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Abstract Low blood count is a fundamental disease state and is often an early sign of illnesses

including infection, cancer, and malnutrition, but our understanding of the homeostatic response to

blood loss is limited, in part by coarse interpretation of blood measurements. Many common

clinical blood tests actually include thousands of single-cell measurements. We present an approach

for modeling the unsteady-state population dynamics of the human response to controlled blood

loss using these clinical measurements of single-red blood cell (RBC) volume and hemoglobin. We

find that the response entails (1) increased production of new RBCs earlier than is currently

detectable clinically and (2) a previously unrecognized decreased RBC turnover. Both component

responses offset the loss of blood. The model provides a personalized dimensionless ratio that

quantifies the balance between increased production and delayed clearance for each individual and

may enable earlier detection of both blood loss and the response it elicits.

Introduction
Single-cell measurements and models promise to capture important biological heterogeneity and

reveal novel mechanisms (Baron et al., 2018; Giustacchini et al., 2017; Shalek et al., 2013;

Tusi et al., 2018). Routine clinical blood tests already include single-cell measurements of cellular,

nuclear, and cytoplasmic morphology and some single-cell protein

concentrations (Chaudhury et al., 2017; Higgins and Mahadevan, 2010; Kim and Ornstein, 1983;

Mohandas et al., 1986). These clinical assays measure fewer states per cell (~1–10) than more

recently developed single-cell molecular methods (>1000) (Shalek et al., 2013; Tusi et al., 2018),

but these clinical data have three strengths for modeling: (1) the low-dimensional state space is

densely sampled, (2) existing mechanistic understanding of single-cell trajectories in this state space

can guide specification of dynamic equations, and (3) there is a shorter path to clinical translation of

any potential insights. The typical adult human produces about 2 million RBCs per second, with a

similar rate of clearance of old RBCs after they have circulated for ~90–120 days. RBC lifespan is

tightly controlled within each person but varies from one person to the next (Cohen et al., 2008;

Malka et al., 2014). The volume of a typical RBC decreases by about 30% and the hemoglobin mass

by about 20% over the course of the RBC’s lifespan, with the average hemoglobin concentration

([Hb]) increasing modestly (Malka et al., 2014; Willekens et al., 2008). Routine complete blood

counts (CBCs) can include measurements of single-cell volume (v) and hemoglobin (h) for ~50,000

individual RBCs (Figure 1). Some of the youngest RBCs (‘reticulocytes’ <~3 days old) can be identi-

fied in these counts because they generally have RNA remnants in their

membranes (d’Onofrio et al., 1995). The typical healthy RBC follows a (v,h)-trajectory along the

major axis of the (v,h) distribution (u in Figure 1) as it ages until eventually being cleared in the lower
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left (low u). Static averages of marginal v and h distributions and other bulk blood characteristics are

essential components of modern clinical diagnosis: HGB (hemoglobin concentration per unit volume

blood), hematocrit (HCT, volume fraction of RBCs), mean RBC volume (MCV), mean RBC hemoglo-

bin mass (MCH), mean RBC hemoglobin concentration (MCHC), and the coefficient of variation in

RBC volume (red cell distribution width or RDW). The ~100,000 single-cell measurements in each

routine CBC do not currently directly inform clinical care, but they have great potential to do so.

) )

Figure 1. Unsteady-state modeling of single-RBC volume and hemoglobin dynamics. (A) Routine complete blood

counts (CBC) measure the single-cell volume and hemoglobin for young RBCs (b(v,h,t), blue contours showing

‘reticulocytes’ that are <~3 days old) as well as for all circulating RBCs (P(v,h,t), red contours showing RBCs of all

ages from 0 up to 90–120 days, with RBC lifespan well-controlled in each person but varying from one person to

the next). The black line through the origin shows the mean hemoglobin concentration (mean corpuscular

hemoglobin concentration, MCHC) for the sampled population and this major axis of the distribution (u) provides

a very rough estimate of RBC age, with higher u corresponding to younger age. (B) Schematic of the model of

single-RBC volume-hemoglobin dynamics. Individual RBCs are produced as reticulocytes (RET) in the top right and

lose about 30% of their volume and about 20% of their hemoglobin during their 90–120 day lifespan, with volume

and hemoglobin reductions occurring during an early fast phase parameterized by bv and bh and a later slow

phase parameterized by a, with fluctuations in rates of single-RBC volume and hemoglobin change quantified by

