroid-sparing drugs such as methotrexate were exam-
ined for their potential to reduce needed dosage of IV 
methylprednisolone in 24 moderate-to-severe TED patients 

with vision, inflammation, strabismus and appearance (VISA) 
5.5/10 in a retrospective study (113). All patients received IV 
methylprednisolone combined with a steroid-sparing drug. 
The authors reported reduction in the methylprednisolone 
dosage (mean, 2.72  g) compared to the EUGOGO recom-
mended 4.5 g in 22 patients.

Birth of Biological Therapies for TED
Rituximab
The relatively poor effectiveness of steroids and other 
nonspecific medications for TED in reliably reducing proptosis 
and diplopia has resulted in a search for better, more specific 
therapies with fewer side effects. Among these, rituximab, an 
anti-CD20 monoclonal antibody targeting a subset of B cells, 
was among the first examined, initially in case reports/series 
(114, 115), and subsequently in 2 small, single institution 
trials (116, 117). The study from Milan examined 32 patients 
randomized to receive either methylprednisolone (7.5  g) or 
rituximab (2 g or 500 mg) (116). The primary endpoint was 
improvement in CAS, whereas the secondary responses in-
cluded changes in proptosis, diplopia, eye muscle motility, 
lid fissure, and QoL score at week 24 following treatment 
initiation. Rituximab was found more effective than ster-
oids in reducing CAS (116). The other trial, conducted at 
the Mayo Clinic, Rochester, MN, compared rituximab (2 g) 
with placebo in 25 patients and failed to detect differences 
in inflammation responses between the 2 treatment arms at 
24 weeks (117). Neither study revealed a proptosis response. 
Differences in patient age, disease duration, and TSH receptor 
antibody test levels were postulated as potential explanations 
for the divergent results from the 2 trials.

In aggregate, the existing evidence fails to unambiguously 
support rituximab as superior to placebo or glucocorticoids 
in the treatment of active TED. Further, anti-CD20 B-cell de-
pletion does not appear to reliably improve either proptosis 
or diplopia, 2 major manifestations negatively affecting QoL. 
Given the absence of a placebo comparator in the Italian 
study, it is not possible to determine whether either steroids 
or rituximab offers clinical benefit beyond that attributable 
to the natural course of TED (3). Thus, further consideration 
of rituximab as therapy for TED will require additional clin-
ical studies involving larger patient cohorts and appropriate 
controls.

Teprotumumab
Rationale for therapeutically targeting IGF-IR in TED was 
born out of empirical observations suggesting that this tyro-
sine kinase receptor was involved in the pathogenesis of GD 
and its connective tissue manifestations (118). The thera-
peutic landscape for TED changed following 2 clinical trials 
for teprotumumab (119, 120) and its subsequent approval 
by the US Food and Drug Administration in January 2020 
(121). For the first time, a registered medical therapy for TED 
has become available for wide clinical use. Teprotumumab, a 
fully human IGF-IR inhibitor, was developed and evaluated 
initially for treatment of several types of cancer but clinical 
responses to it and other similar molecules proved inadequate 
to sustain those programs (122). Thus, the drug became avail-
able for repurposing.

Eighty-eight patients with active, moderate to severe TED 
were enrolled in an initial phase 2 trial, whereas a phase 3 
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trial enrolled 83 patients in North America and Europe. Both 
studies were double masked and multicentered. Patients in 
both trials were within 9 months of initially developing TED, 
were clinically active (clinical activity scores ≥ 4 on a 7-point 
scale), and were clinically euthyroid at baseline. None had 
undergone orbital radiotherapy or remedial surgery for TED. 
Enrolled patients must have received less than 1 g of prednis-
olone or equivalent previously and must have undergone a 
6-week steroid washout period. Patients were randomized to 
either placebo or teprotumumab treatment (1:1). All partici-
pants were administered a total of 8 infusions, each delivered 
at 3 weekly intervals over the 24-week treatment phase. If the 
initial infusion of 10 mg/kg per body weight teprotumumab 
was uneventful, subsequent doses of 20 mg/kg per body weight 
were administered for the remaining infusions. Responses to 
therapy were adjudicated at week 24. For the phase 2 study, 
the primary endpoint was an aggregate of ≥ 2-point improve-
ment in CAS using a 7-point scale AND ≥ 2  mm proptosis 
reduction in the more severely affected (study) eye. The phase 
3 trial had an endpoint of reduction from baseline in prop-
tosis ≥ 2 mm in the study eye.

