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Abstract

Alzheimer's disease (AD) is associated with disruptions in brain activity and networks.

However, there is substantial inconsistency among studies that have investigated

functional brain alterations in AD; such contradictions have hindered efforts to eluci-

date the core disease mechanisms. In this study, we aim to comprehensively charac-

terize AD-associated functional brain alterations using one of the world's largest

resting-state functional MRI (fMRI) biobank for the disorder. The biobank includes
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fMRI data from six neuroimaging centers, with a total of 252 AD patients, 221 mild

cognitive impairment (MCI) patients and 215 healthy comparison individuals. Meta-

analytic techniques were used to unveil reliable differences in brain function among

the three groups. Relative to the healthy comparison group, AD was associated with

significantly reduced functional connectivity and local activity in the default-mode

network, basal ganglia and cingulate gyrus, along with increased connectivity or local

activity in the prefrontal lobe and hippocampus (p < .05, Bonferroni corrected). More-

over, these functional alterations were significantly correlated with the degree of

cognitive impairment (AD and MCI groups) and amyloid-β burden. Machine learning

models were trained to recognize key fMRI features to predict individual diagnostic

status and clinical score. Leave-one-site-out cross-validation established that diag-

nostic status (mean area under the receiver operating characteristic curve: 0.85) and

clinical score (mean correlation coefficient between predicted and actual Mini-Mental

State Examination scores: 0.56, p < .0001) could be predicted with high accuracy.

Collectively, our findings highlight the potential for a reproducible and generalizable

functional brain imaging biomarker to aid the early diagnosis of AD and track its

progression.
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1 | INTRODUCTION

Alzheimer's disease (AD), one of the most common subtypes of

dementia, is a neurodegenerative disorder characterized by memory

deficits, cognitive impairment and executive dysfunction (Braak &

Braak, 1991; Scheltens et al., 2016). Mild cognitive impairment (MCI)

is suggested to be an intermediate state between normal aging and

dementia (Academy of Cognitive Disorders of China, et al., 2020;

Gauthier, et al., 2006). Network neuroscience can be applied to

understand the pathogenesis and putative neural mechanisms that

underlie these abnormalities (Bullmore & Sporns, 2012; Filippi

et al., 2017; Fornito & Bullmore, 2015).

Functional magnetic resonance imaging (fMRI) studies in AD indi-

cate that the disease is associated with widespread disruptions in brain

functional networks, suggesting that AD may be conceptualized as a dis-

connection syndrome (Delbeuck, Collette, & Van der Linden, 2007;

Delbeuck, Van der Linden, & Collette, 2003; Dennis & Thompson, 2014;

Eyler et al., 2019; Liu et al., 2014; Wang et al., 2007, 2013). Despite an

abundance of evidence, the reported findings are somewhat inconsistent

among different studies, and the core regions associated with the patho-

genesis of AD remain controversial. For example, Table S1 provides an

overview of the disparity in findings among AD studies of whole-brain

functional connectivity inferred from resting-state fMRI (Bai et al., 2011;

Liang et al., 2014; Liu et al., 2012; Liu et al., 2014; Sanz-Arigita

et al., 2010; Wang et al., 2007, 2013; Zhan et al., 2016; Zhou

et al., 2015). One important reason for this inconsistency may be the

heterogeneity inherent to small sample sizes and different analyses or

acquisition protocols, resulting in poor reproducibility (Button

et al., 2013; Davatzikos, 2019). In order to overcome this limitation,

meta-analyses can be performed to combine findings across multiple

independent studies (Jacobs, Radua, Luckmann, & Sack, 2013; Li

et al., 2015; Pan et al., 2017; Xia, et al., 2019). However, meta-analytic

approaches cannot address the heterogeneity associated with variation

in data processing pipelines and differences in methodological and statis-

tical approaches. For example, anatomical labels may vary between each

study comprising a meta-analysis, resulting in mismatches in regional

effects (Costafreda, 2009; Eickhoff, Yeo, & Genon, 2018). Another

potential reason for the inconsistency of findings across previous studies

is the use of relatively coarse-grained brain parcellation schemes to map

whole-brain functional networks; these schemes do not adequately char-

acterize regional boundaries in functional connectivity.

