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Abstract: One effective method in to reduce the uptake of organic contaminants by plants is the
development of a root barrier. In this study, the characterization of biofilm structure and function by
phenanthrene-degrading Pseudomonas sp. JM2-gfp on rice root surfaces were carried out. Our results
showed that root surfaces from three rice species, namely Liaojing401, Koshihikari, and Zhenzhuhong
all present hydrophobicity and a high initial adhesion of strain JM2-gfp. Matured robust biofilm
formation occurred at 48 h on the root surfaces. The biofilm exhibited cell dense aggregates and
biomass embedded in the extracellular polymeric substance (EPS) matrix. EPS composition results
showed that the proteins, carbohydrates, lipids and nucleic acids are produced in the biofilm, while
the content varied with rice species. Under the initial concentration of phenanthrene 50 mg·L−1, the
residual phenanthrene in plant roots from ‘Zhengzhuhong’, ‘Koshihikari’ and ‘Liaojing401’ with biofilm
mediated were significantly decreased by 71.9%, 69.3% and 58.7%, respectively, compared to those
without biofilm groups after 10 days of exposure. Thus, the biofilm colonized on roots plays an
important role of degradation in order to reduce the level of phenanthrene uptake of plants. Thereby,
the present work provides significant new insights into lowering the environmental risks of polycyclic
aromatic hydrocarbons (PAHs) in crop products from contaminated agriculture soils.

Keywords: biofilm; root surfaces; hydrophobicity; Pseudomonas sp. JM2-gfp; phenanthrene;
degradation

1. Introduction

With polycyclic aromatic hydrocarbons (PAHs) in agriculture, soil contamination is of great
worldwide concern because of their persistent organic lethal nature [1]. Crops grown in
PAH-contaminated soil uptake PAHs (phenanthrene and pyrene) that accumulate in the edible parts,
posing a substantial threat to human health. Bacterial biodegradation is regarded as a more effective
approach compared to the chemical and physical methods in order to address PAH-contaminated sites
for the removal of PAHs [2]. Numerous strains of microorganisms with the capability to degrade PAHs
have been successfully isolated [3]. However, the low bioavailability caused by their poor survival rate
in soil has greatly limited the application of degrading-bacteria in the bioremediation of PAHs

Recent studies have highlighted that certain PAH-degrading microorganisms are able to form a
biofilm on the surfaces of plant roots, leading to the accumulation of high biomass and its long-term
survival for continuous degradation in rhizosphere soil, thus reducing the absorption of PAHs by roots
and ensuring the safety of crop products [4,5]. However, to our knowledge, in situ PAH-degrading
biofilm on the root surfaces has not been observed.

Previous extensive work has been performed on biofilm formation using solid surfaces.
Accumulated experimental evidence has shown that the hydrophobicity, roughness and the charges
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of interacting surfaces are essential for processes such as attachment, self-assembly and dispersion
during the formation of biofilm [6,7]. For example, microbial adhesion strongly depends on the
hydrophobic–hydrophilic structures of the interacting surfaces, increasing cell surface and the
hydrophobicity of interacting surfaces, which facilitates cell immobilization and triggers the specific
forces responsible for the irreversible adhesion [8]. However, there are different views on the impacts
of the hydrophobicity of bacteria and supporting surfaces on biofilm formation [8,9]. It has been
discovered that micro-organisms are more likely to adhere to hydrophobic materials than hydrophilic
ones [10–13]. De Oliveira observed that Salmonella adhered more easily to hydrophobic materials (such
as polystyrene) than to glass. Glass is the least favorable material for the development of biofilm [14].
In contrast, in another study conducted by Rodriguez-Melcon adhesion behaved differently, showing
higher numbers of biofilm formation on hydrophilic materials (e.g. glass) than on hydrophobic surfaces
(e.g. polystyrene) [15,16]. Conditions and parameters need to be investigated and optimized for
the stable and sustainable functioning of biofilm. So far, relatively few studies have addressed the
formation of biofilm on living substrates [17].

