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Abstract

Motivation: Association studies to discover links between genetic markers and phenotypes are

central to bioinformatics. Methods of regularized regression, such as variants of the Lasso, are

popular for this task. Despite the good predictive performance of these methods in the average

case, they suffer from unstable selections of correlated variables and inconsistent selections of lin-

early dependent variables. Unfortunately, as we demonstrate empirically, such problematic situa-

tions of correlated and linearly dependent variables often exist in genomic datasets and lead to

under-performance of classical methods of variable selection.

Results: To address these challenges, we propose the Precision Lasso. Precision Lasso is a Lasso

variant that promotes sparse variable selection by regularization governed by the covariance and

inverse covariance matrices of explanatory variables. We illustrate its capacity for stable and con-

sistent variable selection in simulated data with highly correlated and linearly dependent variables.

We then demonstrate the effectiveness of the Precision Lasso to select meaningful variables from

transcriptomic profiles of breast cancer patients. Our results indicate that in settings with correlated

and linearly dependent variables, the Precision Lasso outperforms popular methods of variable se-

lection such as the Lasso, the Elastic Net and Minimax Concave Penalty (MCP) regression.

Availability and implementation: Software is available at https://github.com/HaohanWang/

thePrecisionLasso.

Contact: epxing@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput technology for profiling gene expression levels and

assaying genetic variations at a genome-wide scale produces massive

data, creating an opportunity to study the genetic causes of complex

diseases by statistical methods. Computationally screening for puta-

tively causal genes is a key step in hypothesis generation, and many

such techniques have been proposed. These can be categorized into

several generations, starting with hypothesis testing (Posada and

Crandall, 1998). Unfortunately, traditional hypothesis testing meth-

ods are limited to independently considering associations for each

biomarker. This is a major limitation of the approach since epistatic

effects remove the assumed independence between explanatory

variables.

To jointly consider associations between all biomarkers and a

phenotype, linear regression-based methods (Ogutu et al., 2012)

have become more popular. Although ordinary least squares
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regression can consider multiple genes simultaneously, it assigns

non-zero effect sizes to all explanatory variables and fails when

there are more genes than samples under consideration, the high-di-

mensional regime that is common in genomic applications. To solve

this problem, regularization via the Lasso (Tibshirani, 1996) is often

used to reduce the selected set of explanatory variables. Given a

design matrix X (of size n�p, with Xj
i the jth variable of the ith

sample) and dependent variable Y (of size n�1), the Lasso solves

the problem

arg min
b

1

2
jjY �Xbjj22 subject to jjbjj1 � t

where b represents the effect sizes of the explanatory variables and

t>0 controls the amount of regularization. With the ‘1-norm as a

constraint, the Lasso learns a set of sparse coefficients b that indi-

cates the most relevant explanatory variables. However, the Lasso

has several drawbacks for structured data; here, we describe two sit-

uations that lead to undesirable properties in sparse variable selec-

tion: correlation and linear dependence between explanatory

variables.

First, if two explanatory variables are highly correlated and ef-

fect sizes are unconstrained, then the explanatory variables show

very similar influence on the response variable. In such a situation,

the Lasso will only select one variable at random (Xu et al., 2012).

This is problematic when the results are used for hypothesis gener-

ation because we would like to simultaneously select all variables

which have the same evidence of activity. Here, we refer to this

property as instability.

Second, the Lasso struggles when explanatory variables are lin-

early dependent. Given explanatory variables Xi, Xj, Xk with effect

sizes bi, bj, bk, if Xk ¼ aXi þ cXj and abi � 0 and cbj � 0, then the

Lasso is guaranteed to select the combined variable Xk when ac > 0

(Zhao and Yu, 2006). This is undesirable when Xi, Xj are better ex-

perimental targets; for instance, Xi and Xj may be somatic mutations

and Xk a protein expression level. Here, we refer to this property as

the inconsistency of the Lasso, following the convention of previous

work (Zhao and Yu, 2006). Although linear dependence may

involve arbitrarily many variables (and this is indeed an issue in

practice), in the special case of two variables, linearly dependent var-

iables may also be understood as the limiting case of perfect

correlation.

