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In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method
is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to
a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was
stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume
of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then
sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting.
Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear
dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained.
The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in
sea, rain, tap, and river water samples.

1. Introduction

Manganese is recognized as both an essential and a neuro-
toxic trace element. As an essential trace element, Mn plays
an important role in bone and tissue formation, reproductive
functions, and the activation of many enzymes, which are
involved in vital metabolic processes [1]. Element deficiency
is not a common occurrence since dietary sources provide
an adequate supply of 2–8 mg of Mn per day. However, toxic
levels may be reached in workers or individuals living near
mines, ore-processing plants, or manufactures of varnish,
pharmaceutical products, ceramics, and pottery. There is
still little information on the biochemical mechanism, which
could explain the like symptoms, caused by chronic inhala-
tion of excess levels of Mn [1, 2]. Manganese exists mainly in
both manganese (II) and manganese (IV) oxidation states in
ordinary aqueous environments. In aqueous environments

manganese (IV) is a dominant chemical species and exists
in insoluble forms, such as particulate and colloidal MnO2.
However, manganese (II) ion is rather stable in aqueous
environments, which are often linked with water pollution,
especially for drinking water [3, 4]. The greatest parts of
dissolved manganese in environmental waters are thought
to be manganese (II) ion [5]. The direct determination
of trace manganese ions is generally difficult because of
matrix interference problems and low concentration of
metals in samples. These problems can be overcome by
using preconcentration and separation procedures before
the detection procedure. For this purpose, various methods
for the separation and preconcentration of manganese have
been reported, such as solid-phase extraction [6–10], liquid-
liquid extraction [11], cloud point extraction [12], and liquid
membranes [13] have been widely used. Recently a new
liquid-liquid microextraction method based on solidification
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of floating organic drop which was successfully used for
the extraction and determination of lead, cooper, palladium,
cobalt, and nickel was reported [14–17]. In this method,
small volume of an organic solvent with a melting point near
room temperature (in the range of 10–30◦C) was floated
on the surface of aqueous solution. The aqueous phase
was stirred for a prescribed period of time, and then the
sample was transferred into the ice bath. When the organic
solvent was solidified, it was transferred into a small conical
vial, and the melted organic solvent was used for analytes
determination. The proposed method is very simple and
inexpensive. In this method the enrichment factor is higher
than the reported methods such as solid phase extraction,
liquid-liquid extraction, and cloud point extraction. The
LOD of this method is lower, and the extraction time of
this method is shorter than that of the other methods
mentioned above. In addition, this method uses less toxic
organic solvent and it is one of the most important
advantages of this method [18]. In this study we consider the
possibility of implementation of ultrasound-assisted emul-
sification microextraction based on solidification floating
organic drop (USA-EME-SFO) in combination with graphite
furnace atomic absorption spectrometry (GFAAS) in trace
manganese analysis. The applicability of the approach was
demonstrated for the determination of manganese in water
samples. The influence of different experimental parameters
on the recovery of the extraction, such as solution pH,
chelating agent amount, volume of extraction solvent, and
salt effect was described and discussed. Operation simplicity,
rapidity, short extraction time, using less amount of toxic
organic solvent, and high enrichment factor are some of the
USA-EME-SFO advantages.

2. Experimental

2.1. Instrumentation. A SpectrAA 220 atomic absorption
spectrometer equipped with a graphite furnace atomizer
(GTA-110 series) and manganese hollow cathode lamp
were used for absorbance measurements at wavelength of
279.5 nm according to instrument instruction. The instru-
mental parameters were adjusted according to the manufac-
turer’s recommendations. The sample injection volume was
10.0 µL in all experiments. The pH values were measured
with a Metrohm pH meter (Model: 692 Metrohm, Switzer-
land), supplied with a glass-combined electrode. A NAPCO
2028R Centrifuge was used for centrifugation. An ultrasonic
bath system (Model: Tecna 6, Italy) was used for cloudy
mixture formation. All 10.0 mL screw cap falcon test tubes
were maintained into 0.1 mol L−1 HNO3 for cleaning any
inorganic compounds and washed with deionized water and
then with acetone for proper sedimentation of fine droplets
of the extraction solvent in the centrifugation step.

2.2. Reagents and Solutions. Ultrapure water was used
throughout the work. 2-(5-Bromo-2-pyridylazo)-5 diethy-
laminophenol (5-Br-PADAP) and 1-undecanol were from
Merck company (Darmstadt, Germany). Water samples
were filtered through 0.45 µm membrane filters (Millipore),

and then pH of these samples was adjusted to 10.0 with
NH4Cl/NH3 buffer (pH∼10). The stock standard solution
for Mn was prepared immediately before use, by stepwise
dilution of 1000.0 µg mL−1 Mn (II) stock standard solution
in HNO3 0.5 mol L−1.