A root surface, namely epidermis, is the interface between the plant roots and the external soil
environment contains living microorganisms. Root epidermis serves several functions, such as the
continuous secretion of metabolic compounds and absorption of water and mineral nutrients. These
characteristics are beneficial to both the uptake of contaminates in plants from the rhizosphere and
the biofilm formation of the microorganism [18,19]. For example, plant polysaccharides stimulate
the formation of Bacillus subtilis biofilm [19]. Maize root exudates promote the formation of biofilm
of Bacillus amyloides SQR9 by promoting cell growth and inducing the production of extracellular
matrix [20]. However, it is not clear whether the hydrophobicity of root surfaces affect the biofilm
formation [21,22].

Our study aims to investigate the effects of rice root surface characteristics on bacterial biofilm
formation. By introducing phenanthrene-degrading bacteria JM2-gfp, a functional interface for the
prevention of organic pollutant uptake in crops was formed, and the safety of agricultural products
was thereby ensured.

2. Materials and Methods

2.1. Materials

Glass and polystyrene were cut into 1 cm ×1 cm pieces, sterilized with 70% ethanol for 15 min,
and then rinsed with sterile water before use. Stock strain JM2-gfp was from phenanthrene-degrading
bacterium Pseudomonas sp. JM2, labeled with GFP as visual marker [23].

Analytical grade phenanthrene (≥97%) was purchased from Tokyo Chemical Industry Co., Ltd.
(Shanghai, China). Methyl alcohol, n-hexane and acetone of HPLC grade were purchased from J&K
Scientific Ltd. (Beijing, China).

2.2. Plants Preparation

The cultivated rice seeds of ‘Liaojing401’, ‘Koshihikari’, and ‘Zhenzhuhong’ were obtained
from Jilin Academy of Agricultural Sciences (Changchun, China). After sterilization by 1% (v/v)
sodium-hypochlorite for five minutes, the seeds were rinsed by sufficient distilled water and
immediately germinated for 48 h. Then, the germinated seeds were transferred to a 250 mL-baker with
100 mL 1

2 Hoagland medium [24] and kept in 25 ◦C illumination incubator with a photoperiod of 16 h
light and 8 h dark until they acquired relatively mature roots.
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2.3. Root Surfaces Characterization

2.3.1. Scanning Electron Microscope (SEM)

The morphology of root surfaces was recorded using a JSM-7800F (JEOL, Tokyo, Japan) scanning
electron microscope (SEM). Before SEM measurements, rice root tissues (root hair zone) were gradually
dehydrated by 30%, 50%, 70%, 90% and 95% ethanol for 20 min, and finally washed with 100% ethanol
twice. Root surfaces were coated with a layer of gold, and the images were taken.

2.3.2. Water Contact Angle

The hydrophobicity of root surfaces was determined by [25,26], as follows: the cultivated rice root
was placed on sterile filter paper until dry, followed by fixation onto the slide with double-sided tape.
The contact angles were measured by the sessile drop method using a video-based optical contact angle
measuring device DSA25 (Kruss, Germany). DDI water droplets (1.0 µL, n = 6) were deposited on the
fixed roots in distances of a few millimeter. The shape of each drop was captured in a video sequence
of which the contact angle after 5 s was evaluated using the Advance software (Kruss ADVANCE
1.7.2.1, Germany). Glass surfaces and polystyrene surfaces were evaluated as control.

2.3.3. Initial Adhesion Measurement

Dried roots of rice (cut into 1 cm length), glass and polystyrene slides were placed in 24-well
plates with one sample per well. The bacterial JM2-gfp was cultured in Luria-Bertania (LB) by rotating
oscillator at 30 ◦C and 180 rpm to mid-log-phase, and harvested by centrifugation at 8000 rpm for 5 min
at 4 ◦C, followed by washing three times with PBS (pH 7.2). The final pellets were resuspended in PBS
and adjusted to OD600 nm = 0.1. All OD measurements were determined using a spectrophotometer
Infinite200pro (Tecan, Switzerland). To each well was added 2 mL cell suspension and then incubated
at 25 ◦C for 16 h. After incubation, non-adhered cells were removed by washing with sterilized PBS
three times; the immobilized cells were fixed by 2.5% glutaraldehyde, and washed with PBS. Slices of
peeled root surface, glass and polystyrene were imaged by CLSM (FLUOVIEW FV 1000, Olympus,
Tokyo, Japan). The captured images of bacterial adhesion on the surface of each substrate were then
analyzed by ImageJ (Java 1.8.0). Six pictures were randomly taken for each sample [27,28].