Dv and Dh. As the single-RBC volume and hemoglobin continue to fall, the probability of clearance increases

dramatically as the RBC’s trajectory approaches the boundary region shown as vc. (C) Four measurements were

made to establish each subject’s baseline before controlled blood loss. Additional measurements were made 1–3

days and 21 days later. (D) The modeling integrated serial CBCs into the parameter estimation process in a

piecewise manner. The first CBC (left) is assumed to be at steady state, and the model is used to estimate

dynamic parameters which produce RBC1 given RET1. These model parameters and RET1 are then used to

estimate the initial condition leading to timepoint t2, and the model estimates the dynamics between timepoints

t1 and t2. These steps for timepoint t2 are then repeated to estimate the transient dynamics between each

successive timepoint. LS refers to the lifespan of RBCs. Panels (E–F) are frames from Video 1 that shows a

simulation of the evolution of P(v,h,t) from t = 0 to t = 105 days for a typical study subject. Equal-probability

contours for P(v,h) are shown at the bottom, with the empirical measurement as blue lines, and the simulation in

solid red. The surface plot also shows the simulated P(v,h,t). The plot of the empirical measurement in dashed

blue is serially updated during the movie to the measurement subsequent to the value of t. Marginal P(v,t) and P

(h,t) are shown on the left and right.
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Anemia (low HGB or HCT) (Beutler and Waalen, 2006) is associated with almost all major diseases

including cancer, infection, heart failure, autoimmune disease, and malnutrition, and is often the first

sign of many of these major illnesses. Understanding the single-cell dynamics of the homeostatic

response to blood loss will provide insight into the development and progression of many diseases

and enhance our ability to diagnose, monitor, and intervene most effectively.

Results

RBC population dynamics can be approximated with a semi-mechanistic
unsteady-state mathematical model of RBC volume and hemoglobin
and routine CBCs
A routine CBC samples the two-dimensional single-RBC volume-hemoglobin distribution (P(v,h,t)) in

a patient’s circulation at time t (Figure 1). The composition of the circulating RBC population is

determined by dynamic processes: production (erythropoiesis) (Bunn, 2013), maturation and aging

over a ~ 100-day lifespan (Willekens et al., 2008), and clearance (Franco, 2009). Master equations

are often used to model multi-dimensional probability distributions of single-cell

states (Van Kampen, 2007). In the case of RBCs, P(v,h,t) is determined by a time-dependent pro-

duction term (b(v,h,t)), dynamics, and a clearance term (d(v,h,t)). Each routine CBC with a reticulo-

cyte count provides an estimate of both b(v,h,t) and P(v,h,t). The dynamics of P(v,h) can be modeled

as a drift-diffusion process (r Pfð Þ þ r DrPð Þ), and the functional specification of the drift, diffusion,

and clearance terms can be guided by existing knowledge of in vivo RBC volume and hemoglobin

dynamics (Bosman et al., 2008; Franco, 2009; Gifford et al., 2006; Waugh et al., 1992;

Willekens et al., 2008). This overall methodology has also been applied recently to many single-cell

gene expression data sets (Shalek et al., 2013; Tusi et al., 2018) and has several strengths when

applied to this clinical data: (1) (v,h) space is sampled far more densely than gene expression space,

(2) (b(v,h,t)) can be directly sampled with each CBC, (3) rich existing physiologic knowledge of the

dynamics of (v,h) can guide the functional form of dP=dt (Lew et al., 1995; Waugh et al.,

1992; Higgins and Mahadevan, 2010), (4) b(v,h,t) and P(v,h,t) can be repeatedly sampled more fre-

quently (minutes) than the characteristic timescale in the system (~100 day RBC lifespan), and (5)

inferred single-cell trajectories can easily be combined with electronic medical record data to under-

stand phenotypic effects of dynamics and feedback.