The key aim of the present study is to assess the robustness of aber-

rant patterns of brain activity and functional dysconnectivity in AD, and

to focus on the reproducibility and generalizability of AD-related func-

tional brain alterations as an imaging biomarker for early diagnosis and to

track the progression of AD. For this purpose, we utilized a large AD bio-

bank of resting-state fMRI (rs-fMRI) scans comprising 668 individuals

acquired from six different MRI scanners to systematically investigate

functional brain alterations in AD using four popularly used rs-fMRI mea-

sures. The fMRI data were processed consistently and analyzed using

the same methodology for each scanner site. Meta-analyses were per-

formed to combine data from the individual scanners and test for differ-

ences in functional connectivity and activity among AD patients, MCI

patients and a healthy comparison group (Figure 1). We hypothesized

that (a) individual variation in the extent of functional connectivity dis-

ruptions would be associated with cognitive impairments and
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pathophysiological changes and that (b) a reproducible functional signa-

ture of AD would be present across different scanner sites and detect-

able at the individual patient level. To assess the first hypothesis, we

performed correlation analyses between altered functional measures and

the Mini-Mental State Examination (MMSE) score and amyloid β (Aβ)

burden. To assess the second hypothesis, we applied machine learning

methods to conduct prediction tasks of individual diagnostic status and

clinical score with leave-one-site-out cross-validation. Furthermore, we

employed an independent dataset collected from the Alzheimer's Dis-

ease Neuroimaging Initiative (ADNI) to further validate the robustness of

the main results of the present study.

2 | MATERIALS AND METHODS

2.1 | Participants, data and measurements

2.1.1 | Participants

The rs-fMRI data used in this study are described in detail elsewhere

as part of a study investigating altered spontaneous activity in AD

(Li et al., 2019; Zhao et al., 2020). Therefore, this section provides only

a brief overview of the rs-fMRI acquisition, preprocessing and quality

control, with further details in the supplemental material.

MRI was acquired in 688 individuals, including healthy compari-

son individuals (215) and individuals with MCI (221) and AD (252).

Each individual was scanned with one of six different MRI scanners

(Li et al., 2019). Demographic and clinical information stratified

according to MRI site is shown in Table S2.

2.1.2 | Image acquisition and preprocessing

The MRI acquisition protocol is described in the supplementary material

(Tables S3 and S4). Briefly, the resting-state fMRI scans were

preprocessed using the Brainnetome Toolkit (http://brant.brainnetome.

org) (Xu, Liu, Zhan, Ren, & Jiang, 2018), which included the following

steps: (1) slice timing correction; (2) realignment to the first volume; (3) spa-

tial normalization to Montreal Neurological Institute (MNI) space at

2 mm × 2 mm × 2 mm; (4) regression of nuisance signals, including linear

trends, six motion parameters and their first-order differences, and signals

representing white matter and cerebrospinal fluid; (5) temporal bandpass

filtering (0.01–0.08 Hz) to reduce high-frequency noise. Subsequently, any

voxel where the mean absolute deviation in the fMRI signal was less than

0.05 and any area that did not have fMRI signal recorded from one or

more participants was excluded (Liu et al., 2014, 2016; Zhan et al., 2016).

The cortex and subcortex were parcellated based on the Brainnetome

Atlas (Fan et al., 2016). The above preprocessing steps resulted in a set of

263 regional areas of the Brainnetome Atlas, which were used in all fur-

ther analyses. The 263 regions comprising the parcellation atlas based on

the overlapping regions of all the individuals are listed in the supplemen-

tary material (Table S7). We derived a regional fMRI signal for each region

F IGURE 1 Schematic of the data analysis pipeline. (a) Functional measures (AM, ReHo, FCS) and the connectivity matrix are calculated based
on Brainnetome Atlas. (b) A two-sample t test was performed to obtain the p value for each functional measure and connectivity in each center
after controlling for age and gender effects. (c) The meta-analysis was applied to integrate results from six centers, and the significantly altered
regions were identified after multiple comparison correction. (d) Then, the correlation analysis was performed to evaluate the relationship
between functional measures and the clinical scores. (e) Finally, leave-one-site-out cross-validation was performed. AM, the amplitude of local
brain activity; FCS, functional connectivity strength; ReHo, regional homogeneity
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by averaging the fMRI signal across all voxels included in the region. This

process was repeated for all individuals and regions.

Additionally, the florbetapir (F18-AV-45) PET scans of 625 subjects

(291 patients with AD and a well-matched [age and gender] group of

334 healthy comparison individuals) were collected from ADNI for subse-

quent correlation analysis. The downloaded F18-AV-45 PET images were

already preprocessed, including computation of Standardized Uptake

Value Ratio (SUVR) and smoothing. A detailed description of PET proto-

cols and acquisition procedures can be found at (http://adni.loni.usc.edu/

methods/pet-analysis-method/pet-analysis/). The PET images were rig-

idly co-registered to the corresponding T1 images and then nonlinearly

co-registered to the standard MNI space at 2 mm × 2 mm × 2 mm by

SPM12 (Statistical Parametric Mapping) software.