Until now, these two properties have not been addressed simul-

taneously in a satisfactory manner. Unfortunately, as we will show,

these two properties are common in genomic datasets and degrade

performance in inference tasks such as the detection of putatively

causal mutations. In this paper, we aim to address these two proper-

ties by introducing a new variable selection method called the

Precision Lasso. We demonstrate empirically that our proposed

model can mitigate the instability and inconsistency properties

discussed here.

The main contributions of this paper are 3-fold:

i. We demonstrate that real-world genomic datasets contain high-

ly correlated and linearly dependent variables, raising concerns

about instability and inconsistency for existing variable selec-

tion methods.

ii. We illustrate through experiments that these two properties

degrade the performance of traditional variable selection

methods.

iii. We propose a novel penalization to handle these properties and

show that it outperforms traditional methods on simulated data

and real breast cancer transcriptomic data.

1.1 Related work
It is well-known that the ‘0-norm regularizer is optimal in variable

selection, however, it leads to a non-convex programme which is

NP-hard (Barron et al., 1999; Davis et al., 1997; Manyem and

Ugon, 2012). To overcome this difficulty, ‘1-norm regularization

was proposed by Tibshirani (1996) as a tractable convex relaxation

to ‘0-regularization. Despite its many attractive properties (e.g.

good predictive power), ‘1-regularization—or Lasso regression—

still suffers from the unstable and inconsistency properties men-

tioned in the previous section. The adaptive Lasso (Zou, 2006) aims

to remedy some of the issues with vanilla ‘1–regularization. This

method re-weights the Lasso penalty for each variable based on the

variable’s contribution in unregularized linear regression, and leads

to more favourable variable selection properties. Unfortunately, the

adaptive Lasso has also been shown to perform poorly in the pres-

ence of highly correlated variables (Krämer et al., 2009).

Another popular alternative is ‘2-norm regularization, often

called ridge regression or Tikhonov regularization (Golub et al.,

1999; Hoerl and Kennard, 1970), however, this strategy loses the at-

tractive variable selection properties of the Lasso. There are also

some works that aim to combine the advantages of ‘1- and ‘2-regu-

larization, such as the elastic net (Zou and Hastie, 2005) and the

trace Lasso (Grave et al., 2011). These two approaches are designed

to handle correlated variables, but they have no guarantees for lin-

early dependent variables. In other words, these methods can select

variables stably, but not consistently. We also mention the non-

negative Garrote (Yuan and Lin, 2007); however, this is only applic-

able when p<n and therefore is not applicable to most tasks in

bioinformatics.

Another approach to overcome these difficulties is to use non-

convex regularizers, introduced by Fan and Li (2001). Examples in-

clude the Smoothly Clipped Absolute Deviation (SCAD) (Fan and

Li, 2001) and the Minimax Concave Penalty (MCP) (Zhang, 2010).

These non-convex regularizers are designed to overcome the prob-

lems inherent with the Lasso, and have the desirable properties of

unbiasedness, continuity and sparsity. A recent review of these

methods can be found in (Zhang and Zhang, 2012). While these

variable selection methods are promising compared to the Lasso, we

will show that they also inherit many of the Lasso’s problems in

practice.

In addition to these general purpose algorithms, additional meth-

ods tailored specifically for GWAS have been developed. To tackle

the high-dimensionality of genomic datasets, Wu et al. (2009)

reduced the dimension of SNPs via a simple score criterion, then

applied the LASSO to the reduced set. He and Lin (2011) extended

this approach based on Fan and Lv (2008) with a more sophisticated

score criterion where the score is conditioned on SNPs that were

selected previously. Bayesian variable selection methods (Guan and

Stephens, 2011; Peltola et al., 2012) have also enjoyed recent popu-

larity for selecting SNPs in GWAS. Unfortunately, none of these

methods explicitly address the problems raised by inconsistent

selection.