We investigated RBC population dynamics in a cohort of 28 healthy individuals at baseline and

following controlled blood loss. We describe the evolution of P(v,h,t) with the following equation:

qP

qt
¼�r� Pfð Þþr � DrPð Þþ b v;hð Þ� d v;hð Þ (1)

Prior analysis under the assumption of steady state found that the drift term can be approximated

as a function of the RBC’s current (v,h) with an early fast phase of volume and hemoglobin reduction

during which the hemoglobin concentration ([Hb]) of young RBCs approaches the population mean

(Higgins and Mahadevan, 2010). This fast phase is parameterized by bv and bh and is followed by a

slower phase of coordinated volume and hemoglobin reduction parameterized by a. (See Figure 1

and details in Materials and methods.) The diffusive term
Dv 0

0 Dh

� �

is assumed constant without

interaction and encapsulates the variation in the rates of volume and hemoglobin change from one

RBC to the next and for the same RBC over time. Based on prior work (Higgins and Mahadevan,

2010; Patel et al., 2015), the clearance term is approximated as a function of the RBC’s current (v,

h) and a parameter (vc) for a clearance boundary region (see Figure 1 for a schematic).

The homeostatic response to 10% loss of blood volume includes both
an increase in RBC production and a delay in RBC clearance
We studied the effect of blood loss on transient RBC population dynamics by collecting one unit of

blood (~10% blood loss) from each subject and estimating model parameters before and after. Sig-

nificant blood loss triggers a rapid acellular fluid shift to restore intravascular volume that can be

detected as a decrease in HCT or HGB. See Figure 2. RBCs are assumed to be lost in a volume- and

hemoglobin-independent fashion, meaning that P(v,h,t) is not directly altered (Figure 2A). This
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assumption is based on prior labeling studies which model the residual lifespan of labeled RBCs

Figure 2. RBC dynamics are more sensitive to blood loss than RBC population statistics. (A) Complete blood

count (CBC) statistics for 28 healthy subjects before (0), 1–3 days after blood loss (+1), and 21 days after blood loss

(+21). Intensive quantities (HGB, concentration of hemoglobin per unit volume of blood; HCT, volume fraction of

RBCs in the blood) change significantly immediately following blood loss due to fluid shift, but single-RBC

population statistics do not change significantly. MCV, mean RBC volume; RDW, coefficient of variation in RBC

volume; MCHC, mean RBC hemoglobin concentration; rFraction, percentage of identified reticulocytes. See

Figure 2—figure supplement 1 for rMCV, mean reticulocyte volume; rRDW, coefficient of variation in reticulocyte

volume; MCH, mean RBC hemoglobin mass; CHDW, coefficient of variation in single-RBC hemoglobin

concentration. By 21 days after blood loss, the CHDW and rFraction have increased significantly relative to

baseline. MCHC at 21 days has decreased relative to 1–3 days. See main text and supplementary information for

more detail. (B) Single-RBC volume and hemoglobin dynamics show significant change soon after blood loss. a

and Dv increase significantly, and vc drops. (p1 compares +0 with +1, p2 compares +1 and +21, p3 compares 0 and

+21.) Boxplots show the median (middle horizontal line), the 25th and 75th percentiles, and whiskers extend to data

points not more than 1.5-times the interquartile range from the median. Notches show a 95% confidence interval

for the median, and any additional outliers are shown as discrete points.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for boxplots in Figure 2.

Figure supplement 1. RBC dynamics are more sensitive to blood loss than RBC population statistics.

Figure supplement 1—source data 1. Source data for boxplots in Figure 2—figure supplement 1.
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(after reinfusion and recollection) to infer that a blood draw is a random sample of RBCs of all ages

(Franco, 2009; Franco et al., 2013; Khera et al., 2013; Shrestha et al., 2016). The evidence for

this assumption is indirect, relying on models of RBC lifespan distributions, and definitive establish-

ment of its validity awaits the development of an accepted direct measurement or marker of RBC

age. An individual can compensate for blood loss by increasing the rate of RBC production or by

reducing the rate of clearance, or both. Production and clearance have baseline rates of ~1% per

day (Dornhorst, 1951; Franco et al., 2013). Under physiologic conditions, only the oldest RBCs are

cleared (Cohen et al., 2008; Franco, 2009; Franco et al., 2013; Khera et al., 2013). The gold stan-

dard ’reticulocyte count’ does not reliably detect increased production for about 5

days (Jelkmann and Lundby, 2011; Piva et al., 2015; Sieff, 2017) (Figure 2A), but the true produc-

tion rate may increase earlier, and even less is known about any modulation of RBC

clearance (Higgins and Mahadevan, 2010; Malka et al., 2014; Patel et al., 2015).