2.1.3 | Measure of functional brain activity and
connectivity

In the present study, we used four measures of functional brain activity

and connectivity derived from each individual's rs-fMRI data: amplitude

of local brain activity (AM) (Liu et al., 2014), regional homogeneity

(ReHo) (Zang, Jiang, Lu, He, & Tian, 2004), functional connectivity

strength (FCS) (Sepulcre et al., 2010; Xia, et al., 2019) and whole-brain

connectivity (Liu et al., 2014). Specifically, AM measures the magnitude

of endogenous BOLD oscillations, quantified as the mean absolute value

of the deviation of the BOLD fMRI signal from the mean value over the

whole time series at a given voxel (Liu et al., 2014). ReHo measures the

similarity or synchronization between the time series of a given voxel

and its nearest neighbors (Zang et al., 2004), which is defined as the

Kendall's coefficient of concordance of the time series of a given voxel

and the time series of its K nearest neighbors. In this study, we used

K = 27. FCS measures the total strength of functional coordination

between a given voxel and all other voxels, that is, the sum of the

strengths of functional connectivity beyond the threshold between a

given voxel and all other voxels. In this study, connectivity strength was

measured using Pearson's correlation coefficient, and the connectivity

threshold was set to 0.2 (Sepulcre et al., 2010). Detailed definitions of

these measures can be found in Table S8. Maps of AM, ReHo and FCS

were estimated for each voxel and standardized within each subject to

generate z-score maps, which could be appropriately averaged and com-

pared across participants. We also computed functional connectivity

between all pairs of regions, yielding a connectivity matrix for each indi-

vidual. Regional estimates were calculated for each subject by averaging

the z-scores of the voxels in each of the 263 brain regions.

2.2 | Group-level statistical analysis for identifying
functional brain alterations in AD

2.2.1 | Meta-analysis across different sites

The null hypothesis of equality in AM, ReHo and FCS between the

AD and healthy comparison groups was tested independently for each

acquisition site. This hypothesis was also independently assessed

using two sample two-sided t tests for the (263 × 262)/2 = 34,453

unique functional connections. Age and gender were controlled using

linear regression. In this way, functional connectivity and each of the

three measures of activity (AM, ReHo, FCS) were associated with a

p value for each of the acquisition sites and each brain region (or pair

of brain regions in the case of functional connectivity). As suggested

in previous studies, the Liptak-Stouffer z-score method was used to

combine p values across the six sites, which has optimal power for

combining probabilities in meta-analyses (Li et al., 2017; Xia,

et al., 2019; Zaykin, 2011; Zhang et al., 2016; Zhao et al., 2020). Spe-

cifically, for each measure of brain activity (AM, ReHo and FCS) and

connectivity, the p values for each dataset were transformed into z-

scores using the inverse standard normal distribution. In particular,

zi = φ−1(1 − Pi/2), where φ is the standard normal cumulative distribu-

tion function. The combined z-score was then computed using the

Liptak-Stouffer formula:

z =

Pk
i=1wiziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i=1wi

2
q

where wi is the square root of the sample size of dataset i and k is the

number of datasets (here, k = 6). Under the null hypothesis, the z-

scores follow the standard normal distribution. Therefore, by conver-

ting the z-scores to p values, we identified significant regions (AM,

ReHo and FCS) as well as significant connections that differed

between the AD and healthy comparison groups. The Bonferroni cor-

rection was used to correct for multiple comparisons across the set of

all 263 regions (p < .05, N = 263 for AM, ReHo and FCS) and the set

of 34,453 functional connections) (Li et al., 2017; Zhang et al., 2016).

In addition, we also performed a meta-analysis between MCI and

healthy individuals, and between AD and MCI for each of the four

measures.

2.2.2 | Post hoc clustering and correlation analysis

To extend the above analyses and provide further insight into the

network abnormality of AD from the perspective of network circuits

and hubs, we performed a spectral clustering analysis of functional

connectivity (Figure 1). The similarity matrix was obtained from the

Pearson's correlation coefficient of each pair of altered connections

that were identified through the above meta-analysis in AD patients.

The similarity represented the degree of covariation across the AD

individuals between each pair of functional connections that were

found to show a significant between-group difference (Skatun

et al., 2017). This measure of covariance quantifies whether func-

tional connectivity strength remains consistent across individuals

and does not require connectivity to decrease or increase consis-

tently (Skatun et al., 2017). Hence, this measure is more appropriate

to detect network circuits and alleviate potential errors caused by

individual differences.
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To determine whether the above meta-analyses identified altered

functional measures that associated with cognitive impairment in the

AD and MCI individuals (here with the MCI subjects were included to

test whether a disease severity association exists), we performed

Pearson's correlation analysis between each of four measures (AM,

ReHo, FCS and functional connectivity) and the severity of cognitive

impairment as measured by MMSE scores of AD/MCI (p < .05, false

discovery rate [FDR] corrected). Note that the correlation analysis

between four measures and the MMSE were performed only on

regions or functional connections with significant group differences

between AD and NC (healthy individuals). The effects of age, gender

and scanner site were controlled. Additionally, we performed Pearson

correlation analysis between the mean functional connectivity

strength of each cluster and the MMSE scores of AD/MCI (p < .05,

Bonferroni correction for cluster numbers).