2.4. Biofilm Formation

Pseudomonas sp. JM2-gfp cells were cultured in LB medium to the mid-log-phase, and then
collected by centrifugation. The cell pellet was suspended in 1

2 Hoagland medium. Rice roots were
immersed in a suspension of the bacteria (OD600 nm = 0.8) and incubated at 25 ◦C for four days under
static conditions. The roots were harvested daily, and prepared for confocal laser scanning microscopy
(CLSM, Olympus FV1000). 488 nm laser line of the argon laser and a 535 nm-long pass filter were used
for excitation and emission, respectively. In addition, the dynamics of bacterial growth was determined
by counting the total number of bacterial colonies after serial dilution and plating as follows: First the
rice roots were removed from the culture solution during the biofilm formation process, and gently
washed 2–3 times with sterile water to remove the planktonic bacteria. After drying with absorbent
paper the roots were weighed. Then, the rice roots were washed with sterile water in a clean bench,
blotted with sterile filter paper, and placed in a sterile centrifuge tube. An appropriate amount of
sterile water was added into the tube before vigorous vortex to completely destroy the biofilm on
the rice root. A suspension containing free bacteria was subsequently obtained and subject to serial
dilution of 10−3, 10−4 and 10−5 with sterile water. Finally, 100 µL of the diluted bacterial suspension
was taken and uniformly coated on the LB-resistant plate. Counting was performed after incubation at
30 ◦C for 18 h. To confirm that the biofilm was completely removed, the root was examined under
the microscope after the removal of residual liquid on its surfaces [5,29,30]. All the experiments were
repeated three times.
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2.5. Characterization of the Biofilm on Root Surfaces

2.5.1. Scanning Electron Microscope (SEM)

The morphology of biofilms attached to surfaces was recorded using a JSM-7800F (JEOL, Tokyo,
Japan) scanning electron microscope (SEM). Before SEM measurements, rice roots, glass and polystyrene
substrates were immersed in a suspension of the bacteria (OD600 nm = 0.8) and incubated at 25 ◦C for
two days, respectively. Samples were cut into 5 mm × 10 mm pieces and covered with a layer of gold
before imaging.

2.5.2. Confocal Laser Scanning Microscopy (CLSM)

Images of the biofilms formed on the surface of rice root, glass and polystyrene were captured
using a confocal laser scanning microscopy (CLSM) system (FLUOVIEW FV 1000, Olympus, Tokyo,
Japan). A series of images were obtained at 1µm intervals in the z section for a three dimensional view
of the biofilm. At least five representative optical fields were examined for each specimen.

About 10 image stacks were collected randomly from different points and analyzed using the
COMSTAT software [31]. The architecture properties of biofilms analyzed by COMSTAT included total
biomass (µm3

·µm−2), average thickness (µm), roughness coefficient, average diffusion distance (µm),
and surface to biovolume ratio (µm2

·µm−3). All the experiments were performed in triplicate.

2.5.3. Composite Extracellular Polymeric Substances (EPS) Characterization

Biofilm associated EPS was extracted based on the method of Mangwani et al [32]. The specific
steps are as follows. First, JM2-gfp cultured to mid-log-phase in LB medium was centrifuged and
adjusted to OD600 nm of 0.8 with 1/2 hoagland medium. Next, 10 mL of cultures was transferred to
flasks with different materials. While in control group, 10 mL of 1/2 hoagland medium, instead of
the culture, was added into the flask. Then, after incubation for 48 h at 30 ◦C, planktonic cells were
carefully aspirated from the flasks. The spent medium and unattached cells were also removed from
the substrate by rinsing with sterile PBS 2–3 times. Then, 10 mL of PBS was added to the flasks before
gentle vortex to disintegrate the biofilm from the substrate. Afterwards, the sample was collected and
centrifuged at 6500 g and 4 ◦C for 20 min. Then, the supernatant was collected, mixed with double
volume 90% frozen ethanol, and kept at 4 ◦C for 18 h. Finally, the supernatant was discarded by
centrifugation at 10,050 g for 10 min at 4 ◦C, and the precipitate was dried at 60 ◦C to remove ethanol.
The composition of the biofilm EPS was analyzed using fourier transform infrared spectroscopy (FTIR)
(Nicolet-iS5, Thermo). Total carbohydrate and protein content of the extracted EPS was estimated
by the phenylsulphuric acid method and Bradford method, respectively. EPS on the surface of 12
rice roots, 10 pieces of glass or polystyrene after biofilm formation were evaluated for protein and
carbohydrate content [33].