A total of 29/42 patients in the intention-to-treat cohort 
receiving teprotumumab met the primary response at 24 
weeks in phase 2.  In contrast, 9/45 patients treated with 
placebo responded (P < 0.001). The primary outcome in 
phase 3 was achieved by more patients receiving active drug 
(teprotumumab, 83% vs placebo controls, 10%, P < 0.001). 
When intention-to-treat data from the 2 trials were pooled 
(including 84 patients receiving teprotumumab and 87 treated 
with placebo), more teprotumumab-treated patients (65/84, 
77%) achieved a reduction of ≥ 2 mm in proptosis at week 24 
versus placebo (13/87, 15%); stratified treatment difference 
63%; 95% CI, 51-75 (P < 0.0001) (123). Responses tended 
to be durable (67% and 69% of proptosis and diplopia re-
sponders, respectively maintained 51 weeks after the final 
dose of teprotumumab).

The safety profile of teprotumumab was encouraging (119, 
120, 123). A  total of 63/67 (94%) of teprotumumab and 
59/60 (98%) of placebo-treated patients experienced mild to 
moderate (grade 1 or 2) adverse events (AEs), whereas 3 (4%) 
receiving teprotumumab had serious AEs related or possibly 
related to the drug. These included diarrhea, infusion reac-
tion, and confusion (potentially Hashimoto encephalopathy), 
the last of these leading to study discontinuation. Muscle 
cramping (18%; 95% CI, 7.3-28.7), hearing loss or abnor-
malities (10%), and hyperglycemia (8%, 1.7-15.0, grade 2-3) 
were the most commonly reported AEs. Glycemic excur-
sions were most commonly detected in patients with base-
line diabetes mellitus or carbohydrate intolerance. In general, 
glycemic control was restored with medication adjustment. 
Those dosage requirements reverted to baseline requirements 
following the treatment phase. Hearing abnormalities have 
also been identified in clinical use, likely reflecting the import-
ance of the IGF-I pathway and ear development and func-
tion (124-126). Sensorineural hearing loss, tinnitus, patulous 
Eustachian tube, hypoacusis, hyperacusis, and autophony 
have been reported (126-129). Although some of the cases 
of hearing abnormalities have proven transient or improved, 
others have continued to the present time. Issues concerning 
impaired cognition have also arisen in a single elderly patient 
(130). The important role of IGF-I and its pathway in central 
nervous system development and function provide plausibility 
for an association between IGF-IR inhibition and cognitive 

changes/decline (131, 132). Clearly the AEs associated with 
teprotumumab require continued pharmacovigilance and po-
tentially additional studies.

Details concerning the mechanisms of action for 
teprotumumab remain incomplete. The drug may act on tis-
sues peripheral to the orbit (36). Circulating fibrocytes from 
teprotumumab-treated patients exhibited a dramatic reduc-
tion of CD80, CD86, PD-L1, and MHC class II surface dis-
play. Further, teprotumumab treatment was associated with 
marked reduction of IL-17A- and interferon γ-expressing T 
cells, actions mediated through gene transcription and mRNA 
stability. Those observations suggest that teprotumumab 
clinical responses involve its effects on T-cell activation, me-
diated though antigen-presenting cells such as fibrocytes. 
Teprotumumab actions within the orbital tissues also remain 
plausible. Impact of IGF-IR disruption has been shown in 
cultured GD-OF. A  very recent report has implicated cell-
extrinsic pathways in GD-OF mediating apoptosis because of 
IGF-IR inhibition (133). Whether either/both intraorbital and/
or peripheral mechanisms are involved in clinical responses to 
teprotumumab will require further studies. Additional anti-
IGF-IR inhibitory molecules are being evaluated for their 
efficacy in TED, including VRDN 001, which is undergoing 
evaluation in a phase 1 trial (NCT05176639). A  phase 2b 
trial for linsitinib, a tyrosine kinase inhibitor of IGF-IR and 
the insulin receptor, is being investigated for its benefit in TED 
(NCT05276063).