1.2 Motivation
Gene expression profiles can result in unstable variable selection. As

expression levels of genes within a regulatory pathway are highly

correlated (Michalopoulos et al., 2012), the Lasso will be unstable

for selection of variables when several of the variables participate in

the same regulatory pathway. This can lead researchers to believe

that a single element of the pathway is likely to be causal for a
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phenotype (based on variable selection), when in reality the evidence

is shared between all elements of the pathway.

The existence of expression profiles that lead to inconsistent be-

haviour, however, has not been convincingly demonstrated previ-

ously. Here, we verify that real gene expression profiles indeed

exhibit linear dependencies, thereby introduce the problem of

inconsistency.

To show this, we must first formalize the definition of inconsist-

ency. We call a explanatory variable an active variable if the

explanatory variable encodes an interaction that influences the value

of the response variable. In a linear regression model for these

variables, this means that the coefficient for this variable is non-

zero. For the Lasso to select consistently, data must satisfy the irre-

presentable condition (Ravikumar et al., 2010; Zhao and Yu, 2006),

which states that the association between the active variables and

the non-active variables cannot be too strong. Formally, the irrepre-

sentable condition states that

jðXð2ÞÞTXð1ÞððXð1ÞÞTXð1ÞÞ�1signðbð1ÞÞj < 1� g; (1)

where X(1) is the set of active variables, X(2) is the set of non-active

variables, 1 is a vector of ones, g is a positive constant vector,

signðbð1ÞÞ stands for the sign of the coefficients of active variables,

and the inequality holds element-wise.

A matrix which breaks this condition called non-irrepresentable

(Zhao and Yu, 2006), and leads to inconsistent variable selection. In

order to undertand how serious of an issue this is in practice, we

studied the non-irrepresentable condition across three types of real

genomic data for three cancer types. All data comes from TCGA

(http://cancergenome.nih.gov/). These datasets are moderately large:

617, 504 and 595 patients for the Glioblastoma, Lung and Breast

datasets, respectively. The datasets also contain a high number of

explanatory variables: 17 814 for gene expression, 27 577 for meth-

ylation and 4201 for miRNA. As the data are drawn from multiple

assay and cancer types, they can be considered a representative sam-

ple of genomic datasets one might encounter in practice.

We tested the non-irrepresentable condition on these datasets as

follows: Using the real data as the design matrix X, we selected K

random genes to be ‘active’ in a simulated linear regression model.

Then we checked the irrepresentability condition Equation (1) with

g¼10– 5 based on this active set. We replicated this 100 times for

K ¼ 1; 2;5;10;50;100 and Figure 1 illustrates the proportion of

simulations that were non-irrepresentable and hence inconsistent for

the Lasso. In all datasets, at least one active set broke this condition

for each K and for K>10, almost all active sets broke this

condition.

To check the instability condition, we also calculated the fre-

quency of highly correlated variables in the data. Six of the nine

datasets checked had at least one pair of variables that had an em-

pirical correlation coefficient of 0.99 or higher. These experiments

indicate that both non-irrepresentability and high correlation—and

hence inconsistency and instability—are both prevalent and a ser-

ious nuisance in working with real genomic datasets, motivating the

need for more powerful methods that are robust to these problems.

2 Materials and methods

In this section, we introduce the Precision Lasso, a regularized re-

gression method that mitigates the problems exposed in the previous

section. We first introduce techniques to handle instability and in-

consistency separately, and then combine these two approaches in

order to derive the final model.

2.1 Instability: dealing with correlated variables
As introduced previously, the instability of the Lasso refers to its in-

ability to distinguish the effects of correlated explanatory variables.

Since correlated explanatory variables cannot be separated by obser-

vational statistics, one solution is to force the model to simultan-

eously identify correlated variables. A straightforward way to fulfil

this goal is to assign similar weights to correlated variables.

A convenient set of weights to use are the sum of each explana-

tory variable’s correlation with other explanatory variables.

Following the trace Lasso (Grave et al., 2011), this can be achieved

by solving

arg min
b

1

2
jjY �Xbjj22 þ kjjðXTXÞ

1
2diagðbÞjj�; (2)

where jj � jj� denotes the trace norm, which is defined as the sum of

the singular values of a matrix (Srebro and Shraibman, 2005). This

regularizer accounts for the correlation between variables and

ensures sparsity in the final model while maintaining stable

selection.