2.6. Degradation of Phenanthrene by the Biofilm

The roots were incubated for the formation of biofilms according to 2.4. The plants with bacterial
biofilm on root (12 plants per flask) (CWB) were incubated in the 100 mL of 1/2 Hoagland medium with
phenanthrene (50 mg/L) at 30 ◦C under static conditions (dark) for a period of time. Plants without
bacteria (CW) were introduced as controls. The initial volume of the medium was maintained for each
treatment throughout the incubation by adding fresh Hoagland medium to the culture flasks each
day. After 10 days, phenanthrene was extracted from the plant tissues as previously described [34].
In brief, the concentration of phenanthrene was measured by HPLC (Agilent, 1200) equipped with a
reverse-phase C18 column (Agilent, 5 µm, 250 × 4.6 mm) with methanol and water (v/v = 90:10) as
mobile phase at a flow rate of 1 mL·min−1. Chromatography was performed at 25 ◦C. The phenanthrene
was detected at 245 nm. The injection volume was 10 µL.
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The phenanthrene residue A in rice tissues was calculated by the following formula: A = Ci ×M,
where Ci represents the concentration of phenanthrene (mg/kg) in rice roots or stems and leaves, M
represents the dry weight of rice roots or stems and leaves (g/bottle)

2.7. Statistics

One-way variance analysis (ANOVA) was used for statistical analysis of means and standard
deviations using Duncan’s Multiple Range Test (p < 0.05) to detect significant difference between mean
values. All data were presented as mean ± SD.

3. Results and Discussion

3.1. Morphology of Rice Root Surfaces

Morphologies of root surfaces from three species of rice were observed by scanning electron
microscopy (SEM) (Figure 1a–c). All the long sides of the root surfaces were parallel to the longitudinal
axis of the roots with tight arrangement. The root surfaces presented wrinkle-like structures, providing
large surface area to entrap bacteria. The structures may also facilitate the formation of biofilm by the
phenanthrene-degrading bacteria JM2-gfp as they provide more anchoring points for the adhesion
of bacteria.

Figure 1. Morphology of the rice root surfaces (‘Liaojing401’, ‘Koshihikari’, ‘Zhenzhuhong’) using scanning
electron microscopy (SEM) (a–c) and the hydrophobicity of contact surfaces (glass, ‘Liaojing401’,
‘Koshihikari’, ‘Zhenzhuhong’ and polystyrene) determined using a contact angle meter (d). The lowercase
letters on top of the bars indicate significant differences in the means of contact angle (P < 0.05). Error
bars are shown as ± SD.

3.2. Hydrophobicity Characterization

The hydrophobicity of root surfaces was evaluated by measuring the water contact angle with
hydrophilic glass and hydrophobic polystyrene (abiotic surfaces) as controls. Among the rice species
of ‘Liaojing401’, ‘Koshihikari’ and ‘Zhenzhuhong’, the root surfaces of ‘Zhenzhuhong’ presented the largest
contact angle 94.8◦, which was close to that of polystyrene surface (97.6◦). Also, the root surfaces of
‘Liaojing401’ and ‘Koshihikari’ showed smaller contact angles, 76.1◦ and 84.7◦, respectively (Figure 1d).
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In conclusion, the root surfaces of all the three rice species were hydrophobic. Similarly, Bonebrake et
al [26] reported that the contact angle of wheat root surfaces after seven days of culture was 60.5◦.