2.3. Sample Preparation. Sea, rain, river, and tap water
samples were collected in acid-leached polyethylene vials.
Acidification to pH 1.0 with nitric acid was performed
immediately after collection, in order to prevent adsorption
of the manganese ions on the vial walls. The samples
were filtered before analyses through a cellulose membrane
(Millipore) of 0.45 µm pore size.

2.4. Ultrasound-Assisted Emulsification Microextraction Based
on Solidification Floating Organic Drop Procedure. Aliquots
of sample solution were placed into a 10 mL vial, and then
200.0 µL of 5-Br-PADAP 0.05% and 0.8 mL NaCl 10% were
added to it as a chelating agent and salt, respectively. The
solution diluted to 8 mL, and solution pH adjusted at 10.0
with NH4Cl/NH3 buffer. Then 50.0 µL of 1-undecanol was
injected to the solution using a 1.0 mL microsyringe. The
sample solution was sonicated for 5 min until the cloudy
mixture was formed. Then the mixture was centrifuged at
6000 rpm for 10 min. Finally vial was transferred into an ice
bath. The solidified organic solvent was transferred into the
conical vial. After melting the solvent, 10.0 µL of this melted
solvent was injected into the GFAAS for quantification.

3. Results and Discussion

3.1. Optimization of Furnace Temperature Program. Prelim-
inary studies of the behavior in GFAAS of an extract of
standard solution with the temperature program recom-
mended by manufacturers demonstrated that the magnitude
of background signal was high. In order to reduce the
background without losing the manganese, the temperature
program of the furnace was optimized, and the final results
are given in Table 1. Under these conditions the background
is low and manganese peak has a normal shape.

3.2. Effect of pH. The pH plays a unique role on metal-
chelate formation and subsequent extraction. So the effect
of pH on the USA-EME-SFO of Mn (II) was studied in
the pH range of 1.0–10.9 using nitric acid and sodium
hydroxide with keeping the other variables constant. The
results demonstrated that the recovery is nearly constant in
the pH range of 9.2–10.5, so pH 10.0 was selected for further
experiments.

3.3. Effect of Chelating Agent Amount. The influence of the
amount of 5-Br-PADAP was also evaluated, and the results
showed that the maximum recovery is obtained with 200 µL
of 0.05% 5-Br-PADAP solution.

3.4. Nature and Volume of Extraction Solvent Effect. The
organic solvent used as the extraction solvent in this method
should satisfy several criteria: (1) it should have lower density



The Scientific World Journal 3

Table 1: Temperature program of GFAAS for determination of manganese.

Steps Temperature (◦C) Time (S) Argon flow rate (L min−1) Read command

Dry stage 85 5.0 3.0 No

Dry stage 95 40.0 3.0 No

Dry stage 270 10.0 3.0 No

Ash stage 700 5.0 3.0 No

Ash stage 700 1.0 3.0 No

Gas stop step 700 2.0 0.0 No

Ramp step and read command 2400 1.1 0.0 Yes

Atomize hold step and read command 2400 2.0 0.0 Yes

Tube clean with maximum gas flow 2430 2.0 3.0 No

than water; (2) it should be low volatile to prevent loss
of the solvent during the extraction process; (3) it should
provide an appropriate extraction efficiency to provide high
extraction recoveries and thus high enrichment factor; (4)
its melting point should be near the room temperature
(10–30◦C) [24]. Accordingly, several extraction solvents
such as 1-undecanol, 1-dodecanol, and 2-dodecanol were
investigated. Based on the obtained results, 1-undecanol had
the best extraction efficiency. Also because of its low vapor
pressure at the extraction conditions, the extract was stable
at the extraction period. Therefore, 1-undecanol was selected
as the extraction solvent. The effect of extraction solvent
volumes on the recovery was determined, in the range of
30.0–90.0 µL. Results showed that 50.0 µL is the optimum
volume of 1-undecanol.

3.5. Effect of Extraction Time. The influence of the extraction
time was examined in the experimental conditions. In USA-
EME-SFO, extraction time is defined as the time interval
between injecting of the extraction solvent and starting to
centrifuge. The results displayed that the extraction time had
no notable effect on the recovery of extraction, so 5 min was
selected as an extraction time in this procedure.