2.2 Inconsistency: dealing with linear dependencies
Next we extend this regularizer to consider inconsistency. First, ob-

serve that Equation (1) can be rewritten as follows:

/ð1Þ < 1� g; where Xð2Þ ¼ Xð1Þ/ð1Þ:

Evidently the irrepresentable condition breaks when

/ð1Þ � 1� g, i.e. when there is a linear relationship between X(1)

and X(2) with sufficiently large coefficients.

Following a similar strategy as in Section 2.1, we re-weight the

regularizers with the sum of each explanatory variable’s linear re-

gression coefficients towards the other explanatory variables. Since

these coefficients are unknown, we propose to use the inverse co-

variance matrix as a surrogate, owing to the well-known relation-

ship between partial regression coefficients and the inverse

covariance matrix (Cramer, 1946; Dempster, 1969). Recall that the

partial regression coefficients express the linear dependence between

a variable Xi and the rest of the variables. Thus, in order to address

inconsistency, we use the inverse covariance structure in an

Fig. 1. Proportion of simulations in which the irrepresentable condition failed

to hold on gene expression, methylation, miRNA datasets for glioblastoma,

breast cancer and lung cancer
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analogous manner to Equation (2), resulting in the following regu-

larized model:

arg min
b

1

2
jjY �Xbjj22 þ kjjðXTXþ lIÞ�

1
2diagðbÞjj�: (3)

Here, l is a small positive parameter that is used to make the singu-

lar matrix XTX invertible when p>n. In our experiments, we follow

the protocol of Grave et al. to select l (details in Supplementary

Material).

2.3 Precision lasso
To simultaneously consider both inconsistency and instability, we

propose to combine the two regularization schemes proposed in the

previous sections. To this end, we employ an additional hyperpara-

meter c in order to tune the regularizer to pay more attention to

instability (i.e. the XTX term) or to inconsistency (i.e. the

ðXTXþ lIÞ�
1
2 term):

arg min
b

1

2
jjY �Xbjj22

þkjj½cðXT XÞ
1
2 þ ð1� cÞðXT Xþ lIÞ�

1
2�diagðbÞjj�:

(4)

The choice of c¼1=2 gives equal weight to each problem. As the in-

verse covariance matrix is also known as the precision matrix, we

name the proposed model in Equation (4) the Precision Lasso.

2.4 Precision lasso for binary response
The regularization strategy introduced in the previous section can be

extended to other convex cost functions ‘ in a straightforward

manner:

arg min
b

‘ðX; y; bÞ

þkjj½cðXT XÞ
1
2 þ ð1� cÞðXT Xþ lIÞ�

1
2�diagðbÞjj�

For example, when the response of the data is binary, the Precision

Lasso can be applied to the logistic cost function by replacing ‘ with

the negative log-likelihood of the logistic regression model. This for-

mulation will be exploited in our experiment on case-control data.

Furthermore, similar irrepresentability-type conditions are necessary

for consistency in this more general setting (e.g. Ravikumar et al.,

2010).

2.5 Learning algorithm
In order to solve for b in Equation (4), we first derive an upper

bound on the Precision Lasso cost function which will be used as a

computationally efficient surrogate of the original formulation. The

details of this derivation can be found in the Supplementary

Material. Thus, instead of optimizing Equation (4) directly, we opti-

mize the resulting surrogate:

arg min
b
jjy�Xbjj22

þcjj½ðXdiagðbÞÞTðXdiagðbÞÞ�
1
2jj�

þð1� cÞjj½ðXdiagðb�1ÞÞTðXdiagðb�1ÞÞ þ lI� � 1

2
jj�

Finally, to solve this optimization problem, we employ an iteratively

re-weighted least squares algorithm, which is a standard algorithm

for solving problems of this form; for details see Supplementary

Section S2 of the Supplementary Material.

