
Cleavage Factor I Links Transcription Termination to
DNA Damage Response and Genome Integrity
Maintenance in Saccharomyces cerevisiae
Hélène Gaillard, Andrés Aguilera*

Centro Andaluz de Biologı́a Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Sevilla, Spain

Abstract

During transcription, the nascent pre-mRNA undergoes a series of processing steps before being exported to the cytoplasm.
The 39-end processing machinery involves different proteins, this function being crucial to cell growth and viability in
eukaryotes. Here, we found that the rna14-1, rna15-1, and hrp1-5 alleles of the cleavage factor I (CFI) cause sensitivity to UV-
light in the absence of global genome repair in Saccharomyces cerevisiae. Unexpectedly, CFI mutants were proficient in UV-
lesion repair in a transcribed gene. DNA damage checkpoint activation and RNA polymerase II (RNAPII) degradation in
response to UV were delayed in CFI-deficient cells, indicating that CFI participates in the DNA damage response (DDR). This
is further sustained by the synthetic growth defects observed between rna14-1 and mutants of different repair pathways.
Additionally, we found that rna14-1 suffers severe replication progression defects and that a functional G1/S checkpoint
becomes essential in avoiding genetic instability in those cells. Thus, CFI function is required to maintain genome integrity
and to prevent replication hindrance. These findings reveal a new function for CFI in the DDR and underscore the
importance of coordinating transcription termination with replication in the maintenance of genomic stability.
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Introduction

All cells are continuously exposed to DNA damaging agents,

which can arise from exogenous sources or from endogenous

metabolic processes. The DNA damage response (DDR) includes

the activation of checkpoints and induction of DNA repair

pathways. DNA lesions can generate structural distortions that

interfere with basic cellular functions like transcription and

replication. Such helix-distorting DNA lesions are generally

handled by nucleotide excision repair (NER), which can be

divided into global genome repair (GG-NER) and transcription-

coupled repair (TC-NER) sub-pathways, depending on whether

the DNA lesion is located anywhere in the genome or on the

transcribed strand (TS) of an active gene, respectively. At

transcribed genes, TC-NER acts when elongating RNA polymer-

ase (RNAP) stalls at bulky DNA lesions such as UV-induced

cyclobutane pyrimidine dimers (CPDs) (reviewed in [1,2]).

Transcription down-regulation and proteasome-mediated degra-

dation of engaged RNAPII take place as part of the DDR to UV-

induced damages [3,4]. In humans, defects in TC-NER are

responsible for two severe genetic disorders called Cockayne

Syndrome (CS) and UV Sensitivity Syndrome (reviewed in [5,6]).

In S. cerevisiae, the major TC-NER factor is Rad26, the yeast

homologue of CS protein B (CSB) [7]. However, residual TC-

NER activity remains in the absence of Rad26, indicating that

other factors are also involved in the process [7,8]. Mutations in

several transcription and messenger ribonucleoprotein (mRNP)

biogenesis factors including the RNAPII subunit Rpb9, THO,

THSC/TREX-2, Paf1, and Ccr4-NOT are partially defective in

TC-NER in yeast [9–12].

During the past few years it has become clear that the different

mRNA processing steps (including 59-end capping, splicing, and 39-

end cleavage), mRNP export, and transcription are connected to

each other (reviewed in [13]) and that surveillance mechanisms

ensure that these processes occur in a coordinated manner

(reviewed in [14]). THO and THSC/TREX-2 both work at the

interface between transcription elongation, mRNP biogenesis and

export and defects are characterized by a strong transcription-

dependent hyperrecombination phenotype (reviewed in [15,16]).

THO might also act in the process of transcription termination, as in

vitro assays suggest that THO mutants lead to polyadenylation

defects [17]. Interestingly, other factors required for proficient TC-

NER also function during transcription termination. The Paf1

transcription elongation factor contributes to the recruitment of 39-

end processing factors necessary for accurate transcription termi-

nation (reviewed in [18]). The Ccr4-NOT complex acts, among

other gene expression functions, during transcription elongation

and interacts with mRNP export factors (reviewed in [19]).

In the yeast Saccharomyces cerevisiae, the transcription termination

machinery can be divided into three different sub-complexes:

cleavage factor IA (CFIA), cleavage factor IB (CFIB), and cleavage

and polyadenylation factor (CPF). CFIA is comprised of the

Rna14, Rna15, Pcf11, and Clp1 proteins. CFIB consists of the

RNA-binding protein Hrp1, which is tightly associated with CFIA.
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The CPF complex is a large complex that can be further classified

into the cleavage factor II (CFII) made out of the Cft1, Yhh1, Pta1,

Brr5, Ysh1, Cft2, and Ydh1 proteins; the polyadenylation factor I

made of Fip1, Yth1, and Psf1; and other proteins including the Pap1

polymerase. In vitro reconstitution of the cleavage reaction demon-

strated that it requires the joint action of CFIA, CFIB, and CFII

[20,21], while additional proteins such as the 59-39-exoribonuclease

Rat1 are required for termination downstream of poly(A) sites in vivo

and dismantling of RNAPII complexes in vitro [22–24]. In addition

to their role in cleavage, many of the components of the cleavage

machinery are required for transcription termination downstream

of the poly(A) site and polyadenylation of the transcript (reviewed in

[25,26]). Notably, the CFIA rna14-1 and rna15-1 mutants suffer

from transcription elongation defects and increase in transcription-

dependent hyper-recombination [27], suggesting that the CFIA

complex serves important functions in transcription beyond

termination and 39-end processing.