Emerging Medical Therapies for TED
Tocilizumab
Among the more plausible candidates within the thera-
peutic pipeline for TED is tocilizumab, an IL-6 receptor 
(IL-6R) antagonist (134). The plasma membrane IL-6R 
comprises 2 transmembrane protein subunits, IL-6Rα 
(gp80) and IL-6Rβ (gp130). The receptor interfaces with 
Janus kinase and STAT3, which are integral to its down-
stream signaling and target gene activation. IL-6 induces 
several important genes, including immediate-early genes 
and those encoding critically important transcription fac-
tors (135, 136). IL-6 has been implicated in several auto-
immune diseases, including GD and TED (137, 138). 
Underlying this involvement are its diverse actions in 
determining the characteristics of immune responses and 
T-cell polarization. Tocilizumab has been used clinically for 
treating rheumatoid arthritis and systemic sclerosis (139, 
140). The drug was first examined in TED when Pérez-
Moreiras et  al (141) performed an uncontrolled, single 
institution trial of 18 patients with active disease, the ma-
jority of whom (15/18) experienced substantial reduction 
in proptosis (mean, 3.92 mm), whereas 13/18 patients ex-
hibited diplopia responses. This was followed by a placebo-
controlled, randomized study including 32 patients with 
moderate to severe, steroid-resistant TED (142). Proportion 
of patients with ≥ 2-point change in CAS from baseline at 
week 16 was the primary response. A  total of 93.3% of 
patients receiving active drug responded, compared with 
58.8% on placebo. Mean proptosis reduction was 1.5 mm 
in tocilizumab-treated patients compared with 0 mm in pla-
cebo. An open-label, unmasked, and uncontrolled observa-
tional study of 48 steroid or selenium treatment-resistant 
patients was conducted at several centers in Spain (143). 
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Improvement in disease activity, intraocular pressure, and 
best-corrected visual acuity was reported. In another study, 
21 patients were treated with either tocilizumab (7/21) or 
rituximab (14/21) (144). The primary endpoint, CAS re-
duction ≥ 2 points, was achieved in 7/7 patients receiving 
tocilizumab and in 9/14 rituximab-treated patients. As with 
many clinical studies in TED patients, small numbers, lack 
of standardization and placebo controls, and heavy reliance 
on CAS-related response parameters reduce the strength of 
argument for tocilizumab as effective in this disease. Future 
randomized, double masked trials of tocilizumab seem war-
ranted, given the preliminary, encouraging results. These 
should include placebo controls and adequate statistical 
power.

K1-70, A Monoclonal TSHR Blocking Antibody
Plausibility for therapeutically targeting TSHR derives in 
large part from finding the receptor expressed in orbital 
tissues (145). Therapeutic interruption of TSHR activity 
has long been viewed as the most logical and obvious ap-
proach to medically managing GD and TED. In fact, many 
investigators have advocated that TSHR and the stimula-
tory autoantibodies directed against it represent the only 
therapeutic targets against which TED severity and ac-
tivity might be mitigated. But the biology of human disease 
rarely proves that simple, given the elaborate interplay 
occurring between genes, cells, and signaling pathways. 
To determine the therapeutic potential of TSHR inhibition 
in GD, both monoclonal antibodies and small molecules 
targeting that receptor protein have been under develop-
ment for many years (146, 147). One such blocking anti-
body, K1-70, was found to inhibit cAMP generation in vitro 
(147) and reduce circulating total and free T4 levels in vivo 
in rats (148). Those studies were followed with pharma-
cokinetic investigation in rats and cynomolgus monkeys 
(149). Eighteen patients with GD were enrolled in a phase 
1 interventional trial of K1-70 in GD (NCT02904330), 
which was very recently reported (150). Findings from 
that study included improvements in thyroid function tests 

able through US Food and Drug Administration expanded 
access). Within 22 days of her initial dose of K1-70 (admin-
istered intramuscularly), the patient experienced decreased 
proptosis (2-mm bilateral reduction from baseline) and 
improved clinical activity score from 6/7 to 0-1/7 while 
continuing to smoke cigarettes. At this point, the patient 
underwent ophthalmic surgery for the correction of dip-
lopia. The patient continued receiving K1-70 until, after 
16 doses, each at 3-week intervals, the drug was withheld 
for radionuclide scanning. Her TED then worsened but re-
sponded to glucocorticoids. Over the course of her K1-70 
treatment, serum TSAb levels decreased but increased after 
the therapy pause. This single case, although complicated 
by comorbidities, and the positive results of the phase 1 
study, could reflect potential benefit of TSHR inhibition 
in TED. These results will require later stage, controlled 
trials before any conclusions can be drawn as to the role of 
TSHR inhibition in TED therapy.

Targeting CD40/CD154 Bridge
Another potential therapeutic approach for TED involves 
interrupting the CD40/CD154 pathway. This cascade repre-
sents an important conduit through which molecular infor-
mation is conveyed between T and B cells. Moreover, it has 
been therapeutically targeted in other autoimmune diseases. 
Thyroid epithelial cells in GD express elevated CD40 levels 
(152), and this receptor mediates the induction in orbital fibro-
blasts by CD154 of IL-6, IL-8, prostaglandin endoperoxide H 
synthase 2, and hyaluronan (51). A recent clinical study dem-
onstrated the response to CFZ533, an anti-CD40 monoclonal 
antibody, in hyperthyroid patients with GD (153). Seven of 
15 patients achieved a biochemical euthyroid state with the 
drug. Follow-up studies will be necessary.