3 Results

In this section, we validate the performance of our proposed

Precision Lasso algorithm by comparing it to other variable selection

methods. We compare the full Precision Lasso (PL) to a lightweight

version that only uses the inverse covariance matrix in the regular-

izer (IC), which amounts to setting c¼0. This version effectively

considers only linear dependent variables, and helps to contrast the

added benefits of considering both properties versus either alone.

We also compare to the following baselines: Wald Hypothesis

Testing, Sure Independence Screening (SIS) (Fan and Lv, 2008),

Lasso regression, Ridge regression (RR), Elastic Net (EN), Adaptive

Lasso (AL), SCAD, MCP and trace Lasso (TL). For the adaptive

Lasso, we used the method introduced in Huang et al. (2008) to

allow it to be applied to high-dimensional data. As the non-negative

garotte does not work in the high dimension regime (Yuan and Lin,

2007), it was not included in our simulations.

To compare these methods, we ran the following experiments:

(i) Simulated data with a continuous response, (ii) simulated case-

control data using logistic regression and (3) breast cancer gene ex-

pression data. We report here the results for binary case-control

data, although the results for continuous data are similar (details of

all the experiments can be found in the Supplementary Material).

3.1 Simulation data
To simulate input data with high correlation between covariates, we

use an auto-regressive sampling scheme (see Supplementary Sections

S3.1 for details). We report here the average AUC score (area under

ROC curve) for case-control data. Following the convention of Wu

et al. (2009) to select the parameter k (the weight of regularizer) by

the number of selected variables, we select exactly K¼k variables

where k is the number of active variables in synthetic data. This

helps to avoid overly complex models, which tend to selected by

automatic measures such as cross-validation and AIC/BIC

(Meinshausen and Bühlmann, 2006). Moreover, it is well-known

that prediction performance and parameter estimation performance

are not directly related. For example, the unstable and inconsistent

problems that are the main focus of this paper illustrates this point:

Good performance in prediction may be achieved by selecting corre-

lated variables or linearly dependent variables, even though these

variables may not be directly related to the response. For the

Precision Lasso, the extra parameter c is set as the prevalence of cor-

related variables divided by the prevalence of linearly dependent

variables.

On data simulated from a binary logistic model, we see higher

AUC for the Precision Lasso methods than for the baseline methods

in the cases when auto-regressive coefficient is strong (Fig. 2).

Interestingly, we can see that in the case where auto-regressive cor-

relation is low (i.e. the setting for which the Precision Lasso was not

originally intended), the Precision Lasso performs inferior to other

methods. We further test for many other evaluation criterion includ-

ing true positives, false positives, precision, recall and F1 score. The

entire table can be found in the Supplementary Material

(Supplementary Table S1). The Precision Lasso shows superior per-

formance over the competing methods when the auto-regressive cor-

relation is high.

We also tested the performance of these methods for continuous

response data. Here, we observed that the Precision Lasso outper-

formed other methods, even more so relative to our experiments on

case-control data (Supplementary Fig. S2). Similar to case-control

data, thePrecision Lasso behaves slightly worse than other compet-

ing methods when the correlation is low, but achieves clearly better
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performance than competing methods when correlation is high.

Additionally, one may notice that SIS behaves only slightly worse

than Precision Lasso in Figure 2 on case-control data, but in

Supplementary Figure S2, we observe a clear advantage of Precision

Lasso over SIS. The gap between these two methods can be more

clearly compared in Supplementary Table S2, where we present a

detailed evaluation of all the methods along with other metrics.

We also tested Precision Lasso in several other settings, including

mis-specified number of active variables (i.e. K¼k=2 and K¼2k).

We see that the Precision Lasso again outperforms the baseline

methods in settings of large auto-correlation. Finally, we also com-

pare the strategies for tuning hyperparameters to verify the argu-

ment that cross-validation is a less favourable parameter tuning

strategy for variable selection. Detailed results are reported in

Supplementary Section S6 of the Supplementary Material.

3.2 Breast cancer transcriptomic data
3.2.1 Data

To investigate the performance of Precision Lasso on real genomic

data, we use breast cancer mRNA expression data from TCGA

(http://cancergenome.nih.gov/) as explanatory variables and the

case-control status as the phenotype. These data consist of RNA-seq

assays for 532 breast cancer samples and 63 matching control sam-

ples. While it is typical to perform significant pre-processing on

these data, here we are interested in the performance of statistical

methods to extract signal from data with structured noise. For this

reason, we perform variable selection on the FPKM-normalized

RNA-seq counts of 10 000 genes.