To assess the possible function of RNA 39-processing and

transcription termination on TC-NER, we analysed the impact of a

number of mutations on the DDR and the repair of UV-induced

lesions. We found that CFI mutants become sensitive to UV in the

absence of GG-NER, but surprisingly are proficient for CPD repair.

By contrast, DDR is compromised in those cells, as seen by RNAPII

degradation and checkpoint activation analyses upon UV irradiation.

In addition, we show that rna14-1 cells are impaired in cell cycle

progression and rely on a functional G1/S checkpoint to prevent

genomic instability and cell death. Our study reveals that CFI functions

in DDR and is required for genomic integrity maintenance in yeast.

Results

CFI mutants are UV-sensitive in the absence of global
genome repair

We first analysed the sensitivity of several transcription

termination mutants to DNA damage in the absence of Rad7, a

protein required for GG-NER in yeast. Growth of each double

mutant was compared to the growth of rad7D after irradiation with

UV light and in the presence of the UV-mimetic agent 4-

nitroquinoline 1-oxide (4-NQO) (Figure 1A). The rna14-1 rad7D,

rna15-1 rad7D, and hrp1-5 rad7D double mutants were significantly

more affected by UV irradiation or 4-NQO than the respective

single mutants, while the remaining assayed alleles (pcf11-2, rat1-1,

and yhh1-3) were not. Notably, deletion of the RAD26 gene, which

encodes the main TC-NER factor, further increased the sensitivity

of rna14-1 rad7D and hrp1-5 rad7D mutants, indicating that the

rna14-1 and hrp1-5 alleles are not epistatic to rad26D (Figure 1B).

Because UV sensitivity in the absence of GG-NER is a

phenotype mostly associated with TC-NER deficiencies, we tested

whether functional CFI was required for proficient TC-NER by

monitoring the repair rates of the transcribed (TS) and non-

transcribed (NTS) strands of the constitutively expressed RPB2

gene in rna14-1, rna15-1, and hrp1-5 cells (Figure 2, A and B). With

the exception of the 60 min. time-point in rna14-1, which is

seemingly lower than the wild type on the TS, no significant

differences were observed between the repair rates of the mutants

and the wild type in either RPB2 strand. Repair experiments were

thus performed in rad7D and rna14-1 rad7D cells. As can be seen in

Figure 2 (A and B), both strains show a similar low repair on the

NTS and are repair-proficient on the TS. Together, our results

indicate that the rna14-1, rna15-1, and hrp1-5 mutants are repair-

proficient for CPDs. Because deficiencies in NER may cause an

increase in recombinational repair and rna14-1 cells show

moderate hyper-recombination [27], we assessed whether recom-

bination increased upon UV irradiation in rna14-1, rad7D, and

rna14-1 rad7D cells. For this, we used a direct-repeat (LY) and an

inverted-repeat (SU) plasmid-based system [28]. As expected,

rad7D cells show an increase in recombination upon UV-damage

in both systems (13- and 35-fold, Figure S1). However, recombi-

nation frequencies did not increase upon UV irradiation in rna14-1

cells, suggesting that UV damage is efficiently repaired by NER.

Notably, the rna14-1 rad7D double mutant shows UV-dependent

increase in recombination frequency as compared to the rad7D
mutants in the direct-repeat system -but not in the inverted-repeat

system- suggesting that these cells suffer from increased genomic

instability that is not linked to increased CPD repair deficiencies.

The DNA damage response is delayed in rna14-1 mutants
The cellular response to UV-induced damage involves, in

addition to checkpoint activation, proteosomal degradation of

RNAPII [3]. To check the functionality of the DDR in rna14-1

cells, we analysed the stability of Rpb1, the largest subunit of

RNAPII, and activation of the Rad53 checkpoint protein upon

UV irradiation by Western analysis (Figure 2, C and D).

Interestingly, UV-induced Rpb1 degradation was less pronounced

and severely delayed in rna14-1 cells as compared to the wild type.

Activation of the DNA-damage checkpoint, monitored by the

appearance of hyper-phosphorylated Rad53 upon UV irradiation

was delayed in rna14-1 cells as compared to the wild type, in which

Rad53 phosphorylation occurs immediately upon UV irradiation.

In addition, the rna14-1 mutation did not increase the sensitivity to

UV or 4-NQO of cells lacking either one of the DNA-damage

checkpoint proteins Rad9 and Mec1 (Figure S2), suggesting that

CFI might act within the canonical checkpoint pathways. To gain

more insights into the function of CFI in the cellular response to

UV-induced damage, Rpb1 stability and Rad53 phosphorylation

were also analysed in cells bearing the rna15-1, hrp1-5 and pcf11-2

mutations (Figure S3). Both rna15-1 and pcf11-2 cells were partially

impaired in UV-induced Rpb1 degradation while hrp1-5 cells

behaved similarly to the wild type. However, Rad53 phosphor-

ylation was delayed in the rna15-1 and hrp1-5 mutants but not in

Author Summary

DNA damage occurs constantly in living cells and needs to
be recognized and repaired to avoid mutations. DNA
repair is particularly relevant for lesions occurring in
actively transcribed DNA strands because the RNA poly-
merase cannot proceed through a damaged site. Stalled
RNA polymerases and persisting DNA lesions can lead to
genome instability or cell death. Specific mechanisms to
repair obstructing DNA lesions are found from bacteria to
higher eukaryotes, their malfunction leading to severe
genetic syndromes in humans. Termination of transcrip-
tion comprises cleavage and polyadenylation of the
nascent transcript and displacement of the RNA polymer-
ase from its DNA template. These processes, which are
crucial for cell viability and growth in eukaryotes, require
two major multi-subunit complexes in budding yeast.
Here, we found that one of these complexes, Cleavage
Factor I (CFI), participates in the cellular response to DNA
damage. In addition, we found that CFI dysfunction leads
to replication defects, conceivably mediated by stalled
RNA polymerases, rendering cell cycle checkpoints man-
datory to prevent genomic instability. Our findings
emphasize the importance of coordinating transcription
termination, DNA damage response and replication in the
maintenance of genomic stability suggesting that CFI
plays a fundamental function in the coupling of these
processes.