Neonatal Fragment Crystallizable Receptor
The neonatal fragment crystallizable receptor (FcRn) plays 
a determinative role in regulating IgG and albumin clear-
ance from the circulation and degradation through lyso-
somal pathways (154). Targeting FcRn with monoclonal 
antibodies can disrupt FcRn-IgG interactions, thereby short-
ening the circulating half-life of pathogenic IgG autoanti-
bodies (155). This approach has been applied with apparent 
success to myasthenia gravis (156). Two such therapeutic 
antibodies are being developed to target FcRn in patients 
with GD and TED, including RVT-1401 (Immunovant) and 
HBM9161 (Batoclimab, Harbour Biomed). The trial of RTV-
1401 has been suspended over concerns of drug-induced 
hypercholesterolemia.

Bimatoprost
EP2-specific agonists activate cAMP-mediated responses in 
GD-OF (157). More recent studies have demonstrated that 
bimatoprost inhibits adipogenesis in these cells (158). PGF2α 
and EP2 agonists are active in 3-dimensional OF organoids, 
where they downregulate fibronectin, collagen 1, and collagen 
6 gene expression while upregulating IL-6 (159). A  small 
phase 1 clinical trial is being conducted for TED with prop-
tosis reduction being the primary response (NCT03708627).

Immune Tolerization
Restoring immune tolerance has been attempted in a number 
of autoimmune diseases, including type 1 diabetes mellitus 
(160), systemic lupus erythematosus (161), and neuromyelitis 
optica (162). This strategy offers the potentially enormous 
advantage of leaving host defense completely intact while, in 
some instances, curing the underlying disease. One retolerizing 
approach currently under study uses noninflammatory 
mRNA vaccines (163). Another involves intradermal injec-
tion of antigen-processing independent epitopes (termed 
apitopes) (164). ATX-GD-59, which contains a combination 
of 2 TSHR peptides, was evaluated in a phase 1 study of 12 
hyperthyroid patients (165). Seven of 10 patients receiving 
all 10 doses at week 18 of the study exhibited improvement 
or normalization of thyroid function, whereas 3 subjects de-
veloped worsening thyrotoxicosis. Antigen-specific immune 
retolerization as a treatment in TED seems possible: at least 
2 autoantigens with likely important involvement in disease 
pathogenesis, TSHR and IGF-IR, have been identified, and 
their roles in disease development partially characterized. 
These advancements should “set the table” for successfully 
reestablishing immune tolerance.

andmanifestations of TED. Asmany as 5 patients experienced
clinically meaningful reductions. Earlier, Ryder and col-
leagues (151) reported metastatic follicular thyroid
cancer and TED presenting in a single patient treated with
lenvatinib, radioiodine ablation, and K1-70 (made avail-
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Concluding Remarks Concerning Therapies 
for TED
Traditional medical management of TED, including the use of 
anti-inflammatory drugs such as glucocorticoid steroids, has 
served an important role in reducing some aspects of disease 
burden. However, these agents have failed to consistently 
improve several important disease manifestations, including 
proptosis and diplopia. These disease-related signs and the re-
sulting symptoms can substantially reduce QoL, including the 
inability to engage in normal daily activities. Historical limita-
tions in treatment have frequently resulted in loss of personal 
and financial productivity and diminished self-image. Steroids 
can offer temporary relief of signs and symptoms related to in-
flammation and congestion in TED but are not disease modi-
fying. Further, they are frequently associated with serious side 
effects. Absence of placebo-controlled trials of steroids, in my 
view, substantially weakens the case promoting their con-
tinued use in TED, either as a single agent or in combination 
with MMF. That drug combination is currently advocated as 
“first-line” therapy in the recently published 2021 EUGOGO 
guidelines (94, 95). Lack of availability and the unfamiliarity 
of newly developed or repurposed therapies for any disease 
can slow drug acceptance and uptake. Attitudes toward pre-
viously unavailable treatments vary among patients and their 
health care providers, as has been the case with drugs being 
introduced for TED.

Despite the reticence expressed by some, novel therapies, 
including those repurposed from other diseases or developed 
de novo, have ushered in a new era of TED treatment. Among 
these are medications specifically targeting pathogenic mech-
anisms identified from studies conducted in the research la-
boratory. Teprotumumab, a monoclonal anti-IGF-IR inhibitor, 
was recently US Food and Drug Administration-approved for 
TED. It is effective in reducing inflammation, diplopia, and 
proptosis, thereby improving QoL. Continued vigilance re-
mains critical when assessing the effectiveness, durability, and 
safety of all newly introduced drugs. Restoration of immune 
tolerance to TSHR, IGF-IR, and potentially other important 
autoantigens involved in TED pathogenesis remains the ul-
timate goal of many researchers. Its attainment could offer 
disease-free life without ongoing treatment.
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