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SUMMARY

Piwi proteins are a subfamily of Argonaute proteins that maintain germ cells in eukaryotes. 

However, the role of their human homologs in cancer stem cells, and more broadly in cancer, is 

poorly understood. Here, we report that Piwi-like family members are overexpressed in 

glioblastoma (GBM), with Piwil1 (Hiwi) most frequently overexpressed (88%). Piwil1 is enriched 

in glioma stem-like cells (GSCs) to maintain self-renewal. Silencing Piwil1 in GSCs leads to 

global changes in gene expression resulting in cell-cycle arrest, senescence, or apoptosis. Piwil1 

knockdown increases expression of the transcriptional co-regulator BTG2 and the E3-ubiquitin 

ligase FBXW7, leading to reduced c-Myc expression, as well as loss of expression of stem cell 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: yuj2@ccf.org.
AUTHOR CONTRIBUTIONS
Conceptualization, H.H. and J.Y.; Methodology, H.H., X.Y., X.H., J.H., R.P., G.B., S.B., A.M.K., E.J., and J.S.Y.; Investigation, H.H., 
X.Y., X.H., J.H., J.Z., R.A.P., G.B., S.B., A.M.K., E.J., and J.S.Y.; Writing, H.H., X.Y., X.H., J.H., J.Z., R.A.P., G.B., S.B., A.M.K., 
E.J., and J.S.Y.; Funding Acquisition, J.S.Y.; Resources, R.A.P., S.B., G.B., and J.S.Y.; Supervision, G.B., E.J., and J.S.Y.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2020.108522.

DECLARATION OF INTERESTS
E.J. is a co-founder of Bainom.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2021 January 26.

Published in final edited form as:
Cell Rep. 2021 January 05; 34(1): 108522. doi:10.1016/j.celrep.2020.108522.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/


factors Olig2 and Nestin. Piwil1 regulates mRNA stability of BTG2, FBXW7, and CDKN1B. In 

animal models of GBM, Piwil1 knockdown suppresses tumor growth and promotes mouse 

survival. These findings support a role of Piwil1 in GSC maintenance and glioblastoma 

progression.

Graphical Abstract

In Brief

Huang et al. find that Piwil1 protein is overexpressed in glioblastoma and glioma stem cells 

(GSCs). Piwil1 maintains GSC self-renewal and survival by regulating gene expression. Targeting 

Piwil1 extends survival in mouse models of glioblastoma. Piwil1 represents a therapeutic 

vulnerability.

INTRODUCTION

Glioblastoma (GBM) is an aggressive primary, malignant brain cancer. Despite maximal 

therapy, the cancer inevitably recurs. Glioma stem cells (GSCs) are a subset of cells that are 

highly resistant to conventional treatment. GSCs have the ability of self-renewal and 

differentiate and are implicated in tumor progression and recurrence (Bao et al., 2006; Chen 

et al., 2012; Eramo et al., 2006; Lathia et al., 2015). Understanding the molecular 

mechanisms that govern GSC maintenance is pivotal in the development of novel 

therapeutics.
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Piwi proteins belong to a subfamily of Argonaute proteins that bind small RNAs. Piwi 

proteins are expressed highly in germ cells where they help to maintain genome stability by 

re-pressing transposons. Piwi was first discovered as an essential gene that guides 

asymmetric division of germline stem cells in Drosophila (Lin and Spradling, 1997). Piwi 

was found to be expressed in the germline stem cell niche to regulate bone morphogenic 

protein (BMP) signaling to control stem cell self-renewal and differentiation (Szakmary et 

al., 2005). Later, Piwi was found to control gene expression in germline stem cells by 

interacting with the PRC2 complex and preventing it from binding to chromatin (Peng et al., 

2016). The most well-studied function of Piwi family proteins is their processing of and 

binding to piwi-interacting RNAs (piRNAs) to silence transposable elements to maintain 

genome integrity in germ cells (Iwasaki et al., 2015; Ozata et al., 2019). Since their 

discovery, Piwi proteins and piRNAs have been implicated in regulating gene expression 

outside of the germline (Peng and Lin, 2013; Rojas-Ríos and Simonelig, 2018; Ross et al., 

2014).