To determine whether the extent of AD-related abnormalities in

functional activity associates with the extent of Aβ burden, we per-

formed correlation analysis between case–control differences in each

of four functional measures (AM, ReHo FCS and functional connectiv-

ity) as quantified by the z-statistics of the above meta-analyses and

case–control differences of Aβ burden (z-score) as quantified by sta-

tistics of two-sample two-sided t test (p < .05, Bonferroni correction

for four measures) with age, gender, gray matter volume controlled.

Regional levels of Aβ burden were determined using florbetapir

(F18-AV-45) PET scans collected from ADNI (detailed in Table S5). A

t statistic quantifying the Aβ burden for each of 263 regions was

determined using two sample two-sided t test between 291 patients

with AD and a well-matched (age and gender) group of 334 healthy

comparison individuals. Note that increased amyloid pathology cor-

responded to a positive t statistic value.

2.3 | Multivariate classification and prediction
based on functional activity and connectivity

To assess the predictive utility of the fMRI measures considered in

this study, we performed classification analysis and regression analysis

using leave-one-site-out cross-validation (Abraham et al., 2017;

Nunes et al., 2018; Rozycki et al., 2018). To evaluate the generalizabil-

ity of the classifier across sites, we trained a linear support vector

machine (SVM) classifier to predict individual diagnostic status (AD vs.

healthy comparison individual); to investigate the generalization of

the regression models, an ElasticNet regression model was introduced

to predict individual clinical MMSE scores (https://scikitlearn.org/

stable/modules/linear_model.html#elastic-net) (Friedman, Hastie, &

Tibshirani, 2010; Schouten et al., 2016; Zou & Hastie, 2005). The

input features for the classification and regression models were

selected based on repeating the meta-analyses described above on

the five excluded training sites. For each iteration of the cross-valida-

tion, this yielded a feature space that comprised AM, ReHo, FCS and

functional connectivity measures. The accuracy of the classifier was

then evaluated on the individuals comprising the remaining site that

was not used during the feature selection process, giving rise to a

sixfold cross-validation process in which one site served as the testing

set for each fold (Figure S1). Briefly, as Figure S1 shows, for each vali-

dation fold, we firstly selected one site as the testing set and other

five sites as the training set. Second, we achieved four functional mea-

sures of subjects on training set and conducted meta-analysis of each

of the four measures. Third, we selected the features with significant

group differences between AD and NC surviving the FDR correction

(p < .05) to train a classification model and a regression model. The

SVM and ElasticNet hyperparameters of models are optimized by

inner fivefold cross-validation on the training set (parameter candi-

dates are listed in the Tables S11 and S12). Finally, we computed the

corresponding functional measures on testing set to predict the diag-

nosis state and MMSE score of subject by the trained models. Classifi-

cation performance was evaluated using accuracy (ACC), sensitivity

(SEN), specificity (SPE) and area under the receiver operating charac-

teristic curve (AUC) (Feng et al., 2018; Lian, Liu, Zhang, & Shen, 2020;

Liu, Zhang, Adeli, & Shen, 2018; Rozycki et al., 2018). Prediction per-

formance was evaluated using the Pearson correlation coefficient and

mean absolute error (MAE) between the actual and the predicted

MMSE (Stonnington et al., 2010).

2.4 | Replication of main results on the ADNI
database

To further validate the robustness of the main results of the present

study, an independent dataset with 39 patients with AD and a well-

matched (age and gender) group of 45 healthy individuals was included

for replication analysis from the ADNI (www.loni.ucla.edu/ADNI). Of

the 39 patients with AD, 23 subjects had at least three longitudinal

scans (Table S6). The same quality control criteria and preprocessing

pipeline described above were applied to the ADNI database. After

that, we performed a two-sample two-sided t test analysis on each

measure (AM, ReHo, FCS and whole-brain connectivity) between the

AD and healthy comparison groups with age and gender controlled.

Then, correlation analyses between the primary database and the ADNI

database were performed for each measure to investigate whether the

pattern of between-group differences were regionally consistent

between the two datasets. Additionally, to test whether the functional

connectivity strength changes significantly with the course of disease,

we performed one-way repeated-measures analysis of variance

(ANOVA) for each of the identified clusters from the ADNI database on

the longitudinal data (23 AD patients with three scans).

Additionally, we trained an SVM classification model for AD diag-

nosis on the primary database and tested it on the ADNI database.

The features were selected with significant group differences

between AD and NC above meta-analysis of the primary database.

2.5 | Features and code sharing

The open Brainnetome fMRI toolkit (Xu et al., 2018) is available online at

https://github.com/yongliulab. The SVM and regression analysis code used
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in this study can be obtained at https://scikit-learn.org/. The data used are

available from the author (Y.L.) upon reasonable request.