3.2.2 Evaluation

For each variable selection method, we select exactly 100 genes. To

evaluate the quality of these selections, we seek to identify genes

that are likely to be involved in the causation of the breast cancer.

First, we filter the selected genes by intersection with the Catalogue

of Somatic Mutations in Cancer (Forbes et al., 2015) (COSMIC).

Next, we use the results of a recent analysis (Rajendran and Deng,

2017) which combined annotations in COSMIC, IntOGen

(Gonzalez-Perez et al., 2013), CBioPortal (Cerami et al., 2012) and

OASIS (http://oasis-genomics.org/) to generate a list of potential

driver mutations in breast cancer and cross-check each selected gene

for evidence of driver function. The results are shown in Table 1.

3.2.3 Results

As seen in Table 1, the Precision Lasso effectively selected genes that

have been linked to breast cancer. Not only did the Precision Lasso

identify at least as many genes with known oncogenic somatic muta-

tions as the baseline methods did, the associations selected by the

Precision Lasso are also more likely to be causally related to breast

cancer. For example, the Precision Lasso selected FOXA1 and AR,

which both have been implicated as potential driver mutations. In

contrast, the closest baseline method (Trace Lasso) only selected 1

gene (FOXA1) with a somatic mutation known to be associated

with breast cancer. While the performance of all methods is likely

underestimated due to unknown cancer associations, we expect this

effect to be consistent across the sets of variables.

These results suggest that the Precision Lasso can select meaning-

ful variables when the data contains highly correlated or linearly

Fig. 2. AUC of each variable selection method. Methods are: Wald Hypothesis Testing (Wald), Sure Independence Screening (SIS), Lasso, Ridge Regression (RR),

Elastic Net (EN), Adaptive Lasso (AL), SCAD, MCP, Trace Lasso (TL), Inverse Covariance Regularizer (IC) and Precision Lasso (PL). The vertical axis represents

area under ROC of the variable selection. The results are averaged from ten runs and SD is also shown. From the plot, we can see that our methods (PL and IC) ex-

hibit a clear advantage over traditional methods on simulation data. Please notice that the AUC is calculated for variable selection task, instead of prediction of

binary outcomes
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dependent variables, as in the case of breast cancer RNA-seq assays.

Furthermore, a gene-specific investigation suggests that while many

genes are correlated with breast cancer oncogenesis, few have sig-

nificant evidence of causality. In this setting, in which there are

many variables that are linearly dependent or highly correlated,

baseline methods tend to select variables which mediate the causal

relationship between genotype and phenotype, as opposed to poten-

tial driver mutations that are of more interest to biologists. In con-

trast, the Precision Lasso tends to select these underlying driver

mutations.

4 Discussion and Conclusion

While the Precision Lasso has been shown to outperform existing

methods on variable selection tasks with highly correlated and lin-

early dependent data, it is also of interest to compare the relative

computational efficiency of the compared methods. Owing to the

complexity of the regularizer employed by the Precision Lasso, it is

not surprising that it requires more computational resources, scaling

cubically with the number of samples and linearly with the number

of explanatory variables. Empirically, we find our implementation

feasible of a dataset as large as n¼1000 with p¼5000 on a modern

laptop (2.60 GHz CPU and 16 G RAM, Linux OS) or n¼5000 with

p¼50 000 on a modern server (2.30 GHz CPU and 128 G RAM,

Linux OS). Furthermore, even though the Precision Lasso shows

improvements in variable selection, it does not necessarily outper-

form traditional methods such as the Lasso in prediction. This is

unsurprising, since the much simpler task of prediction does not suf-

fer from the unstable and inconsistent problems that are unique to

variable selection.