The Piwi proteins are highly conserved across species. In humans, there are 4 Piwi proteins 

termed Piwi-like (Piwil) proteins, Piwil1 (Hiwi), Piwil2 (Hili), Piwil3 (Hiwi3), and Piwil4 

(Hiwi2). Similar to their Drosophila homologs, these Piwi-like proteins regulate a broad 

range of activities including RNA stability, protein translation, gene transcription, chromatin 

dynamics, and stability. Whether the Piwi-like proteins play a role in somatic stem or 

progenitor cell maintenance is controversial. The expression of Piwi-like proteins was 

initially found to be elevated in hematopoietic stem cells, suggesting a role in stem cell 

maintenance (Nolde et al., 2013; Sharma et al., 2001). However, deletion of the three Piwi 

proteins in mice revealed normal hematopoiesis (Nolde et al., 2013). Thus, the role of Piwi-

like proteins in normal stem or progenitor cell maintenance is yet to be determined.

Accumulating evidence suggests that Piwi proteins are dysregulated in cancer and may serve 

as cancer testis antigens (CT antigens) (Han et al., 2017; Litwin et al., 2017; Liu et al., 

2019). The expression of Piwil1 through Piwil4 proteins were reported to be elevated in a 

variety of cancers including pancreatic cancer, endometrial, breast, and sarcoma (Chen et al., 

2015; Han et al., 2017; Li et al., 2020; Litwin et al., 2017; Qu et al., 2015; Siddiqi et al., 

2012; Taubert et al., 2007; Wang et al., 2016; Ye et al., 2010). In many of these cancers, 

overexpression of Piwi-like genes is correlated with aggressive tumor phenotype and poor 

patient survival (Han et al., 2017; Litwin et al., 2017). The Piwi-like proteins are thought to 

drive cancer progression by deregulating the cell cycle or altering cell motility. For example, 

in breast cancer cell lines, Piwil1 overexpression increases CDK4, CDK6, and CDK8 levels 

(Cao et al., 2016), and in sarcoma cell lines, Piwil1 regulates the cyclin-dependent kinase 

inhibitors (CDKI) p21 and p27 (Siddiqi et al., 2012). In pancreatic cancer, Piwil1 facilitates 

metastasis by reducing cell-cell adhesion (Li et al., 2020). Piwil2 is implicated in regulating 

the proliferation and survival of breast cancer stem cells through increased CyclinD1 and 

BCL-XL expression (Lee et al., 2010), and in non-small cell lung cancer, Piwil2 

overexpression increases CDK2 and cyclin A (Qu et al., 2015). However, the functional 

consequences of Piwi-like proteins in cancer progression remains poorly understood. 

Considering the important role of Piwi proteins in germline stem cell maintenance, we 

interrogated their role in GSCs and more broadly in GBM.
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RESULTS

Piwil1 Is Overexpressed in Glioblastoma

We first explored the expression of Piwil1 through Piwil4 in GBM using RNA sequencing 

(RNA-seq) data from the TCGA via cBioPortal. Expression data for the Piwi-like genes 

were available in 160 GBM specimens. The Piwi-like genes were overexpressed in 24/160 

(16.9%) GBM patient specimens (Figure S1A). Piwil1 mRNA was most frequently 

overexpressed (10%) compared to Piwil2 (1.3%), Piwil3 (2.6%), or Piwil4 (3%) mRNA 

(Figure S1A). We next stained human GBM and normal brain for expression of Piwil1 by 

immunohistochemical analysis. In a panel of 25 human GBM specimens, 88% were positive 

of Piwil1 proteins with 64% showing strong staining. A subset of cells in perivascular areas 

showed strong positive staining for Piwil1 (Figures 1A and S1B). In contrast, in 6 non-

neoplastic brain samples, there was no evidence of Piwil1 staining (Figure S1B). We further 

performed immunofluorescence staining in frozen human GBM specimens for Piwil1 with 

the stem cell marker Sox2 and found co-expression of Piwil1 and Sox2 in these samples 

(Figure 1B). Together, these data suggest that Piwil1 is overexpressed in a subset of GBM 

cells.