Cleavage Factor I, DNA Damage Response and Replication
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pcf11-2 cells. These interesting results suggest that UV-induced

Rpb1 degradation might not depend on Rad53 activation.

Previously, deletion of the DEF1 gene was shown to increase the

sensitivity to UV in the absence of GG-NER without affecting

DNA repair at the molecular level and to impair UV-dependent

Rpb1 degradation [29]. Thus, we assayed viability and

sensitivity of rna14-1 def1D, rna15-1 def1D, hrp1-5 def1D, and

rat1-1 def1D double mutants to assess possible genetic interac-

tions and observed strong synthetic sickness even in the absence

of exogenous damage in all strains except hrp1-5 def1D
(Figures 2E and S4). These interesting genetic interactions

suggest that Def1 and CFI might have complementary functions

for cell growth, which eventually rely on alternative ways to

regulate RNAPII turnover. Although the penetrance of the

different alleles differs depending on the analysed phenotype,

our data indicate that CFI is required for the cellular response to

UV-induced damage.

The ability to withstand DNA damage is reduced in CFI
mutants

Sensitivity analysis of different termination mutants to distinct

DNA damaging agents revealed that the rna14-1, rna15-1, and

hrp1-5 mutants were sensitive to Phleomycin and to methyl

methansulfonate (MMS) in contrast to the pcf11-2, rat1-1, and

yhh1-3 cells, which were either slightly or not sensitive to those

genotoxic agents (Figure 3A). Interestingly, the three alleles

conferring significant sensitivity were those that increase the

UV-sensitivity of rad7D mutants. To assess whether this phenotype

was general rather than specific to GG-NER, we generated double

mutants of rna14-1 with mutations in representative genes with

known functions in the different DNA repair pathways, including

homologous recombination (HR), non-homologous end joining

(NHEJ), post-replicative repair (PRR), mismatch repair (MMR),

base excision repair (BER) and NER (Figure 3B). Interestingly, the

rna14-1 mutant showed synthetic growth defects even in the

absence of exogenous damage with several repair mutants,

including rad52D, ku70D, lig4D, and rad1D. These growth defects

are further sustained by DNA content profiling FACS analysis

(Figure S5). In addition, synthetic UV/4-NQO sensitivity was

observed in all double mutants but rna14-1 ogg1D ntg1D ntg2D.

Thus, our results indicate that Rna14 dysfunction makes cells

unable to cope with high levels of DNA damage and rely on

functional repair pathways even in the absence of exogenous

damage.

To check whether these genetic interactions might arise from

expression defects of DNA repair genes, mRNA expression was

analysed by microarrays in rna14-1 and rna15-1 cells (Table S1).

The results obtained with the two mutants were highly similar

(Figure S6). Analysis of gene ontology terms of genes with higher

(. 2-fold) and lower (, 2-fold) expression as compared to wild-

type levels revealed that many genes involved in the DNA damage

and/or stress response are induced in these mutants (Table S2),

Figure 1. CFI mutations lead to UV sensitivity in the absence of global genome repair. (A) UV and 4-NQO sensitivity of six different
transcription termination mutants alone and in combination with the rad7D mutation. (B) UV sensitivity curves of strains carrying single, double and
triple combinations of rna14-1 (top) and hrp1-5 (bottom) together with rad7D and rad26D mutations. Average values from at least three independent
experiments and corresponding standard deviations are plotted.
doi:10.1371/journal.pgen.1004203.g001

Cleavage Factor I, DNA Damage Response and Replication
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Figure 2. Normal CPD repair and DNA-damage response alteration in transcription termination mutants. (A) Southern analysis showing
repair of a 4.4-kb (NsiI/PvuI) RPB2 fragment in wild-type, rna14-1, rna15-1, hrp1-5, rad7D and rna14-1 rad7D cells. Initial damage was on the average
0.24760.091 CPD/Kb in the transcribed strand (TS, left) and 0.24560.098 CPD/Kb in the non-transcribed strand (NTS, right). The remaining intact
restriction fragment after treatment with T4endoV (+UV, +T4endoV) corresponds to the fraction of undamaged DNA. Non-irradiated DNA (-UV) and DNA
not treated with T4endoV (-T4endoV) were used as controls. (B) Graphical representation of the quantified results. The CPD content was calculated using
the Poisson expression, -ln (RFa/RFb), where RFa and RFb represent the intact restriction fragment signal intensities of the T4endoV- and mock-treated
DNA, respectively. Repair curves were calculated as the fraction of CPDs removed vs. repair time. Average values derived from three independent
experiments are plotted with their standard deviation. Repair curve of rad26 (data taken from [9]) is depicted for the TS. (C) Western analysis of Rpb1 and
Rad53 upon UV irradiation in rna14-1 and wild-type cells. b-actin is shown as loading control. (D) Graphical representation of the quantified results from
Rpb1 and Rad53 Western analyses. The amount of Rpb1 is shown as the percentage of Rpb1 in the non-irradiated sample. The percentage of hyper-
phosphorylated Rad53 is plotted for each condition. Average values derived from three independent experiments are plotted with their standard
deviation. (E) Genetic interaction analysis between the rna14-1 and the def1D mutants. Serial dilutions (10-fold) of exponentially growing cultures are
shown. This panel complemented with the data of the rna15-1 def1D, hrp1-5 def1D, and rat1-1 def1D mutants are shown in Figure S2.
doi:10.1371/journal.pgen.1004203.g002