3 | RESULTS

3.1 | Regional and connectivity analyses reveal
replicated brain abnormalities in AD

3.1.1 | Altered functional activity in AD

Meta-analyses were performed to test for differences in measures of

functional activity between six cohorts of individuals with AD and

corresponding healthy comparison individuals. The quantitative com-

parison results of group difference between AD patients and

corresponding healthy comparison individuals for each of the six cen-

ters using t test are shown in Figure S2. Figure 2a shows cortical maps

that indicate regions associated with significant differences in AM,

ReHo and/or FCS between the AD and healthy comparison groups

(p < .05, Bonferroni corrected for N = 263 regional comparisons).

Whereas some regions were found to show significant increases in

these three measures of functional activity, other regions were associ-

ated with significant decreases in the AD group compared to the

healthy comparison group. Importantly, a consistent regional pattern of

significant AD-related alterations in functional activity was evident

across the three measures, principally circumscribed to the default-

mode network (DMN), including the posterior cingulate cortex,

precuneus, inferior parietal lobule, hippocampus, thalamus, and fusiform

gyrus (Figure 2a and Table S9). Specifically, the AD group was associ-

ated with significantly reduced functional activity in the precuneus,

inferior parietal lobule (AM, ReHo, FCS), posterior cingulate cortex and

middle frontal gyrus (AM, ReHo), superior frontal gyrus (ReHo) and

anterior superior temporal sulcus (FCS). In addition, the AD group

showed significantly higher functional activity in the fusiform gyrus,

hippocampus, parahippocampal gyrus and superior temporal gyrus (AM,

ReHo), the thalamus and cerebellum (ReHo, FCS), the amygdala (AM),

the basal ganglia (ReHo) and middle frontal gyrus (FCS).

3.1.2 | Altered whole-brain functional connectivity
in AD

Meta-analyses were performed to test for differences in functional

connectivity strength associated with AD across all pairs of regions

comprising the Brainnetome Atlas. We found 178 functional connec-

tions with reduced connectivity strength in the AD group and 38 con-

nections with increased strength relative to the healthy comparison

group (p < .05, Bonferroni corrected, N = 34,453 connection compari-

sons) (Figure 3, Table S10, Figure S3). To identify the key regions

impacted by these functional connectivity alterations, we used spec-

tral clustering to group the altered connections into putative clusters

based on covariance across the group of AD individuals. The connec-

tions that showed significant reductions in functional connectivity in

the AD group were divided into four clusters according to the silhou-

ette coefficient (https://scikit-learn.org/stable/modules/clustering.

html#clustering) (cluster 1–4, Figure 3b, Figure S4). Fewer connec-

tions were associated with significant increases in functional connectivity

in the AD group, and all of these connections were assigned to a single

cluster (cluster 5). The cluster analysis indicated that reductions in con-

nectivity strength primarily involved the DMN, cingulate gyrus, basal

ganglia and lateral occipital cortex, whereas increased connectivity was

limited to the prefrontal lobe (Figure 3). As shown in Figure 3b, cluster

1 contained connections that belong to the DMN, especially connections

between the frontal lobe and temporal lobe, and connections between

the temporal lobe and precuneus. Cluster 2 comprised connections

between the anterior cingulate cortex and other regions, especially the

parietal lobe. Cluster 3 contained some connections between the occipi-

tal lobe and temporal lobe and connections between the occipital lobe

and cingulate gyrus. Cluster 4 comprised connections between the basal

ganglia, association cortex and subcortical structures.

In addition, the results of regions with significant group differ-

ences between MCI and NC, and between AD and MCI with

Bonferroni correction (p < .05) are shown in Figure S5. After that, we

performed correlation analysis between the z scores of differences

between AD and NC and the z scores of differences between MCI

and NC, between the z scores of differences between AD and NC and

the z scores of differences between AD and MCI for four measures.

The results showed that the changes in difference of three groups are

consistent (all p < 10E-30) (Figure S5).

3.1.3 | Associations between functional activity/
connectivity and clinical scores in AD and MCI

Correlation analyses were undertaken to determine whether inter indi-

vidual variation in symptom severity associated with fMRI measures in

regions with significant changes in each measure (N = 44 for AM, N = 79

for ReHo, N = 19 for FCS) and functional connections showing between-

group differences (N = 226) (p < .05, FDR corrected for N comparisons).

The correlation analysis was performed in the combined AD and MCI

groups and each of two groups after controlling for the effects of age,

gender and center, also the MCI and AD group respectively (Tables S9

and S10). Functional measures in the inferior parietal lobule (AM, ReHo,

FCS), precuneus and cingulate gyrus (AM, ReHo), and middle frontal

gyrus (ReHo) showed significant positive correlations with the MMSE

scores in the combined AD and MCI groups (Table S9). Functional mea-

sures in the fusiform gyrus and hippocampus (AM, ReHo), thalamus and

cerebellum (ReHo, FCS), superior temporal gyrus and basal ganglia

(ReHo) showed significant negative correlations with MMSE scores in

the combined AD and MCI groups (Figure 2d–f). Importantly, 162 func-

tional connections (71.7%) were significantly correlated with MMSE

scores in the combined AD and MCI groups (p < .05, FDR corrected,

Table S10). In addition, we also performed correlation analysis between

the mean functional connectivity strength of each of the five identified

clusters and MMSE scores in AD and MCI (p < .05, FDR corrected). As

shown in Figure 3b, there were significant positive correlations between
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mean functional connectivity strength and the MMSE scores for clusters