Piwil1 Is Expressed in Glioma Stem Cells

Because Piwil1 was first discovered as a stem cell factor in germline cells and co-stained 

with stem cell markers in GBM specimens, we assessed its expression in GSCs and their 

counterpart non-GSCs. Using four different GSC and non-GSC pairs, we found that Piwil1 

is expressed at higher levels in GSCs than non-GSCs (Figure 2A). We then co-stained Piwil1 

with stem cell markers Sox2, Olig2, and Nestin in human GBM tissues and found strong 

concordance in staining between Piwil1 and the stem cell markers (Figures 1B and 2B). 

More than 90% of Piwil1-positive cells were also Sox2-positive, whereas ~40% were Olig2-

positive (Figure 2C). Our immunohistochemical staining studies suggest that Piwil1-positive 

cells can localize around blood vessels (Figures 1A and S1B). Notably, GSCs are known to 

reside in a perivascular niche that provides nutrients to support them (Calabrese et al., 2007). 

We next assessed Piwil1 expression with Sox2 and the endothelial cell marker CD31. 

Consistent with our immunohistochemical staining, Piwil1 was co-expressed with Sox2 in 

tumor cells around blood vessels (Figure 2D). Piwil1 is highly expressed in blood vessel-

rich regions, with ~50% of cells within 100 μm to blood vessel are Piwil1+ (Figures 2E and 

S2). Together, these data suggest that Piwil1 is preferentially expressed in GSCs, particularly 

those in perivascular areas.

Piwil1 Is Required for GSC Survival and Self-Renewal

We then explored Piwil1 expression in GSCs derived from different patients. Consistent with 

its expression in GBM tissue specimens (Figure 1A), Piwil1 protein levels varied in 6 GSC 

lines we tested, with the highest levels in lines 4121 and 3832 and lower levels in lines 387 

and 3359 (Figure S3A). To explore the function of Piwil1 in GSCs, we investigated the 

effect of Piwil1 disruption on proliferation and self-renewal ability. We silenced Piwil1 

using two different short hairpin RNAs (shRNAs) or non-targeting control shRNA (shNT) 

(Figure 3A). Reducing Piwil1 expression significantly decreased cell viability in two 

different GSC populations (Figure 3A). In addition, Piwil1 knockdown decreased 
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tumorsphere number and size (Figure 3B). Furthermore, Piwil1 knockdown (KD) in GSCs 

reduced proliferation, as determined by 5-ethynyl-2′-deoxyuridine (EdU) incorporation 

(Figure 3C). Silencing Piwil1 induced apoptosis, as indicated by increased levels of cleaved 

caspase 3 and cleaved PARP (Figure 3D). On extreme limiting dilution assay, silencing 

Piwil1 also decreased the frequency of sphere-forming cells (Figures 3E and 3F). To assess 

the function of Piwil1 in cells in which it is expressed at lower levels, we also knocked down 

Piwil1 in lines 387 and 3359. Piwil1 knockdown reduced cell viability and tumorsphere 

formation (Figures S3B and S3C), suggesting that even low levels of Piwil1 expression are 

biologically significant. Together, these studies indicate that Piwil1 regulates GSC survival 

and self-renewal.

Piwil1 was reported to be involved in metastasis in certain cancers (Li et al., 2020; Zhao et 

al., 2015a). We examined whether Piwil1 regulated the migration and invasion of GSCs. We 

performed in vitro transwell migration and wound healing assay in 4121 GSCs. Piwil1 

knockdown had no significant effect on migration (Figures S4A and S4B). We then stained 

human nuclear antigen (HNA) to label human cells in a patient-derived xenograft model of 

GBM (Figure S4C). We found that tumor cells in both shNT and shPiwil1 GSC-derived 

xenograft models aggressively invaded mouse brains. These data indicated that Piwil1 is not 

required for GSC migration and invasion.