Cleavage Factor I, DNA Damage Response and Replication
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including genes such as OGG2, PRX1, DNL4, LIF1, RAD2 or

MAG1. In addition, we found out that in rna14-1 or rna15-1 cells,

the down-regulated genes were on the average longer than those of

the entire genome, while the up-regulated genes were shorter

(Figure S6), but DNA repair genes were not specifically down

regulated. Thus the results rule out that the reduced capability of

CFI mutants to withstand DNA damage is due to reduced

transcription of repair protein encoding genes. On the contrary,

the elevated expression of DNA damage and/or stress response

transcripts suggests that CFI mutants may accumulate DNA

damage or structures that impose a steric hindrance to DNA

metabolic processes.

CFI mutants show severe replication defects
Transcription and replication need to occur in a coordinated

manner in order to avoid conflicts that can result in genetic

instability (reviewed in [30,31]). To assess whether the CFI

dysfunction affects replication, we first analysed sensitivity of

several mutants to hydroxyurea (HU), a drug that slows replication

down by reducing the pool of available deoxyribonucleotides

(Figure 4A). Notably, the alleles that conferred sensitivity to HU

were rna14-1, rna15-1, and hrp1-5, while the others did not at

concentrations assayed. Since the expression of genes encoding

ribonucleotide reductase components were not affected in rna14-1

and rna15-1 (Table S1), the observed HU sensitivity might reflect

Figure 3. Transcription termination mutants do not tolerate compromised DNA repair. (A) Sensitivity to Phleomycin (Phleo), methyl
methanesulfonate (MMS), and camptothecin (CPT) of six transcription-termination mutants. 10-fold serial dilutions of exponentially growing cultures
are shown. (B) Analysis of genetic interactions between rna14-1 and mutants impaired in homologous recombination (HR), non-homologous end
joining (NHEJ), post-replicative repair (PPR), mismatch repair (MMR), base excision repair (BER), and nucleotide excision repair (NER). 10-fold serial
dilutions of exponentially growing cultures are shown. * indicates that the UV dose was 2 J/m2.
doi:10.1371/journal.pgen.1004203.g003

Cleavage Factor I, DNA Damage Response and Replication
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DNA replication impairment. Next we analysed plasmid loss in

rna14-1 cells as a way to measure replication efficiency genetically

(Figure 4B). Our results show that less than 5% rna14-1 cells

maintained the pRS315 centromeric plasmid after about 10

divisions in non-selective medium as compared to the 50% value

of wild-type cells. FACS analysis of cell cycle progression upon

release from a-factor-mediated G1-arrest revealed that rna14-1

mutants remain trapped in G1 and suffer from a delay in S-phase

entry as compared to the wild type (Figure 4C). For a specific

analysis of initiation and progression of replication, we monitored

BrdU incorporation upon release from a-factor-mediated G1-

arrest at three different early origins (Figure 4D). DNA was

immunoprecipitated with anti-BrdU antibody and BrdU enrich-

ment at each locus was analysed by real-time qPCR with specific

primers. Importantly, strong defects in replication were observed

in rna14-1 mutants, as ARS activation was significantly reduced

and occurred at later time points than in wild-type cells. Thus, cell-

cycle progression is severely compromised in rna14-1 cells.

Figure 4. Cell cycle progression is compromised in rna14-1 cells. (A) Sensitivity to hydroxyurea (HU) of six transcription-termination mutants.
Serial dilutions (10-fold) of exponentially growing cultures are shown. (B) Analysis of plasmid loss in rna14-1, monitored as the percentage of cells that
lost the pRS315 centromeric plasmid after ,10 divisions in non-selective media. Average and standard deviation of six independent transformants
are plotted for each genotype. Statistical analysis was performed with a two-tailed unpaired student t-test compared with the wild type. ***p,0.001.
(C) Cell cycle progression analysis in wild-type (WT) and rna14-1 strains. Asynchronous (async.), a-factor synchronized (sync.) and released cells were
analysed by FACS. (D) Analysis of replication in rna14-1 cells. BrdU incorporation upon release of G1-arrested cells was analysed at early replicating
origins ARS508, ARS305, and ARS416 by immunoprecipitation and RT qPCR. A schematic drawing of each ARS and localization of the amplified regions
are depicted (top). Quantification of BrdU incorporation relative to a late replicating locus is plotted for each region. Average from two independent
experiments and corresponding standard deviations are shown.
doi:10.1371/journal.pgen.1004203.g004

Cleavage Factor I, DNA Damage Response and Replication
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rna14-1 relies on a functional G1/S checkpoint to avoid
genomic instability

Because G1 to S-phase progression was markedly delayed in

rna14-1 cells, we asked whether persistent G1/S checkpoint

activation might be responsible for the observed cell-cycle delay.