Over the first 1–3 days following blood loss, the single-cell (v,h) dynamics for most subjects

showed significant increases in model parameters a and Dv and a decrease in vc (Figure 2B). Greater

a reflects a faster reduction in (v,h) for the typical RBC or a longer RBC lifespan, since a is normal-

ized by a nominal lifespan, or both. Greater Dv reflects increased variation in the rate of RBC volume

reduction, or a longer RBC lifespan, or both. Smaller vc reflects delayed clearance of RBCs with (v,h)

low enough to have been cleared prior to blood loss.

Model simulation identifies regions of P(v,h) where the blood loss response causes the largest

changes (Figure 3A): increase in the low-u region containing older cells, milder increase in the high-

u, low-[Hb] region containing young RBCs, and a balancing decrease along the u axis above the low

tail. We can quantify the empirical effect of blood loss response on the older cell fraction by inte-

grating P(u) one standard deviation below the median and lower. Figure 4D shows a significant

increase in the fraction of older RBCs for most subjects during the first 1–3 days after blood loss,

consistent with a delayed clearance.

Newly produced RBCs have higher volume and lower hemoglobin

concentration (d’Onofrio et al., 1995) and appear in the upper right of the (v,h) plane, or the bot-

tom right quadrant of the u-[Hb] plane (Figure 4AB). Figure 3 shows that a simulated increase in Dv

Figure 3. Model simulations show that blood loss causes a shift of probability density from the central axis of the

(v,h) distribution, mostly to the low volume-low hemoglobin tail. Comparison of the absolute (A) and relative (B)

changes in the simulated single-RBC volume-hemoglobin probability density when setting Dv’=4Dv, a’=2a, and

vc’=0.9vc, to match the median changes shown in Figure 2B. (C) Arrows depict the typical movement in probability

density 1–3 days after blood loss. (D–F) show the effects of isolated changes to individual parameters, with

changes to a and vc corresponding to retention of older RBCs (delayed clearance), and changes to Dv adding

density in the high-volume, low-hemoglobin region where new RBCs appear, corresponding, in part, to increased

production.
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is associated with an increase in P(v,h) in this region. We can look for empirical evidence of increased

production by conditioning on u being more than one standard deviation above the median and

then integrating the marginal [Hb] distribution falling at least one standard deviation (~5%) below

the median. Figure 4C shows a significant increase for the typical subject, consistent with RBC pro-

duction increasing days earlier than the current gold standard reticulocyte count (Figure 2A). We

did not find any statistically significant sex-specific differences.

MCHC rise and subsequent fall is consistent with a combination of
delayed clearance and increased production
Single-RBC hemoglobin concentration ([Hb]) increases during the first few weeks of an RBC’s lifespan

and is then stable (Franco et al., 2013). Clearance delay would therefore enrich the fraction of older

RBCs which have [Hb] slightly higher than the population mean, and the population mean [Hb]

(MCHC) would increase. On the other hand, increased production in isolation would reduce MCHC

Figure 4. Single-cell model provides a mechanistic link between dynamics of the (v,h) distribution and the balance

between increased RBC production and delayed RBC clearance in response to blood loss. (A) Schematic of the

single-cell volume-hemoglobin distribution for RBCs. The major axis of the distribution (u) corresponds to the

mean single-RBC hemoglobin concentration (MCHC). An RBC’s position when projected onto u corresponds

roughly to its age, with younger RBCs generally appearing in the upper right, and aging along the u axis toward

the origin in the bottom left. We can compare changes in the fraction of older RBCs by integrating density along u

as shown in the inset in the top left. We can compare changes in the fraction of newly produced RBCs by

conditioning on higher u and integrating density along the [Hb] axis as show in the inset in the top right of panel