Piwil1 Gene Regulatory Network

To examine how Piwil1 affects GSC viability and self-renewal, we performed microarray 

analysis from GSCs transduced with two Piwil1 shRNAs (shPiwil1) and shNT. A volcano 

plot showed that Piwil1 knockdown globally affected mRNA expression (Figure 4A). Gene 

ontology and network analyses of differentially expressed genes revealed that Piwil1 

regulated cell cycle, cellular differentiation, DNA damage response, and metabolism 

(Figures 4B and 4C).

The top gene dysregulated by Piwil1 silencing was B cell translocation gene 2 (BTG2, also 

known as PC3 or Tis21), a tumor suppressor gene that is downregulated in many cancers 

(Figures 4A and 4C) (Mao et al., 2015; Yuniati et al., 2019). BTG2 is a member of the 

BTG/TOB gene family and regulates cellular differentiation, proliferation, DNA damage 

response, apoptosis, RNA processing, and stability (Karve and Rosen, 2012; Mauxion et al., 

2009; Stupfler et al., 2016). Using two different GSC populations, we validated that Piwil1 

knockdown strongly increased BTG2 expression at both mRNA and protein levels (Figures 

5A and 5B).

Our gene expression analyses also revealed increased expression of the tumor suppressor 

FBXW7 after Piwil1 silencing (Figures 4A and 4C). We confirmed these results in GSCs 

and found upregulation of FBXW7 at both mRNA and protein levels in GSCs after Piwil1 

knockdown (Figures 5A and 5B). FBXW7 is a component of the SCF (SKP1-CUL1-F-box) 

E3 ubiquitin-protein ligase complex that regulates the stability of many proteins including 

MYC, cyclin-E (CCNE1 or CCNE2), and the NOTCH1 intracellular domain (NICD) (Yeh et 

al., 2018). In accordance with increased expression of FBXW7, Piwil1 knockdown reduced 

c-Myc protein levels (Figure 5A and 5B). Expression of cyclin-E, NICD1, and Notch targets 

Hes-1/Hey-1 remained unchanged (data not shown).
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Interestingly, the neural stem and progenitor cell marker Olig2 was also one of the top 

downregulated genes in GSCs in which Piwil1 was silenced (Figure 4A). We validated that 

both mRNA and protein levels of Olig2 were reduced in GSCs after Piwil1 knockdown 

(Figures 5A and 5B). Consistent with a loss of self-renewal capacity (Figures 3B, 3E, and 

3F), Piwil1 knockdown also reduced expression of the stem cell marker Nestin (Figures 5A 

and 5B). These data suggest that Piwil1 may play an important role in regulating the 

expression of stem cell programs that maintain GSC self-renewal.

Piwil1 Regulates Cell-Cycle Progression

Gene ontology analysis of differentially expressed genes in Piwil1 knockdown showed 

significant changes in cell cycle (Figures 4B and 4C). We found altered expression of two 

key cell-cycle regulators, CDKN1B and CCND2, after Piwil1 knockdown. Silencing Piwil1 

increased expression of CDKN1B at both the mRNA and protein levels (Figures 5A and 

5B). CDKN1B encodes a cyclin-dependent kinase inhibitor p27 that regulates G1 

progression by inhibiting the activity of cyclin D2-CDK4, cyclin E-CDK2, and cyclin A-

CDK2 complexes (Bencivenga et al., 2017). Silencing Piwil1 also reduced expression of 

cyclin D2 (CCND2) (Figures 5A and 5B), which regulates G1/S transition (Sherr and 

Roberts, 2004). We next analyzed cell cycle by flow cytometry. Consistent with changes in 

the expression of these cell-cycle regulators, Piwil1 knockdown reduced the proportion of 

cells in S phase and increased those in G0/G1 and G2/M phases (Figure 5C).