Deprivation of Sic1, a protein that is required for the G1/S

checkpoint, suppressed the S-phase entry defects in the rna14-1

mutant upon release from a-factor-mediated G1-arrest as seen by

FACS analysis (Figure S7). To evaluate the consequences of

forcing S-phase entry in rna14-1 mutants by SIC1 deletion, we

analysed phosphorylated H2A (H2A-P) levels by Western analysis

(Figure 5A). Our results indicate that the rna14-1 sic1D mutant

accumulates DNA damage, as seen by the large amount of H2A-P.

We then analysed recombination and Rad52-foci accumulation to

gain insight into the impact of G1/S-checkpoint bypass in rna14-1

cells. As rna14-1 sic1D shows severe growth defects at 30uC (Figure

S8), recombination was scored at 26uC, a semi-permissive

temperature for the rna14-1 mutant, in a direct-repeat (LYDNS)

as well as an inverted-repeat (TINV) plasmid-based system [28]

(Figure 5B). A significant increase in recombination frequency was

observed in the double rna14-1 sic1D mutants with respect to the

frequencies of either single mutant in both systems. Rad52-foci

accumulation was monitored in cells transformed with plasmid

pWJ1344 expressing a Rad52-YFP fusion protein using fluores-

cence microscopy. As can be seen in Figure 5C, the percentage of

S/G2 cells with Rad52-foci was significantly higher in the rna14-1

sic1D double mutant (<35%) than in the single mutants (,20%).

Altogether, these results indicate that a functional G1/S check-

point is essential to avoid genomic instability and/or cell death in

rna14-1 cells.

Discussion

In this study, we asked whether transcription termination might

contribute to DNA repair by TC-NER in S. cerevisiae. We found

that the rna14-1, rna15-1, and hrp1-5 alleles of CFI confer

increased UV and 4-NQO sensitivities in the absence of GG-

NER, but surprisingly do not affect CPD repair in a transcribed

gene. Importantly, we show that both checkpoint activation and

Figure 5. Absence of functional G1/S checkpoint leads to DNA damage and genomic instability in rna14-1 cells. (A) Analysis of
phosphorylated histone H2A (H2A-P) accumulation during release from a-factor-mediated G1-arrest in wild-type (WT), rna14-1, sic1D and rna14-1
sic1D strains. Asynchronous (async.), a-factor synchronized (sync.) and released cells were analysed. b-actin is shown as loading control. FACS analysis
of all samples is shown in Figure S7. (B) Recombination analysis using a direct-repeat (LYDNS) and an inverted-repeat (TINV) plasmid-borne system. A
scheme of each system is shown on the right of the corresponding panel. Recombination frequencies were obtained as the median value of six
independent colonies. The average and standard deviation of at least three independent fluctuation tests are shown for each genotype. Statistical
analyses were performed with a two-tailed unpaired student t-test compared with the wild type. Where indicated, statistical analyses between two
mutants were also performed. *p,0.01, **p,0.005, ***p,0.001. (C) Percentage of S/G2 cells containing Rad52-YFP foci. Average of numbers
obtained from at least three independent transformants and the corresponding standard deviation are shown. Statistical analyses as in B.
doi:10.1371/journal.pgen.1004203.g005

Cleavage Factor I, DNA Damage Response and Replication
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RNAPII degradation are delayed in UV-irradiated CFI-deficient

cells and that the rna14-1 mutation interacts genetically with

mutations affecting several DNA repair pathway, including HR,

NHEJ, MMR, PPR, and NER, in some cases even in the absence

of exogenous DNA damage. Our data indicate that CFI

participates in DDR in yeast and that this function is needed to

cope with high amount of DNA damage. Additionally, we

demonstrate that the rna14-1 mutation leads to severe cell cycle

progression hindrance and that a functional G1/S checkpoint

becomes essential in restraining genomic instability when CFI

function is impaired.

Although the precise mechanisms underlying termination

downstream of poly(A) sites and 39-end processing of RNAPII-

transcribed genes remains unresolved, it certainly requires

cooperation among several factors, including CFI, CPF, Pap1,

Rat1 and even the RNAPII holoenzyme (reviewed in [32,33]).

CFIA is progressively recruited to RNAPII during elongation and

peaks at poly(A) sites [34,35]. Its role in transcription termination

and 39-end processing is recapitulated by ongoing transcription

past poly(A) sites and in vitro cleavage and polyadenylation defects

in CFI mutants [36–38]. The CFIB factor Hrp1 binds throughout

transcribed genes [39] and displays in vitro cleavage and

polyadenylation defects when mutated [40,41]. We found that

CFIA rna14-1 and rna15-1 as well as the CFIB hrp1-5 alleles

increased the UV and 4-NQO sensitivities of cells deficient in GG-

NER and led to Phlemomycin and MMS sensitivities while the

CFIA pcf11-2, CPF yhh1-3, and the rat1-1 alleles did not (see

Figures 1 and 3A). On the other hand, UV-induced Rpb1

degradation is impaired in rna14-1, rna15-1 and pcf11-2 but not in

hrp1-5 while Rad53-phosphorylation upon UV irradiation is

delayed in rna14-1, rna15-1 and hrp1-5 but not in pcf11-2 cells

(Figures 2C, 2D and S3). Thus it appears that the penetrance of

each particular mutation depends on the assayed phenotype.