In this paper, we studied the problem of variable selection for

genomic data in which a portion of the explanatory variables are ei-

ther highly correlated or linearly dependent. In this setting, trad-

itional variable selection methods such as the Lasso struggle with

unstable and inconsistent selection. We first showed that these issues

are quite real and arise in genomic datasets as a rule rather than an

exception. To overcome these challenges, we proposed the Precision

Lasso, a novel form of sparse regularization that overcomes many of

the drawbacks of traditional methods such as the Lasso. In our

experiments, the Precision Lasso outperformed these traditional

methods in the presence of highly correlated and linearly dependent

variables. With real breast cancer gene expression data, we demon-

strated the effectiveness of the Precision Lasso to select more mean-

ingful genes.

The Precision Lasso also offers the potential for extension to

other structured methods. In particular, we are interested to see how

this variable selection method can help improve structured variable

selection methods such as the group lasso (Friedman et al., 2010)

and graph fused lasso (Kim and Xing, 2009), as well as population

stratification (Wang and Yang, 2016). We are also interested in

improving the Precision Lasso when no linearly dependent variables

or correlated variables exist. In addition, we are interested to see

how Precision Lasso, can help improve predictive performance, akin

to Haws et al. (2015). In addition, as Bayesian methods are

Table 1. Genes that were selected from breast cancer gene expression data and are annotated in the COSMIC dataset to have somatic muta-

tions associated with tumours

Method Selected gene Tumor associations Driver?

Precision lasso FOXA1 Breast, Prostate �

AR Prostate �

PBX1 pre B-cell ALL, Myoepithelioma

COX6C Uterine leiomyoma

Wald test PPARG Follicular thyroid

EBF1 Lipoma

TPM3 Papillary thyroid; ALCL; NSCLC; Spitzoid tumour

Lasso HMGA2 Lipoma; Leiomyoma; Pleomorphic salivary gland adenoma

COL1A1 DFSP, Aneurysmal bone cyst

Ridge regression PPARG Follicular thyroid

COL1A1 DFSP, Aneurysmal bone cyst

Elastic net HMGA2 Lipoma; Leiomyoma; Pleomorphic salivary gland adenoma

COL1A1 DFSP, Aneurysmal bone cyst

Adaptive lasso CBLC Acute Myeloid leukaemia

HMGA2 Lipoma; Leiomyoma; Pleomorphic salivary gland adenoma

COL1A1 DFSP, Aneurysmal bone cyst

SCAD GATA1 Megakaryoblastic leukaemia of downs syndrome

FCGR2B Acute lymphoblastic leukaemia

HMGA2 Lipoma; Leiomyoma; Pleomorphic salivary gland adenoma

MCP MYH11 Acute myeloid leukaemia

HMGA2 Lipoma; Leiomyoma; Pleomorphic salivary gland adenoma

COL1A1 DFSP, Aneurysmal bone cyst

Trace lasso FOXA1 Breast, Prostate �

EBF1 Lipoma

CDKN2A Melanoma

COL1A1 DFSP, Aneurysmal bone cyst

Inverse covariance RAC1 Carcinoma, Melanoma

TPR Papillary thyroid, NSCLC

ZNF384 Acute lymphoblastic leukaemia �

Notes: Genes with associations to breast cancer are bolded, and genes associated with high-confidence driver mutations are annotated in the rightmost column.

Each method was constrained to select exactly 100 genes from a common set. We see that Precision Lasso selects the most relevant genes.
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commonly believed to work best when the signal-to-noise ratio

(SNR) is small—as is the case in genetic and genomic studies—a

Bayesian extension of Precision Lasso is a promising direction for fu-

ture research.

The Precision Lasso is open-source and freely available as a com-

mand line tool that is compatible with either.csv or PLINK files. We

also plan to make the methodology available via a point-and-click

interface by integrating it in the visual platform GenAMap (Wang

et al., 2017).
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Krämer,N. et al. (2009) Regularized estimation of large-scale gene association

networks using graphical gaussian models. BMC Bioinformatics, 10, 384.

Manyem,P. and Ugon,J. (2012) Computational complexity, np completeness

and optimization duality: a survey. In: Electronic Colloquium on

Computational Complexity (ECCC), Vol. 19.
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