3.6. Salt Effect. For investigating the influence of the ionic
strength on the USA-EME-SFO performance, several exper-
iments were performed by adding different kinds of salt,
such as KI, NaCl, and NaNO3. The recoveries were 75.8%,
98.6%, and 62.1% for KI, NaCl, and NaNO3, respectively.
NaCl was selected for subsequent experiments. The effect of
the amount of NaCl on the extraction efficiency was studied
with different amount of NaCl in the range of 0.01–0.3 g
NaCl.

3.7. Effect of Diverse Ions. Various salts and metal ions were
added to a solution containing 3.0 ng mL−1 of Mn (II) ions,
and the general procedure was applied. The results (error
< ±5%) are given in Table 2. most of the metal ions that
were studied did not interfere higher than 500 mol ratio level.
Thus the method is selective and may safely be applied for the
determination of manganese in various water samples.

Table 2: Effect of diverse ions.

Interferent Interferent/Mn (II) ratio (mol/mol) Recovery (%)

Fe3+ 10000 96.3

Ca2+, Mg2+ 5000 95.9

Zn2+ 4500 97.6

Cd2+ 2000 97.1

Al3+ 2000 96.7

Ni2+ 1000 95.6

Pb2+, Cu2+ 800 95.8

Co2+ 500 95.4

3.8. Figures of Merit. Performance characteristics of the
method were obtained by processing standard solution of
manganese. For a sample volume of 8 mL, the calibration
graph exhibited linearity over the range of 0.5–10 ng mL−1

with a correlation coefficient of 0.9926. The relative standard
deviation (n = 8) at 3 ng mL−1 was ±3.3%. The enrichment
factor for the proposed method was 160, as obtained from
the ratio of the volume of the aqueous phase to organic
phase. The limit of detection, based on two times the
standard deviation of the blank signal divided by the slop of
the calibration curve, was 0.3 ng mL−1.

3.9. Water Analysis. The proposed method was applied to the
determination of Mn (II) in different water samples, and the
results along with the recovery for the spiked samples were
given in Table 3. As could be seen, the recoveries for the three
spiked water samples were in the range of 97.5–105%.

3.10. Comparison of USA-EME-SFO with Other Methods. A
comparison of the represented method with other reported
preconcentration methods of Mn (II) is given in Table 4.
As can be seen, the present method has higher enrichment
factor than other methods such as cloud point extraction
(CPE) [19], single-drop microextraction (SDME) [20], and
dispersive liquid-liquid microextraction (DLLME) [21]. This
method also has a lower limit of detection than CPE [19],
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Table 3: Determination of manganese in the water samples.

Sample Spiked (ng mL−1) Founda (ng mL−1) Recovery (%)

Sea water (Persian gulf)
0.00
0.20

7.60± 0.32
7.79± 0.28

—
95.0

Rain water (Kerman)
0.00
0.70

No detect
0.74± 0.03

—
105.7

Tap water (Tehran)
0.00
0.20

5.24± 0.21
5.45± 0.24

—
105.0

Tap water (Kerman)
0.00
0.30

1.94± 0.07
2.23± 0.08

—
96.6

River water (Esfahan)
0.00
0.60

3.28
3.90

—
103.3

a
Mean ± Standard deviation (n = 3).

Table 4: Comparison of the USA-EME-SFO with other methods for extraction and determination of manganese.

Method Enrichment factor LOD (ng·mL−1) Reference

LLE using water-in-oil
emulsion-AAS

820 0.02 [12]

CPE-FAAS 20 1.4 [19]

SDME-ETAAS 30.3 0.02 [20]

DLLME-FAAS 82.6 0.5 [21]

SPE-FAAS — 5 [22]

LL-USAEME-FAAS — 0.5 [23]

USA-DLLME-SFO-GFAAS 160 0.30 This work

solid phase extraction (SPE) [22], ligandless-ultrasound-
assisted emulsification microextraction (LL-USAEME) [23],
and DLLME [21] methods. Thus it is suitable for ultra trace
analysis of manganese in aqueous samples.

4. Conclusions

This paper outlines a successful development and application
of the USA-EME-SFO technique, combined with the GFAAS,
for trace determination of manganese in several categories
of water samples. Compared with other conventional sam-
ple preparation methods, the analytical technique offered
numerous advantages such as simplicity, low cost, ease of
operation, rapid analysis time, and reproducible and high
enrichment factor and is suitable for determining manganese
in different water samples. The extraction solvent (1-
Undecanol) of this method has lower toxicity than DLLME,
and thus this method is more environmental friendly.
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