Piwil1 Regulates Apoptosis and Senescence

Our microarray data also suggested that Piwil1 alters expression of MCL1 to regulate 

apoptosis and senescence (Bolesta et al., 2012; Wu et al., 2019). We validated that Piwil1 

knockdown reduced expression of MCL1 at both the mRNA and protein levels (Figures 5A 

and 5B). Silencing Piwil1 induced apoptosis (Figure 3D) and facilitated senescence as seen 

by strong lysosomal β-galactosidase activity (Figure 5D). Taken together, these data suggest 

that Piwil1 modulates cell cycle, apoptosis, and senescence by coordinating the expression 

of multiple genes.

To determine which of these genes are causally related to Piwil1 function in GSCs, we 

performed rescue experiments. We overexpressed CCND2, Olig2, or MCL1 or knocked 

down BTG2, FBXW7, and CDKN1B in Piwil1 knockdown GSCs and measured cell 

viability. We found that MCL1 and Olig2 overexpression can partially but significantly 

rescue the Piwil1 knockdown phenotype (Figure S5). This suggested that Piwil1 regulated 

apoptosis, senescence, and stemness.

Piwil1 Regulates mRNA Stability and Binds to Specific mRNAs

Steady-state gene expression changes reflect alterations in transcription or mRNA stability. 

We assessed the possibility that the gene expression changes are due to alteration of 

transcription or mRNA stability by treating GSCs with actinomycin D, which inhibits global 

transcription, in GSCs expressing control shRNA or two different Piwil1 shRNAs (Figures 

6A and 6B). Two GSC lines were used for these experiments. We then measured levels of 

transcripts over time. We found that Piwil1 knockdown increased the stability of BTG2, 

FBXW7, and CDKN1B mRNAs. The mRNA decay rates of MCL1, Olig2 (Figures 6A and 
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6B), and CCND2 (not shown), were not significantly changed, suggesting that Piwil1 

knockdown decreased their transcription rather than regulated their mRNA stability.

Given that Piwil1 is localized in the cytoplasm, and PIWI family proteins can bind mRNAs 

(Iwasaki et al., 2015; Ozata et al., 2019; Ross et al., 2014), we hypothesized that Piwil1 

might bind to certain mRNAs to regulate their stability. To test whether Piwil1 binds to these 

mRNAs directly, we performed RNA immunoprecipitation (RIP) using anti-Flag antibody in 

GSCs expressing Flag-Piwil1 following UV crosslinking. UV crosslinks proteins and 

nucleic acids that directly interact. We found that only CDKN1B mRNAs were significantly 

enriched in Flag-Piwil1 RIP sample compared to immunoglobulin G (IgG) control (Figure 

6C). These data suggest that Piwil1 directly binds to CDKN1B mRNA to regulate its 

stability. Piwil1 did not appear to bind to BTG2 or FBXW7 mRNAs. It is likely that Piwil1 

regulates their stability indirectly through other factors.

Piwil1 Knockdown Reduces Tumor Growth and Improves Animal Survival

To examine the functional consequences of Piwil1 knockdown in vivo, we established 

orthotopic xenografts derived from shNT or shPiwil1-expressing GSCs (shNT mice or 

shPiwil1 mice, respectively). In the two GSC lines tested, shNT cells established intracranial 

tumors efficiently. In contrast, shPiwil1 mice showed only small tumors or in some animals 

no evidence of tumors at the pre-determined, 6-month post-injection endpoint (data not 

shown). Consistent with the reduction in tumor growth, shPiwil1 mice showed greatly 

increased animal survival compared to control shNT mice (Figure 7A).

Further analysis of tumors from these mice revealed higher levels of apoptosis in shPiwil1 

mice, as indicated by increased cleaved Caspase 3 staining within the tumor (Figure 7B). 