3.3. Initial Adhesion of Rice Root Surface

The initial adhesion of phenanthrene-degrading bacteria JM2-gfp on rice root surfaces was
measured by CLSM as the first stage of biofilm formation. Hydrophilic surfaces of the glass showed the
lowest initial adhesion at 4 h and 16 h (Figure 2(a1,a2)), while the hydrophobic surfaces of polystyrene
showed the highest number of attached bacteria (Figure 2(b1,b2)). The adhesion of bacteria on rice root
surfaces of ‘Liaojing401’, ‘Koshihikari’, ‘Zhenzhuhong’ increased with the hydrophobicity of substrate
(Figure 2(c1,c2,d1,d2,e1,e2)). Moreover, the adhesion of JM2-gfp at 16 h was more significant than
that at 4 h (Figure 2f). The biofilm formation is a stepwise and dynamical process consisting of
initial attachment, irreversible attachment, early development of biofilm architecture, maturation, and
dispersion [35]. The adhesion of bacteria to solid surfaces is a key step in the formation of biofilm [36].
It has been reported that hydrophobic interactions between the bacteria and the surfaces play a vital
role in the initial adhesion. The hydrophobicity of the contacting surfaces affects bacterial attachment
to the surfaces and the subsequent formation of biofilm [37]. One possible explanation for this is that
on the hydrophobic substrate the interface water is removed faster that on the hydrophilic substrate
when making initial contact with the bacteria [38]. The removal of interface water enables closer and
attractive acid-base interactions [39]. It is reported that the hydrophobicity of zirconia affected the
initial adhesion force and early attachment of Streptococcus mutans [40]. Moreover, the hydrophobic
surfaces lead to an increased accumulation of cell-adhesion proteins at the interface, which act as
specific binding sites for bacteria in order to accelerate and enhance bacterial adhesion [41,42].

Figure 2. Laser confocal microscopy (CLSM) observation of the initial adhesion of JM2-gfp on the
surfaces of glass, ‘Liaojing401’, ‘Koshihikari’, ‘Zhenzhuhong’ and polystyrene at 4 h (a1,b1,c1,d1,e1) and
16 h (a2,b2,c2,d2,e2). Quantitative analysis of JM2-gfp adhesion on different contact surfaces according
to the fluorescence images (f). Error bars are shown as ± SD.
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3.4. Biofilm Formation on the Root Surfaces

The biofilm formation of strains JM2-gfp on the rice roots surfaces is shown in Figure 3. The CLSM
images showed that JM2-gfp formed biofilm on the root surfaces of all three rice cultivars rapidly. With
the adhesion of the bacterial cells on the surfaces of the roots, non-colonized spaces were gradually
filled with bacteria or microcolonies. Ultimately, when the bacterial community started to grow in a
three-dimensional manner, the biofilm became mature at 48 h (Figure 3a–c). The number of bacteria
on the root surfaces of ‘Liaojing401’, ‘Koshihikari’ and ‘zhenzhuhong’ at 48 h were 8.17 logCFU·g−1,
8.20 logCFU·g−1 and 9.12 log CFU·g−1, respectively (Figure 3d). In addition, the density of the bacteria
on the root surfaces slightly fluctuated due to the variation in the generation periods of biofilm (data
not shown).

Figure 3. Biofilm formation by JM2-gfp on the root surfaces of ‘Liaojing401’ (a0,a1,a2,a3,a4), ‘Koshihikari’
(b0,b1,b2,b3,b4), ‘Zhenzhuhong’ (c0,c1,c2,c3,c4) within 96h observed using CLSM and plate counting (d).
The images shown were produced from overlays of fluorescence (false-colored green) and transmitted
light (gray) images.

3.5. Characterization of Biofilm on the Root Surfaces

3.5.1. Morphology of biofilms

Morphology of the biofilm formed by the strain JM2-gfp on different surfaces were imaged by SEM.
Biofilms formed on glass, rice root surfaces (‘Liaojing401’, ‘Koshihikari’, ‘Zhenzhuhong’) and polystyrene
exhibited different degrees of maturation at 48 h (Figure 4(a1–e1)). Higher magnification (10000×)
images clearly showed that the biofilm on the hydrophilic glass was composed of numerous cells
attached to the surfaces, lacking dense EPS or compressed aggregation (Figure 4(a2–e2)). However,
biofilm presented on the hydrophobic polystyrene had dense cell aggregates and biomass embedded
in EPS matrix. Similar to that on the polystyrene, robust biofilms were formed on the rice roots of
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‘Liaojing401’, ‘Koshihikari’ and ‘Zhenzhuhong’, possibly due to their hydrophobicity. On the root surfaces
of ‘Zhenzhuhong’ the biofilm showed the highest density of tightly intertwined bacteria among the
three rice species in particular (Figure 4(a3–e3), Table 1). Moreover, biofilm formed on the plant root
surfaces exhibited more extracellular matrix than that on the polystyrene surfaces (Figure 4(a1–e1)),
probably because root tissues are constantly exuding chemicals such as various carbohydrates, amino
acids, organic acids, as well as other absorbed compounds essential for the growth of root [43,44].