(A). (B) The top panel shows a typical (v,h) distribution that has been transformed onto the u-[Hb] plane in the

bottom panel. (C) The typical blood loss response after 1–3 days includes an increase in the fraction of newly

produced cells which will have [Hb] more than one standard deviation below the median and u more than one

standard deviation above the median (p<1e-3), corresponding to the top right inset in panel (A) and consistent

with increased production. (D) 1–3 days following blood loss, the typical response also involves an increase in the

fraction of older RBCs, located more than one standard deviation (15%) below the median u (p<1e-3),

corresponding to the top left inset in panel (A) and consistent with a delayed clearance. (E) The mean RBC age

(MRBC), as estimated by the glycated hemoglobin fraction, has decreased on average by about 4% after 21 days,

but there is significant variation, with some subjects seeing an increase in MRBC. (F) The model characterizes the

relative balance between increased production and delayed clearance in each subject’s blood response by the

dimensionless parameter ratio Dv � vcð Þ=a. The time-weighted average of this ratio after blood loss for each subject

is significantly correlated with the estimated change in MRBC (r = �0.59), suggesting that the model of (v,h)

dynamics has accurately captured the production=clearanceð Þ balance of the typical subject’s blood loss response.

The red line is a least-squares linear fit. (G) The dimensionless parameter ratio distinguishes subjects whose MRBC

becomes shorter (production-dominated) during response to blood loss from those whose MRBC becomes longer

(clearance-dominated). (See Figure 2 caption for boxplot description.)

The online version of this article includes the following source data for figure 4:

Source data 1. Source data for boxplots in Figure 4.
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by adding more young RBCs with lower [Hb]. For

the typical subject, we find that MCHC increases

shortly after blood loss and then falls, dropping

below the baseline level by 21 days (Figure 5).

Both delayed clearance and increased production

would be expected to increase the coefficient of

variation in [Hb], (cellular hemoglobin distribution

width or CHDW) by enriching for RBCs with

extreme [Hb], also consistent with measurements

of CHDW (Figure 5), which increases after blood

loss and remains elevated relative to baseline

even 21 days later.

The model enables estimation of
the relative magnitudes of the
production increase and clearance
delay for individual subjects
The model thus suggests that the response to

blood loss includes both delayed clearance (mod-

eled as a higher a and lower vc, or simply higher
a
vc
) and increased production (modeled as a higher

Dv). These two component responses will have

opposite effects on the mean RBC age (MRBC),

with increased production enriching for younger

RBCs and shortening MRBC, and delayed clear-

ance enriching for older RBCs and lengthening

MRBC. MRBC can be estimated in these nondia-

betic subjects by measuring the glycated hemo-

globin fraction (Dornhorst, 1951; Franco, 2009;

Khera et al., 2013; Malka et al., 2016;

Bunn et al., 1976; Cohen et al., 2008;

Dijkstra et al., 2017). Figure 4 shows that this

estimated MRBC has decreased by about ~4% for

the typical subject by 21 days, consistent with relatively more increased production than delayed

clearance for the typical subject, but the balance varies across subjects.

The model can be used to estimate the production

clearance
response ratio for each subject as a dimensionless

number: Dv�vc
a
. Higher Dv�vc

a
corresponds to greater production increase and would be expected to

shorten MRBC, while lower Dv�vc
a

corresponds to greater clearance delay and would lengthen MRBC.

We validate the model by comparing Dv�vc
a

to the change in MRBC estimated from independent meas-

urements of HbA1c and find (Figure 4F) the expected negative correlation (p < 0.002). Subjects

whose modeled blood loss response shows transient (v,h) dynamics with relatively higher production

increase have a greater reduction in MRBC (Figure 4G).

Perturbations to single-RBC volume and hemoglobin distributions
persist for at least 21 days after loss
The model thus finds that volume and hemoglobin dynamics of the typical RBC are significantly

altered shortly after blood loss and remain altered for at least 21 days. Because P(v,h,t) is deter-

mined by these dynamics, our results imply that it should be possible to distinguish 21-day post-

blood loss CBCs from pre-blood loss CBCs based only on P(v,h), without having to consider meas-

urements of cell count or concentration like HGB, HCT, or reticulocyte count. We used machine

learning methods to classify measurements of P(v,h) and achieved cross-validated performance > 98%

(AUC 0.98) with multiple methods (quadratic discriminants, complex trees, etc.). By comparison, this

classification by P(v,h) was actually significantly more accurate than classification using only the cur-

rently standard count-based markers (HCT and reticulocyte count, accuracy 93%, AUC 0.90).