Indeed, different pcf11 alleles differ in phenotype strength as seen

by RNAPII chromatin immunoprecipitation (ChIP) on the ADH1

and PMA1 genes [42]. However, transcriptional read-through or

39-end processing defects alone might not be sufficient to impair

the DDR as ongoing transcription past poly(A) sites are also

observed in yhh1-3 and rat1-1 mutants, and yhh1-3 is deficient in

39-end cleavage and polyadenylation as well [22,36,43]. One

possibility could be that the requirement of CFI function for the

DDR could rely on intrinsic sensing activity or specific interaction

with DDR factors, thus enabling CFI to coordinate transcription

termination and DDR.

UV irradiation was shown to lead to 39-end processing

inhibition along with targeted RNAPII degradation in human

cells, these responses seemingly being mediated by direct

interaction between CstF, the functional homologue of yeast

CFI, and BRCA1/BARD1 [44,45]. The link between DDR and

39-end processing is further supported by the observations that

partial depletion of the CstF-50 subunit leads to increased UV

sensitivity, reduced ability to ubiquitinate RNAPII in response to

UV and defects in CPD repair in human cells [46]. Our results

show a notable divergence with respect to the human system

though, as no CPD repair defects were observed in yeast CFI

mutants (see Figure 2A and 2B). Another difference between yeast

and human is the observation that poly-adenylated mRNAs get

stabilized upon UV irradiation in yeast [47], while transcript

deadenylation takes place under damaging conditions in humans,

mediated by DNA damage-dependent physical interaction

between CstF and the PARN deadenylase [48]. In addition, it

has recently been shown that targeted variation of poly(A) site

usage occurs in response to 4-NQO treatment in yeast, possibly as

a consequence of transient depletion of CPF subunits [49].

Altogether, these findings suggest that transcription termination

factors participate in DDR, a multiple-sided system fundamental

for cell survival under genotoxic stress conditions.

The cellular response to UV damage involves global down-

regulation of transcriptional activity concomitantly with high

expression of a subset of stress-induced genes and proteosomal-

mediated degradation of RNAPII major subunit Rpb1. Notably,

UV-induced Rpb1 degradation is delayed in CFI-deficient cells

(see Figures 2C, 2D and S3), RNAPII turnover being thus

impaired. Interestingly, transcription termination factors - includ-

ing CFI - interact with the transcription initiation factor TFIIB

and this interaction is required for the formation of gene loops

both in yeast and humans [50–53]. Gene looping has been

proposed to enable the efficient recycling of RNAPII and to

contribute to transcription regulation by acting on promoter

directionality and transcriptional memory (reviewed in [54,55]). It

is thus conceivable that gene looping may also function to control

transcription and RNAPII turnover under DNA damaging

conditions. This idea is supported by recent work showing that

TFIIB may function as a general transcriptional switch in humans,

as it is dephosphorylated during genotoxic stress thus losing its

interaction with CstF, while direct interaction between CstF and

the p53 tumor suppressor ensures the recruitment of termination

factors to the promoter of stress-induced genes [56].

The persistence of stalled RNAPII on transcribed genes is

known to impede the progression of the replication machinery and

to be one of the causes underlying transcription-associated

recombination (TAR) (reviewed in [30,31]). Recently, inhibition

of Rho-dependent transcription termination in bacteria has been

shown to induce double-strand breaks depending on replication,

suggesting that Rho might function in the release of obstructing

RNAP during replication [57]. It is possible that CFI might act on

paused RNAP, whether or not stalled at a DNA damage,

contributing to its displacement and thus allowing progression of

an oncoming replication fork. Over the last few years, growing

evidence supports a role for co-transcriptionally formed RNA-

DNA hybrids (R-loops) as a source of TAR (reviewed in [58]).

Noteworthy, several transcription termination and 39-end pro-

cessing mutants have been shown to accumulate R-loops in yeast

(including pcf11-2 and rna15-58) [59]. It is thus possible that stalled

RNAPIIs accumulate at DNA damages or other structures such as

R-loop in CFI mutants, leading to steric hindrances to the

replication machinery that would account for the observed cell

cycle progression defects (see Figure 4). The mechanisms by which

stalled RNAPIIs or structures presenting steric hindrance to

replication are sensed to activate the G1/S cell cycle checkpoint,

which is required to restrain genetic instability in rna14-1 cells (see

Figure 5), are currently unknown. Interestingly, the Sen1/SETX

helicase - a component of the NRD transcription termination

complex - prevents R-loop accumulation at transcription termi-

nation sites both in yeast and humans [60,61]. In addition to its

association with transcribed units, yeast Sen1 is also found at

replication forks, contributing to prevent deleterious outcomes of

the putative collisions between the transcription and replication

machineries [62]. Noteworthy, Sen1 interacts physically with the

NER repair protein Rad2 and the sen1-1 mutation increases the

UV sensitivity of cells lacking RAD2 [63], suggesting further

connections between transcription termination, replication, and

DNA repair.

Altogether, our results support a model in which CFI

dysfunction impairs DDR, probably leading to the accumulation

of endogenous DNA lesions, and hinders DNA replication possibly

due to the accumulation of RNAPs, whether or not stalled at DNA

damages, thus rendering the G1/S checkpoint mandatory to
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prevent genomic instability (see Figure 6). Our findings emphasize

the importance of coordinating transcription termination, DDR

and replication in the maintenance of genomic stability and

suggest that CFI plays a fundamental function in the coupling of

these processes.