1–4 (p < .001). In contrast, the mean functional connectivity strength of

cluster 5, which contained significantly increased connectivity in AD

compared to the healthy comparison group, was negatively correlated

with MMSE scores (p < .001). The case–control differences in ReHo and

FCS (AM has no significant result p = .88) were significantly associated

with another independent case–control difference in Aβ burden, which

shows that the abnormalities in functional activity are associated with

pathological changes related to AD.

3.2 | Multivariate classification and prediction
based on functional activity and connectivity

Using a cross-validation process, we trained machine learning classifiers

to predict diagnostic status and clinical MMSE score based on an individ-

ual's AM, ReHo, FCS and functional connectivity (details of parameter

candidates are listed in the supplemental material). For each iteration of

cross-validation, the site chosen to test the performance of the trained

classifier was never used as part of the feature selection process and

classifier training. Diagnostic status could be predicted with a relatively

high AUC of 0.95 (ACC = 0.89, SEN = 0.86, SPE = 0.95) (Figure 4a; the

classification results of each test dataset were summarized in Table S11).

More significantly, we found significant negative correlations (r = −.32,

p < .001 for AD, r = −.29, p < .001 for MCI, and r = −.43, p < .001 for

AD and MCI) between the individual pseudoprobabilities of AD and MCI

subjects and cognitive ability (Figure 4b). For disease progression, the

mean correlation coefficient and MAE between the predicted and actual

MMSE scores of the six test sets were 0.56 (p < .001) and 4.37, respec-

tively (Figure 4c). The prediction results of each test set were summa-

rized in Table S12. Furthermore, the classification accuracy of the model

trained on the primary database and tested on the ADNI database is

0.70 (AUC = 0.73, SEN = 0.82, SPE = 0.60). Taken together, these results

emphasized the potential for brain activity and connectivity to provide a

robust and reproducible imaging signature of AD.

3.3 | Generalization of the altered activity in AD

3.3.1 | Replication of main results using the ADNI
database

We performed a two-sample two-sided t test between the AD and

healthy comparison groups in the ADNI database after controlling for

the effects of age and gender with AM, ReHo and FCS. To investigate

whether there is a similar pattern of case–control difference across

the two databases, we performed a correlation analysis between the

z statistic of the meta-analysis of the primary database and the

F IGURE 2 (a–c) Differences in functional measures (AM, ReHo and FCS) between patients with AD and healthy controls. The warmer and
colder colors indicate higher and lower functional measures in patients with AD than in the healthy controls, respectively. (d–f) The correlation
map between altered functional measures (AM, ReHo, FCS) and MMSE scores in the AD and MCI patients with FDR correction (p < .05). AD,
Alzheimer's disease; AM, the amplitude of local brain activity; FCS, functional connectivity strength; MCI, mild cognitive impairment; MMSE,
Mini-Mental State Examination; ReHo, regional homogeneity
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t statistic of the t test of the ADNI database with AM, ReHo, FCS and

functional connectivity after controlling for the effects of age and

gender (Tables S6 and S13). Patterns of abnormalities were spatially

consistent between the two databases (whole-brain functional con-

nectivity: r = .20, p < .001; AM: r = .35, p < .001; ReHo: r = .63,

p < .001; FCS: r = .16, p = .008; Figure 5). Specifically, the AD group

F IGURE 3 (a) The main affected regions with more than two altered connections are shown in the left upper. The size of the node represents
the number of altered connections in the brain region. Nodes in red color and yellow color indicate the region involved in enhanced and
attenuated connectivity, respectively; (b–f) the spectral clustering results of altered functional connections and the scatter plot of significant
association between mean functional connectivity strength and the MMSE scores in the AD and MCI patients for five clusters (p < .001). AD,
Alzheimer's disease; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination

F IGURE 4 (a) The receiver operating characteristic curves (ROC) and area under ROCs (AUC) of intersite cross-validations. (b) Correlation
between the distances of the test samples from the discrimination hyperplane and MMSE scores. MMSE scores were z-scored within each
dataset and then pooled together. The results showed significant negative correlations (r = −.32, p = 1.4e−7 for AD, r = −.29, p = 9.0e−6 for MCI,
r = −.43, p = 4.3e−23 for AD plus MCI) between the individual pseudoprobabilities of AD and MCI subjects and the cognitive ability. (c) The
correlation between predicted and actual MMSE scores of six sites using leave-one-site-out cross-validation. AD, Alzheimer's disease; MCI, mild
cognitive impairment; MMSE, Mini-Mental State Examination

3386 JIN ET AL.



had significantly higher functional activities in the fusiform gyrus and

superior temporal gyrus (AM, ReHo, FCS) (p < .05, Bonferroni correc-

tion). In addition, the AD group exhibited significantly lower FCS in

the insular. The identified regions of the fusiform gyrus and superior

temporal gyrus were consistent with our main results.