Figure 5. Following blood loss, the MCHC rise and fall

and the sustained CHDW rise are consistent with a

combination of delayed RBC clearance and increased

RBC production. (Top) The intra-subject MCHC tends

to increase immediately after blood loss (left, p<0.05)

and then decreases below baseline by 21 days later

(right, p<0.01). (Bottom) The intra-subject CHDW

increases immediately after blood loss (p<0.002) and

then increases again by 21 days later (p<0.002).

The online version of this article includes the following

source data for figure 5:

Source data 1. Source data for boxplots in Figure 5.
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Discussion
This single-cell model of routinely available clinical data provides a mechanistic link between the (v,

h) distribution and changes in the RBC age distribution. The model identifies delayed RBC clearance

as an important unrecognized component of the compensatory response to blood loss, and it ena-

bles more nuanced and precise inferences about the homeostatic response to a fundamental patho-

logic process in different individuals.

Our analysis begins with a mechanistic model and leads to identification of empirical changes in

the (v,h) distribution that are associated with the response to blood loss. A non-mechanistic

approach comparing arbitrary distribution statistics before and after blood loss may also be fruitful,

but given the large number of potential statistics on distributions of tens of thousands of measure-

ments and the small number of cases (n = 28), statistical significance of the identified associations

would likely be limited. More importantly, the advantage of a mechanistic modeling approach either

in addition to or instead of a purely statistical or machine learning approach is that it provides a

hypothesized physiologic context. Additional falsifiable predictions may then be deduced to provide

further validation opportunities, as shown for instance in Figure 5. A mechanistic model also enables

assessment of counterfactuals, which is particularly important in the clinical context, where patient

factors or pre-existing conditions not present in discovery or development cohorts might signifi-

cantly compromise accuracy when inference methods are applied to real-world populations. An

understanding of the mechanistic basis for an inference method or algorithm will increase the likeli-

hood that these problematic situations can be anticipated and perhaps avoided. In the context of

this study, such conditions may include transfusion, sickle cell disease, or mechanical RBC stresses

altering RBC volume associated with disseminated intravascular coagulation, microangiopathic

hemolytic anemia, and other related pathologic processes.

The model has potential for immediate clinical decision support by detecting increased RBC pro-

duction earlier than the current gold standard reticulocyte count in our study cohort. Further study is

needed to compare the transient (v,h) dynamics in patients with active disease processes and to

investigate which factors control the production/clearance ratio of a subject’s blood loss response.

As more single-cell methods mature, modeling of higher-dimensional cell states will enable richer

understanding of physiologic homeostasis and adaptation and help realize the vision for precision

medicine.

Materials and methods

Human subjects
All 28 subjects (18 male, 10 female) enrolled in the study were healthy and athletically active individ-

uals aged 18 to 40 on the day of enrollment. The study size provided at least four same-sex biologi-

cal replicates and allowed for the possibility of a 50% dropout during the study. Subjects were

excluded from enrollment if they participated in competitive sporting events during the study proce-

dures, or if they were a member of a registered anti-doping testing pool for any international sport-

ing federations, national anti-doping organizations, or professional sporting organizations. Prior to

study commencement, all participants provided written, informed consent. Approval for study pro-

cedures was granted by the University of Utah Institutional Review Board (IRB Protocol #00083533)

and for analysis of human subject data by the Partners Healthcare Institutional Review Board. An out-

line of the study design and collection time points is shown in Figure 1.

Blood collection
Prior to each blood collection, subjects were seated with their feet on the floor for a minimum of ten

minutes per World Anti-Doping Agency blood collection guidelines (https://www.wada-ama.org/en/

resources/world-anti-doping-program/guidelines-blood-sample-collection). After the ten-minute

equilibration period, blood was collected via venipuncture of an antecubital vein into one 6 mL

serum-separator tube and one 6 mL K2EDTA (BD Vacutainer) tube. After collection, whole blood

samples were immediately refrigerated until analysis. Additional aliquots were stored at �80C for