Materials and Methods

Yeast strains and plasmids
All strains used were isogenic to W303, and are listed in Table

S3. Newly generated strains were obtained either by direct

transformation or by genetic crosses. Plasmids used for recombi-

nation tests were pRS314-LYDNS, pRS316-TINV, pRS314-LY

and pRS314-SU [28].

UV survival curves and assays
For cell survival, yeast cells were grown in YEPD rich medium

to an OD600 of 0.6. 10-fold serial dilutions were dropped on

YEPD plates, irradiated with the indicated dose of UV-C light,

and incubated in the dark at 30uC for 3 days. For the 4-NQO,

Phleomycin, MMS, CPT and HU sensitivity assays, the serial

dilutions were dropped on YEPD plates containing the indicated

amounts of genotoxic agents and incubated in the dark at 30uC for

3 days. UV survival curves were performed as described [9]. UV-

C irradiation was performed using a BS03 UV irradiation

chamber and UV-Mat dosimeter (Dr. Gröbel UV-Elektronik

GmbH).

Gene- and strand-specific repair assays
CPD repair at the RPB2 gene was analysed as described [64].

Briefly, cells were grown at 30uC in YEPD rich medium, irradiated

in SD medium w/o amino acids with 200 J/m2 UV-C light (BS03

UV irradiation chamber), the medium supplemented to YEPD rich

and the cells incubated at 30uC in the dark for recovery. DNA from

the different time-points was extracted, cut with NsiI and PvuII

restriction enzymes (Roche) and aliquots were either treated with

T4-endonuclease V (Epicentre) or left untreated. DNA was

electrophoresed in 1.3% alkaline agarose gels, blotted to Nylon

membranes and hybridized with radioactively labelled strand-

specific DNA probes, which were obtained by primer extension.

Sequences of the primers are listed in Table S4. Membranes were

analysed and quantified with a PhosphorImager (Fujifilm

FLA5100). The average of the initial damage generated was

0.025 CPD/kb. To allow direct comparison between different

strains, repair curves were calculated as the fraction of CPDs

removed versus time. The initial damage was set to 0% repair.

Expression microarray analysis
Cells were grown at 30uC in YEPD medium to an OD660 of 0.6.

Total RNAs were purified (RNeasy Midi kit, Qiagen) and

expression profiling performed using the Affymetrix platform

(see Table S1). The relative RNA levels for all yeast genes were

determined using an Affymetrix microarray scanner and processed

using the robust multiarray average method. Statistical data

analyses were performed using the limma package (affylmGUI

interface) of the R Bioconductor project (http://www.bioconductor.

org). For each strain, microarray analysis was conducted in triplicate.

All values presented represent the average of these three determi-

nations. Genes were considered significantly up- or down-regulated

when their expression values were . or , 2-fold, respectively

(parameters: false discovery rate-adjusted p-value,0.01, B-statistic

value.2, and average log2intensity A.7). The expression data for

each mutant has been deposited in NCBI’s Gene Expression

Omnibus (accession number GSE50947).

Recombination and plasmid-loss assays
Plasmid loss was monitored as the percentage of cells that lost

centromeric plasmid pRS315 upon growth in non-selective media.

Individual transformants were inoculated in 5 ml YEPD and

grown at 30uC to OD660 0.6. Cells were plated on YEPD or SC-

leu to determine the percentage of plasmid loss. Six individual

transformants were analysed for each genotype.

Recombination frequencies were determined as the average

value of the median frequencies obtained from at least three

independent fluctuation tests performed at 26uC each from six

independent colonies according to standard procedures [28].

Replication analysis
Isogenic wild-type and rna14-1 strains deleted for the BAR1 gene

and carrying several copies of the Herpes simplex thymidine

kinase (TK) under the control of the strong constitutive GPD

promoter were obtained by genetic crosses with strain SY2201 (E.

Schwob). Cells were grown in YEPD, incubated for 2.5 h with

0.125 mg/ml a-factor, washed twice with pre-warmed YEPD and

released into S phase by addition of 1 mg/ml pronase. BrdU

(200 mg/ml) was added to the cultures prior to release. Cell cycle

progression was monitored by flow cytometry on a FACSCalibur

(BD Bioscience) using CellQuest software. Chromatin immuno-

precipitation was carried out as described [65] with minor

modifications. Briefly, Sodium Azide (0.1%) was added to each

sample and cells were broken in a multi-beads Shocker (MB400U,

Figure 6. Model for concurrent transcription termination and
replication processes. In wild-type cells (WT), transcription and
replication are coordinated to prevent collision between both
machineries and genomic instability. CFI function allows prompt DDR
in the presence of DNA lesions. In CFI mutants (CFI-), impaired
transcription termination interferes with replication and DDR is delayed.
As a consequence, functional DNA repair pathways and G1/S
checkpoint become crucial in those cells.
doi:10.1371/journal.pgen.1004203.g006
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Yasui Kikai, Japan) at 4u in lysis buffer (50 mM HEPES-KOH

pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% triton X-100, 0.1%

sodium deoxicholate) and sonicated. Immunoprecipitation was

performed using anti-BrdU antibody (MBL) attached to magnetic

beads coated with Protein A (Invitrogen). Input and precipitated

DNA were analysed by RT qPCR (7500FAST Applied Biosys-

tems). Relative BrdU incorporation at a given region was

calculated relative to the signal at a late replicating region (Chr.

V, position 242210–242280, [66]) in the same sample. Primer

sequences are listed in Table S4.