To test whether the functional connectivity strength changes signifi-

cantly with the course of disease, we performed one-way repeated mea-

sures ANOVA for each of five identified clusters in AD patients.

Strikingly, the connectivity strength of cluster 2 (e.g., the anterior cingu-

late, F = 4.42, p = .018 uncorrected) and cluster 4 (e.g., basal ganglia,

F = 3.46, p = .04 uncorrected) changed significantly with time in the longi-

tude AD subjects (Table S14). These additional findings provided further

evidence for the robustness and reproducibility of the present findings.

3.3.2 | Control analyses

First, we tested the robustness of our main findings to alternative

parcellation atlases. As a control analysis for the choice of brain

parcellation, at a regional scale, we repeated the analysis to identify

comparable differences between the AD and healthy comparison

groups using the Stanford Atlas (http://findlab.stanford.edu/

functional_ROIs.html) (Richiardi et al., 2015) (Further details are pro-

vided in Figure S6).

Second, to investigate the potential confound of different acquisi-

tion lengths across the six sites, we temporally truncated the fMRI

data for all individuals across all six sites to the shortest acquisition

(170 time points). The results showed that the temporal truncation

step (keeping the first 170 time points for each subject) did not alter

the patterns of impaired functional activity and connectivity in the AD

group (Figures S7 and S8).

4 | DISCUSSION

To the best of our knowledge, this is the first data-driven meta-

analysis study to directly investigate aberrant brain activity and dys-

function of whole-brain networks in AD with a large database pooled

across six sites. Our study provided a comprehensive picture and

strong evidence for a pattern of widespread functional

F IGURE 5 Correlation analysis of the
case–control difference between the primary
database and the ADNI database. The
correlation analysis between z statistic of
functional measures (AM (a), ReHo (b), FCS
(c), functional connectivity (d)) by meta-
analyses on the primary database and
t statistic of functional measures by two-
sample t test on the ADNI database after
controlling for the effects of age and gender.
(e) The heatmap of the case–control
difference of functional connectivity of the
ADNI database and primary database. The
correlation analysis between the z statistic of
ReHo (f) and FCS (g) measures on the
primary database and the t statistic of the Aβ
burden on the ADNI database. AM, the
amplitude of local brain activity; ReHo,
regional homogeneity; FCS, functional
connectivity strength; Aβ, amyloid β
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dysconnectivity in AD, enabling accurate individual prediction of diag-

nostic status and clinical score. More specifically, patients with AD

consistently displayed reduced brain activity within the DMN and

increased activity located in subcortical nuclei, particularly the hippo-

campus, parahippocampus, amygdala and thalamus. For whole-brain

network dysconnectivity, patients with AD consistently displayed

reduced connectivity or activity involving the DMN, basal ganglia, and

cingulate gyrus. In contrast, the prefrontal lobe displayed hyper-

connectivity in AD. Interindividual variation in the severity of these

abnormalities was significantly correlated with the severity of cogni-

tive impairment and Aβ burden determined from an independent

group of individuals. Taken together, these findings deepened our

understanding of brain dysfunction in AD.

We confirmed that AD is associated with hypoconnectivity and

aberrant brain activity in the DMN, a network playing a pivotal role in

various cognitive functions, emotional processing and retrieval of epi-

sodic memory. The DMN is also involved in the integration and com-

munication of information from other brain regions (Seguin, Razi, &

Zalesky, 2019), which were primarily impaired for AD (Eyler

et al., 2019; Raichle et al., 2001). The present findings suggest that the

regional distribution of AD deficits is circumscribed to well-defined

canonical networks. In particular, Aβ deposition, hypometabolism, and

gray matter atrophy have all been found to be regionally circumscribed

to core regions of the DMN (Dickerson et al., 2009; Grothe, Teipel, &

Alzheimer's Disease Neuroimaging, 2016). The significant spatial asso-

ciation between Aβ deposition and dysfunction inferred from rs-fMRI

suggests that these functional deficits have an underlying neurobio-

logical basis. We also found that AD exhibited hypoconnectivity

among the anterior cingulate cortex and basal ganglia. The basal

ganglia, cerebellum and cerebral cortex form an integrated network

that is involved in motor, cognition and emotion and provides an

important component of the substrate for multiple intrinsic resting-

state networks (Alexander, DeLong, & Strick, 1986; Bostan &

Strick, 2018; Habas et al., 2009; Postuma & Dagher, 2006). Residing

at the junction of a wide cortico-subcortical network, the anterior

cingulate cortex is associated with complex functions that are known

to be abnormal in AD, such as emotions, motor control and cognition

(Apps, Rushworth, & Chang, 2016; MacDonald 3rd, Cohen,

Stenger, & Carter, 2000; Mega & Cummings, 1997; Paus, 2001).