Figure 4. Morphological characterization of biofilm on the different surfaces of Glass, ‘Liaojing401’,
‘Koshihikari’, ‘Zhenzhuhong’ and polystyrene by SEM (a1,b1,c1,d1,e1; a2,b2,c2,d2,e2; 2 are enlarged
views of 1) and by CLSM (a3,b3,c3,d3,e3).

Table 1. Confocal laser scanning microscopy parameters of JM2-gfp biofilm on the surfaces of glass,
‘Liaojing401’, ‘Koshihikari’,‘Zhenzhuhong’and polystyrene after 48 h of growth. Data are shown as mean
± SD.

Biofilm Parameters Glass ‘Liaojing401’ ‘Koshihikari’ ‘Zhenzhuhong’ Polystyrene

Total biomass
(µm3

·µm−2) 0.022 ± 0.005 4.400 ± 0.331 5.121 ± 0.132 6.387 ± 0.470 7.519 ± 0.548

Roughness coefficient 1.975 ± 0.005 0.057 ± 0.007 0.059 ± 0.013 0.056 ± 0.011 0.005 ± 0.001
Surface to biovolume Ratio

(µm2
·µm−3) 0.113 ± 0.014 1.125 ± 0.195 1.297 ± 0.088 1.495 ± 0.521 1.500 ± 0.333

Average diffusion distance (µm) 0.001 ± 0.000 0.923 ± 0.041 1.006 ± 0.119 1.034 ± 0.000 1.265 ± 0.197
Average thickness (µm)) 12.70 ± 1.71 21.50 ± 0.95 25.80 ± 2.45 30.90 ± 2.54 31.70 ± 2.11

3.5.2. Characterization of Bacterial Biofilm

Compared with conventional quantification methods, COMSTAT analysis carries the advantage
of analyzing the biofilm without disturbing its structure [31]. The volumetric parameters of microbial
biofilm architecture on the root surfaces including total biomass, roughness coefficient, surface to
biovolume ratio, average diffusion distance, and average thickness were characterized using the
COMSTAT program (Figure 4(a3–e3) and Table 1).

Total biomass represents the overall volume of the biofilm, and it can be defined as the biomass
volume divided by substratum area. The strain JM2-gfp showed the maximum total biomass on the
polystyrene surfaces (7.519 ± 0.548 µm3

·µm−2), declined in turn were the root surfaces of ‘Zhenzhuhong’,
‘Koshihikari’, ‘Liaojing401’ (6.387 ± 0.470, 5.121 ± 0.132, 4.400 ± 0.331 µm3

·µm−2). Glass surfaces showed
low biomass accumulation (0.022 ± 0.005 µm3

·µm−2).
The roughness coefficient (R*) provides a measure of how structured the biofilm architecture is.

The value of R* of the biofilm on glass was above 1, indicating biofilm heterogeneity and bacterial
growth as microcolonies [45]. However, the R* of the biofilms on the roots of ‘Liaojing401’, ‘Koshihikari’,
‘Zhenzhuhong’ and polystyrene were less than 0.1, indicating a less heterogeneous architecture.
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Surface to biovolume ratio also indicates portion of the biofilm, Glass (0.113 ± 0.014 µm2
·µm−3)

had lower ratios than the roots of ‘Liaojing401’, ‘Koshihikari’, ‘Zhenzhuhong’ (1.125 ± 0.195, 1.297 ± 0.088,
1.495 ± 0.521 µm2

·µm−3) and polystyrene (1.500 ± 0.333 µm2
·µm−3), suggesting differential capabilities

to access the limited supply of nutrients [46].
The diffusion distance is the average of the distances among all biomass pixels, providing a

measure of the distances over which nutrients and other substrate components must diffuse from the
voids to the microorganism within microcolonies [46]. The polystyrene substrate and ‘Zhenzhuhong’,
‘Koshihikari’, ‘Liaojing401’ root surfaces had higher average diffusion distances (1.265 µm, 1.034 µm,
1.006 µm and 0.923 µm) than that of glass (0.001 µm).