HbA1c measurement. Following three baseline collections over the course of 2-4 weeks, each sub-

ject in the study donated one unit of blood (~475 mL) according to Associated Regional and Univer-

sity Pathologists (ARUP) standard operating procedures.
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CBC measurements
Whole blood samples collected in K2EDTA tubes were measured for a Complete Blood Count plus

reticulocyte% using a Siemens Advia 2120i. Briefly, samples were brought from refrigerated to room

temperature while on a nutating mixer for at least 15 min prior to analysis. All samples were mea-

sured in duplicate. All samples were collected in Salt Lake City, Utah, at either the Sports Medicine

Research and Testing Laboratory (SMRTL) or the University of Utah Hospital. The approximate alti-

tude at these locations is 1400 m above sea level. All subjects in the study were residents at this alti-

tude and are assumed to be adapted to the environment.

Model details
We measured CBCs roughly every other day for a week for all subjects and used the model to infer

each subject’s baseline RBC population dynamics between these 4 timepoints (e.g., t = 1, 3, 5, and

7 days). At t = 1, b(v,h,1) is measured and used to estimate source terms extending back in time by

a number of days equivalent to the RBC lifespan (LS): b v; h; 1� LSð Þ < ¼ t < 1ð Þ ¼ b v; h; t ¼ 1ð Þ.

The RBC age distribution is assumed to be uniform with nominal LS ¼ 105 days (Cohen et al.,

2008). The first CBC provides a sample of P(v,h,1), and Equation 1 can be used to estimate the

parameters characterizing the RBC population dynamics at baseline:

p1 ¼ a1; bv;1;bh;1;Dv;1;Dh;1; vc;1
� �

(Higgins and Mahadevan, 2010; Patel et al., 2015). The transient

dynamics between t = 1 and t = 3 can be estimated using p1 and Equation 1. Initial conditions at t

= 1 are determined by integrating Equation 1 for LS – 2 days with a source term equal to b(v,h,1).

The CBC measured on day 3 (t = 3) provides a direct estimate of b(v,h,3) and a sample of P(v,h,3).

Equation 1 is then used to estimate p3, the parameters characterizing the transient dynamics

between t = 1 and t = 3. This process is repeated for each successive CBC to provide quantification

of the transient dynamics as shown in Figure 2. See Video 1 for additional detail.

In the Fokker-Planck equation describing the RBC maturation dynamics (Equation 1), the drift

term is expressed as a combination of an initial fast phase, followed by a slow phase. In Equation 2,

v and h are normalized by their sample population means, and both approach 1 as the fast phase

transitions to the slow phase:

f ¼
aebvðv�hÞ

aebhðh�vÞ
(2)

In Equation 1 and 2, P refers to the volume-hemoglobin probability distribution of the RBC pop-

ulation, D is the diffusion matrix
Dv 0

0 Dh

� �

, and a,

bv, and bh parameterize the drift processes. The

birth term b(v,h,t) is estimated by reticulocyte

count measurements at time t along with the

RBC population, with b(v,h) defined by the vol-

ume and hemoglobin distribution measured for

reticulocytes identified using standard validated

clinical laboratory techniques (d’Onofrio et al.,

1995). The clearance term, d(v,h) is defined as

follows:

d v;hð Þ ¼
1

1þ eD v;hð Þ

D v;hð Þ ¼ 100

cos �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vv
�� �2

þ hh
�� �2

r

� vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
�2

þ h
�2

q

vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
�2

þ h
�2

q

�¼ tan�1
h
�

v
�

 !

� tan�1
hh
�

vv
�

 !

Video 1. The video shows a simulation of the evolution

of P(v,h,t) from t = 0 to t = 105 days for a typical study

subject. Equal-probability contours for P(v,h) are shown

at the bottom, with the empirical measurement as blue

dashed lines, and the simulation in solid red. The

surface plot also shows the simulated P(v,h,t). The plot

of the empirical measurement in dashed blue is serially

updated during the movie to the measurement

subsequent to the value of t. Marginal distributions, P

(v,t), and P(h,t), are shown at the sides along with

empirical measurements in blue.

https://elifesciences.org/articles/48590#video1
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Here, v
�
and h

�

are the MCV and MCH, respectively, and vc parameterizes the clearance boundary

region (Higgins and Mahadevan, 2010; Patel et al., 2015).
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