Additionally, anterior cingulate cortex hypofunction is closely associ-

ated with apathy and unawareness of deficits, which are common

neuropsychiatric symptoms in patients with AD (Amanzio

et al., 2011; Marshall et al., 2007).

Notably, we found evidence suggesting that AD is associated

with short-distance hyperconnectivity within the prefrontal cortex.

This may point to a compensatory mechanism to offset functional

impairments due to disconnection between multiple other regions

(Bai et al., 2009; Becker et al., 1996; Gould et al., 2006; Grady

et al., 2003; Qi et al., 2010). Interestingly, we also observed that the

hippocampus, parahippocampus and thalamus showed increased local

activity strength when combined with decreased functional connec-

tivity with other brain regions (Figures 2 and 3). These local increases

may lead to functional decoupling with distant regions.

The development of valid biomarkers is crucial for optimizing indi-

vidualized care in AD. Thus, identifying reproducible and generalizable

markers is essential for the AD research community. It should be

noted that there is a lack of the verification of reproducibility and the

evaluation of functional imaging characteristics as diagnostic bio-

markers due to small sample sizes in most of the previous studies. We

employed a large fMRI biobank and applied the same analysis pipeline

to investigate AD-relevant functional alterations, which successfully

reduce the methodological variability, biased sampling and further

improve statistical power. To our knowledge, this study included the

largest rs-fMRI AD biobank collected in China. The large sample size

ensures that the present findings are reproducible (Varoquaux, 2018).

The additional control analyses (different parcellation methods, differ-

ent time series lengths and an independent ADNI database)

highlighted the reproducibility of the imaging signatures identified in

this study and provide further support for the robustness of the pre-

sent results. Additionally, significant associations between functional

measures and clinical scores and amyloid-β burden in an independent

database deepen our understanding of the neuropathology of

AD. The multivariate analysis with cross-validation further supported

the clinical benefits of functional measures, which is valuable for clini-

cal decision-making and therapeutic development. These findings

demonstrated that the spontaneous activity pattern can provide

robust and generalized imaging biomarkers across sites (Abraham

et al., 2017; Rozycki et al., 2018; Teipel et al., 2017), and this kind of

generalizability is particularly important for translational medicine

(Davatzikos, 2019).

This study has several limitations that should be considered. First,

it should be noted that the image acquisition scanning protocols dif-

fered across the studied sites. Instead of directly pooling data from

multiple sites, we performed statistical comparisons for each site and

combined the results though meta-analysis to attenuate the effects of

these confounds. The variations in scanning parameters (such as, field

of view, echo time, slice numbers) have an unknown effect on present

results to some degree, this might explain the relatively modest accu-

racy when using ADNI as the validation dataset. It would be better to

minimize the inconsistencies in the image parameters for group ana-

lyses in future multisite studies by leveraging harmonization tech-

niques (Yu et al., 2018; Zhou, et al., 2018). Second, longitudinal

datasets or associations with Aβ burden directly were not available in

this study. Future studies are also needed to include longitudinal neu-

roimaging and neurobiological data to further verify the reproducibil-

ity of AD-relevant functional alterations and develop reliable

biomarkers for the progression of AD. Third, in this study, we only

focus on the robustness of aberrant patterns of brain activity and the

diagnostic utility of fMRI measures in AD. Neuroimaging-based classi-

fication of AD with other modalities, such as structural MRI and PET,

achieved promising classification performance (Rathore, Habes,

Iftikhar, Shacklett, & Davatzikos, 2017). One single neuroimaging

modality cannot be sufficient to completely characterize alterations in

the brains of AD. For better quantitative diagnosis, multimodal tech-

niques and new machine learning protocols that elucidate distinctive

imaging signatures are needed for early diagnosis and prediction.
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Lastly, we need to develop suitable machine learning method for early

detection and progress detection of the MCI subjects.

5 | CONCLUSION

To the best of our knowledge, this is the first mega-analysis study to

comprehensively examine functional alterations in individuals with AD

using a large multicenter rs-fMRI database (N = 688). More specifi-

cally, aberrant connectivity and local activity in the DMN, cingulate

gyrus, basal ganglia, and hippocampus may underlie AD biases toward

cognition and communication of information. The control analysis fur-

ther supported the reproducibility of our findings. Inter individual vari-

ation in the severity of these functional abnormalities was

significantly correlated with the degree of cognitive impairment and

Aβ burden, which deepened our understanding of the association

between neuropathology and activity dysfunction of AD. Predictions

of an individual's diagnostic status and clinical score indicated the

potential of functional signatures as biomarkers or predictors of dis-

ease progression in AD. Collectively, these reproducible and generaliz-

able findings highlighted the potential for functional brain imaging

biomarkers in the early diagnosis of AD.
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