Additionally, in accordance with our in vitro findings, tumors from shPiwil1 mice showed 

increased levels of BTG2 and FBXW7 staining and decreased MCL1 expression (Figure 

7C). Together, these data reveal a critical role of Piwil1 in GSC-mediated tumor progression.

DISCUSSION

The Piwi proteins help maintain stemness in germline stem cells. In GBM, we report that all 

four human Piwi-like proteins (Piwil1 through Piwil4) are dysregulated. Of these Piwil-like 

genes, we found that Piwil1 mRNA is most frequently overexpressed in GBM. Piwil1 

protein was overexpressed in 88% of GBM. Our data suggest that Piwil1 maintains GSC 

self-renewal and regulates their tumorigenic potential. Piwil1 is preferentially expressed in 

Sox2-, Olig2-, and Nestin-positive GSCs, particularly those in the perivascular niche. Piwil1 

knockdown reduced GSC self-renewal and extended mouse survival in GSC-derived models 

of GBM.

We have found that Piwil1 coordinates the expression of multiple genes involved in cellular 

differentiation and cell-cycle progression. Piwil1 knockdown impaired expression of the 

stem cell transcription factor Olig2, and Olig2 overexpression was able to rescue the Piwil1 

knockdown phenotype. These data suggest that Piwil1 may help maintain stemness at least 

in part through Olig2. Silencing Piwil1 also reduced expression of BTG2, the loss of which 

promotes tumorigenesis in leukemia, medulloblastoma, and oligodendroglioma by 
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regulating differentiation (Appolloni et al., 2012; Dolezal et al., 2017; Kuiper et al., 2007; 

Mullighan et al., 2007; Presutti et al., 2018). In mouse models of GBM, we found that 

tumors in which Piwil1 was silenced exhibited increased BTG2 expression. These data 

suggest that Piwil1 is a key factor in maintaining the undifferentiated state of GSCs.

The Piwi-like proteins have also been implicated in cell-cycle regulation and proliferation. 

Piwi-like proteins were identified in breast cancers to guide cell-cycle progression by 

regulating the expression of cyclin D1, CDK4, CDK6, and CDK8 (Cao et al., 2016). In 

GSCs, we found that Piwil1 regulates G1/S progression. This is in part mediated by 

transcriptional regulation of CDKN1B, CCND2, and FBXW7, and its target substrate, c-

Myc. These data suggest that Piwi-like proteins may regulate different cell-cycle 

components in different cancer types. Piwil1 silencing also augmented MCL1 expression 

and prompted cells to enter senescence. Thus, Piwil1 coordinates the expression of several 

key regulators to modulate cell-cycle progression, apoptosis, senescence, proliferation, and 

stemness. Our rescue experiments showed that among the genes regulated by Piwil1, MCL1 

and Olig2 overexpression could partially rescue the Piwil1 knockdown phenotype. 

Therefore, Piwil1 regulates apoptosis, senescence, and stemness pathways. Piwil1 is 

involved in various functions through different downstream targets that coordinately 

promote GSC proliferation and maintenance.

Piwi-like proteins regulate mRNA decay in Drosophila embryo, mouse testis, and in the 

planarian Schmidtea mediterranea (Ramat and Simonelig, 2020). In GSCs, we found that 

Piwil1 regulates the stability of a subset of mRNAs. Piwil1 directly bound to CDKN1B 

mRNA to regulate its stability. Piwil1 may regulate BTG2 and FBXW7 mRNA stability 

indirectly. Further work to identify Piwil1 protein partners and its associated mRNAs 

globally is required to illuminate the details of Piwil1 functions.

mRNA decay regulation by Piwi-like proteins is reported to be dependent on piRNAs 