Average thickness provides information on the upper extent of the biofilm. Overall, the glass
surfaces showed thinnest biofilms (12.7 ± 1.71 µm) than the hydrophobic materials polystyrene
(31.7 ± 2.11 µm), ‘Liaojing401’ (21.5 ± 0.95 µm), ‘Koshihikari’ (25.8 ± 2.45 µm) and ‘Zhenzhuhong’
(30.9 ± 2.54 µm). Moreover, the average thickness of the biofilm and the coverage of bacteria increased
with the increase of hydrophobicity in 48 h. Taken together, the biofilm development on the root
surfaces investigated in this study demonstrated that the characteristics of the substrate surfaces
influenced the biofilm structure, which was in accordance with previous studies. It was observed
that Salmonella strains adhered more easily to hydrophobic materials (such as polystyrene) than to
glass [11,13]. In addition to Salmonella, Pseudomonas aeruginosa and Pseudomonas putida also showed
preference to hydrophobic substrates during biofilm formation. It was reported that on titanium (Ti),
a metal substrate with lower hydrophobicity than zirconia (ZrO2), both the biomass and the density
of Pseudomonas aeruginosa biofilm were lower than those on ZrO2 [47]. Similarly, the hydrophobicity
of polymer increased Pseudomonas putida adhesion, as well as the dynamics and structure of formed
biofilm [48]. Bacterial adhesion of isolated Pseudomonas was enhanced when attached onto RO
membranes with higher hydrophobicity [49,50]. However, it should be pointed that many other
factors also influence the formation of biofilm, including strains, culture media and temperature of
incubation [15]. Moreover, these factors along with the method used for biofilm quantification can
cause the variations observed among different reports [37,51].

3.5.3. Characterization of Biofilm Associated EPS

Biofilm associated EPS provides structural and functional benefits to the biofilm, such as hydration,
resource capture, digestive capacity and protection from the environment, in addition to facilitating
intercellular interactions that enhance the metabolic capacity of cells in the biofilm [52]. The composition
of the EPS matrix within bacterial biofilms has been demonstrated to be highly variable, depending
upon the environment and the substrate upon which the EPS are formed [53]. The composition
of functional groups on EPS was analyzed by FTIR spectroscopy (Figure 5). The peaks represent
the functional groups -COC-, PO4−, -NH2 and -CH2−, indicating the presence of polysaccharides,
nucleic acids, proteins and lipids in the EPS. The band in the range of 1320–1000 cm−1 indicated the
existence of uronic acid in EPS. The peak between 3200 and 2800 cm−1 indicated the presence of
lipids in EPS. The existence of carbohydrates was confirmed by the -COC- stretch between 1750 and
1625 cm−1. Characteristic peaks of the amide were observed at 1650–1600 cm−1, which was assigned to
the stretching vibration of N–H demonstrated the presence of protein. The peak at 1238 cm−1 indicated
the phosphate groups of nucleic acid [54]. Taken together, the FTIR results suggested that proteins,
carbohydrates, lipids, nucleic acids were present in the EPS of biofilms formed on different substrates
including rice root surfaces.
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Figure 5. FTIR characterization of the biofilm extracellular matrix on glass, ‘Liaojing401’, ‘Koshihikari’,
‘Zhenzhuhong’ and polystyrene.

Carbohydrates and proteins are the basic structural elements of EPS, accounting for more than 95%
weight, which determine the mechanical stability of biofilm, mediate and consolidate cell adhesion,
as well as promote cell-cell aggregation [55]. The content of protein and carbohydrate in biofilms
formed on different hydrophobic surfaces was quantitatively analyzed by Bradford method and phenol
sulfuric acid method. Since the surface area of rice root is not well quantified, the bioactive interface
(rice root surfaces) and non- bioactive interfaces (glass and polystyrene) fit different quantitative units
(Table 2). The total carbohydrate and protein content of EPS on the hydrophobic polystyrene were
higher than that on the hydrophilic glass. In addition, extracellular proteins and carbohydrates were
positively correlated with the hydrophobicity of root surfaces, with the highest amounts 531.9 µg
and 309.8 µg presented on the root surfaces of ‘Zhenzhuhong’, and the lowest 323.2 µg and 258.4 µg
on root surfaces of ‘Liaojing401’, respectively. Our results indicated that the hydrophobicity of the
root surfaces affected the content of proteins and carbohydrates in the extracellular matrix secreted
from phenanthrene-degrading bacteria, with underlying mechanisms left to be further explored.
In conclusion, for practical application, it is crucial to choose and/or modify a highly hydrophobic
crop root to increase the excretion of EPS, and to promote the structural stability of the biofilm.
Additionally, it was reported that the EPS contents in biofilms showed significant correlations with the
biodegradation of PAHs [56].