Detection of Rad52-YFP
Rad52-YFP foci from log-phase cells transformed with plasmid

pWJ1344 were visualized with a DM600B microscope (Leica) as

previously described [67] with minor modifications. Individual

transformants were grown to early-log-phase at 26uC, incubated at

30uC for 4 hours, fixed for 10 minutes in 0.1 M KiPO4 pH 6.4

containing 2.5% formaldehyde, washed twice in 0.1 M KiPO4

pH 6.6, and resuspended in 0.1 M KiPO4 pH 7.4. A total of 617

wild type, 947 rna14-1, 733 sic1D, and 820 rna14-1 sic1D cells

derived from at least three different transformants were analysed.

Cell extracts and western analysis
Detection of Rpb1, Rad53, H2A-P, and b-actin was accom-

plished by Western analysis of TCA-precipitated proteins sepa-

rated in 4–20% Cristerion TGX gradient PAGE (Biorad).

Antibodies 8WG16 (Rpb1, Covance), sc-20169 (Rad53, Santa

Cruz Biotechnology), ab15083 (H2A-P, Abcam) and ab8224 (b-

actin, Abcam) were used. For quantification, secondary antibodies

conjugated to IRDye 680CW or 800CW (LI-COR) were used, the

blot scanned in an Odyssey IR scanner and analysed with Image

Studio 2.0 software (LI-COR). For Western analysis after UV

irradiation, cells were grown in YEPD rich medium to mid-log-

phase, resuspended in SD media lacking amino acids to an OD660

of 0.6 and irradiated with UV-C light in a BS03 UV irradiation

chamber (Dr. Gröbel UV-Elektronik GmbH) at 100 J/m2.

Medium was supplemented to YEPD rich and cells incubated in

the dark at 30uC for recovery.

Supporting Information

Figure S1 Recombination rates of rna14-1 cells do not increase

upon UV irradiation. Recombination analysis using a direct-

repeat (LY) and an inverted-repeat (SU) plasmid-borne systems in

wild-type (WT), rad7D, rna14-1 and rna14-1 rad7D strains with or

without UV irradiation. A scheme of each system is shown on top

of the corresponding panel. Recombination frequencies were

obtained as the median value of six independent colonies. The

average and standard deviation of at least three independent

fluctuation tests are shown for each condition. Statistical analyses

were performed with a two-tailed unpaired student t-test

compared with the wild type. *p,0.01, **p,0.005, ***p,0.001.

(TIF)

Figure S2 rna14-1 and DNA damage checkpoint mutants do not

show genetic interactions. Analysis of genetic interactions between

rna14-1 and mutants impaired in DNA damage checkpoint and

sensitivity to UV and 4-NQO. 10-fold serial dilutions of

exponentially growing cultures are shown.

(TIF)

Figure S3 DNA-damage response alteration in transcription

termination mutants. (A) Western analysis of Rpb1 and Rad53

upon UV irradiation in rna15-1, hrp1-5 and pcf11-2 cells. b-actin is

shown as loading control. (B) Graphical representation of the

quantified results from Rpb1 and Rad53 Western analyses. The

amount of Rpb1 is shown as the percentage of Rpb1 in the non-

irradiated sample. The percentage of hyper-phosphorylated Rad53

is plotted for each condition. Average values derived from two

independent experiments are plotted with their standard deviation.

(TIF)

Figure S4 Transcription termination mutants show synthetic

growth defects with def1D. Analysis of genetic interactions between

four transcription termination deficient alleles and the def1D
mutation. 10-fold serial dilutions of exponentially growing cultures

are shown. Note that the data of wild-type, def1D, rna14-1 and

rna14-1 def1D strains is also shown in Figure 2E.

(TIF)

Figure S5 Analysis of genetic interactions between rna14-1 and

DNA repair mutants. DNA contents profile of rna14-1 and mutants

impaired in homologous recombination (rad52D), non-homologous

end joining (ku70D and lig4D), post-replicative repair (rad18D),

mismatch repair (msh2D), base excision repair (ogg1D ntg1D ntg2D),

and nucleotide excision repair (rad1D) analysed by FACS.

(TIF)

Figure S6 Comparative analysis of up- and down-regulated

genes in rna14-1 and rna15-1 cells. (A) Venn diagrams representing

the overlap between genes whose expression is changed more than

2-fold with respect to the wild type in rna14-1 and rna15-1 mutants.

(B) Linear regression and corresponding equation is shown for the

rna14-1 and rna15-1 data sets. (C) Statistical analysis of length of

genes whose expression level changes in rna14-1 and rna15-1 as

compared with the genome average.

(TIF)

Figure S7 Absence of functional G1/S checkpoint forces rna14-

1 cells to enter S-phase. Cell cycle progression analysis in wild-type

(WT), rna14-1, sic1D and rna14-1 sic1D strains upon release from a-

factor-mediated G1-arrest. Asynchronous (async.), a-factor syn-

chronized (sync.) and released cells were analysed by FACS.

Positions of n and 2n peaks are indicated.

(TIF)

Figure S8 Temperature sensitivity of rna14-1 sic1D double

mutants. Growth of wild-type (WT), rna14-1, sic1D and rna14-1

sic1D strains at 26uC and 30uC on YEPD plates.

(TIF)

Table S1 List of genes with altered expression levels in rna14-1

and rna15-1 mutants.

(XLSX)

Table S2 Gene ontology results for the genes with altered

expression levels in rna14-1 and rna15-1 mutants.

(PDF)

Table S3 Yeast strains used in this study.

(PDF)

Table S4 Primers used in this study.

(PDF)
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