Table 2. The protein content and carbohydrate content in the extracellular matrix of biofilm formed on
different surfaces were determined by Bradford method and phenol sulfuric acid method. Data are
shown as mean ± SD.

Protein Content (µg) Carbohydrates Content (µg)

Glass (10 cm2) 366.0 ± 4.71 122.0 ± 1.19
Polystyrene (10 cm2) 555.6 ± 3.71 149.1 ± 0.92
‘Liaojing401’ (12 per) 323.2 ± 3.94 258.4 ± 0.79
‘Koshihikari’ (12 per) 426.4 ± 5.17 272.2 ± 1.28
‘Zhenzhuhong’ (12 per) 531.9 ± 6.50 309.8 ± 0.97

3.6. Capacity of the Phenanthrene Degradation by the Biofilm on Rice Root Surfaces

The phenanthrene-degrading function of biofilm was studied in a hydroponic system. Rice
plants with mature root-biofilm were exposed to 1/2 Hoagland medium with initial concentration
of phenanthrene 50 mg·L−1. After 10 days of incubation, more phenanthrene was degraded by the
biofilm-colonized plants compared with the control plants (Figure 6). The residual concentration of
phenanthrene in biofilms formed on the roots of ‘Zhengzhuhong’, ‘Koshihikari’ and ‘Liaojing401’ were
significantly lower than those in the corresponding CW groups, showing a 71.9%, 69.3% and 58.7%
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decrease, respectively. Correspondingly, the residual concentrations of phenanthrene in the shoots
were decreased by 85.5%, 79.9% and 67.5%. Compared with the previously reported degradation
results of phenanthrene-degrading colonization roots, our bacteria biofilms on root exhibited higher
degradation efficiency. The accumulations of phenanthrene in Pseudomonas sp. Ph6-gfp-colonized
ryegrass via soaking, root soaking and leaf painting were 20.1%, 33.1% and 7.1%, respectively [34].
The concentrations of phenanthrene in Sphingobium sp. RS2-gfp-inoculated plants was reduced by
39.9% and 62.5% in roots and shoots via bud soaking and by 25.1% and 35.8% via root inoculation as
compared to the original concentration, respectively [5]. Mangwani et.al reported that extracellular
polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic
hydrocarbons for improved biodegradation [33,56,57]. Our results indicated that the root surfaces
promote the structural stability of the bacterial biofilm production.

Figure 6. The residual phenanthrene in ‘Zhengzhuhong’, ‘Koshihikari’ and ‘Liaojing401’ root and shoot.
plants cultured in phenanthrene-containing Hoagland medium (CW); plants with biofilm cultured in
phenanthrene-containing Hoagland medium (CWB). Error bars are shown as ±SD.

Taking both our findings and the previous reports into consideration, we speculate that the content
of EPS enhanced the solubility of hydrophobic organic compounds. Thus, the biofilm colonized on
roots plays an important role in the degradation of phenanthrene, thereby reducing the phenanthrene
uptake of plants and further lowering the risk of plants contamination.

4. Conclusions

Our study aims to develop a biofilm by phenanthrene-degrading bacteria on the plant root
for the establishment of a system controlling organic pollutant transportation into the plant. The
hydrophobicity of the root surfaces of three rice species ‘Liaojing401’, ‘Koshihikari’, and ‘Zhenzhuhong’
increased the initial adhesion of strain JM2-gfp. The robust and crowded homogeneous volumetric
biofilm associated with the EPS matrix was obtained on the rice root surfaces at 48 h. The proteins,
carbohydrates, lipids, nucleic acids were produced in the EPS. Taken together, the biofilm colonized on
roots plays a vital role in the degradation of phenanthrene and prevention of phenanthrene uptake in
plants. Moreover, drastic reductions were also observed in the shoots. In summary, our work provides
valuable insights into the novel application of biofilm for the management of environmental risks
caused by PAHs in the crop products in contaminated agriculture soils.
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