(Ramat and Simonelig, 2020). However, whether Piwil1 regulates gene expression through 

piRNAs in GSCs is not clear. Although small RNAs in the size range of piRNAs have been 

found in normal mouse tissues including brain and in some human cancers, their association 

with endogenous Piwi-like proteins or function in a piRNA/Piwi complex has yet to be 

demonstrated. Interestingly, Viljetic et al. (2017) found that Piwil1 knockout in mice 

resulted in profound changes in neocortical projections yet had no effect on piRNA-like 

small RNAs in mouse brain. This suggests that Piwil1 may function independently of 

piRNAs in the brain. In pancreatic and colon cancer cell lines that robustly expressed Piwil1, 

there was no evidence that Piwil1 bound to piRNA-like small RNAs (Genzor et al., 2019; Li 

et al., 2020). Furthermore, loss of Piwil1 had no effect on gene expression or transposon 

transcript abundance (Genzor et al., 2019). A recent study showed Piwil1 drives pancreatic 

cancer metastasis as a co-activator for anaphase promoting complex/cyclosome in a piRNA-

independent way (Li et al., 2020). These data support a role for Piwil1 in cancer progression 

independent of piRNAs. Further research is needed to define the role, if any, of piRNAs in 

cancer.

The Piwi-like proteins may serve as cancer testis (CT) antigens. CT antigens are 

characterized by their expression in the reproductive system, predominantly in germ cell 
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precursors with minimal if any expression in other normal tissues, and their ectopic 

expression in some cancers. Due to their restricted expression, CT antigens including Piwil1 

are promising targets for cancer treatments. In GBM, silencing Piwil1 impaired self-renewal 

of GSCs and triggered senescence or apoptosis. This led to reduced tumor growth and 

prolonged mouse survival in two different GSC-derived xenograft models of GBM. In 

mouse embryos, Piwil1 was detected in some areas of the brain and may play a role in 

newborn neuron formation and neocorticogenesis. However, Piwil1 knockout mice are 

viable and do not exhibit overt neurologic deficits (Viljetic et al., 2017; Zhao et al., 2015a). 

Therefore, targeting Piwil1 in GBM patients may improve tumor control with minimal 

neurologic side effects.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Jennifer S. Yu (yuj2@ccf.org)

Materials Availability—All unique reagents generated in this study are available from the 

Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability—Microarray data generated in this study are available in 

GEO database under the accession number GEO: GSE160437

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—All animal experiments were conducted according to protocols approved by the 

Institutional Animal Care and Use Committee at Cleveland Clinic. Mice used in these 

studies were 4–6-week old, NSG mice (from The Jackson Laboratory) and were maintained 

in the pathogen-free barrier animal facility at Cleveland Clinic Lerner Research Institute, 

which is accredited by the AAALAC (American Association for Accreditation of 

Laboratory Animal Care). A maximum of 5 mice per cage were allowed. Both male and 

female mice were used and littermates of the same sex were randomly assigned to 

experimental groups.

Human Subjects—GBM surgical specimens were collected for this study in accordance 

with a Cleveland Clinic Institutional Review Board-approved protocol. The sex of patients 

from whom tumor specimens were assessed are as follows: CCF4195, female; CCF4362, 

male; CCF4355, male; CCF4354, male; CCF2052, female. Age and sex of all other patients 

from whom tumor specimens were assessed are not available.

Cell Lines—293T used for virus production, were maintained as adherent cultures in 

DMEM supplemented with 10% fetal bovine serum, 1 mM L-Glutamine, 100 units/mL 

penicillin, and 100 μg/mL streptomycin. Glioma stem cell lines 4121, 3832, 387 and 3359 

were maintained as suspension cultures in Neurobasal-A medium with B27 supplement, 20 

ng/ml EGF and 20 ng/ml FGF, 1 mM L-Glutamine, 100 units/mL penicillin, and 100 μg/mL 

streptomycin). All cells were kept in a humidified 5% CO2 incubator at 37°C. GSCs were 
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from GBM patients of the following age and sex: 4121, 53 year old male (recurrent GBM), 

3832, 75 year old female; 387, 69 year old, sex not available; 3359, 35 year old male.

METHOD DETAILS

Cells, Tissues, and Cell Culture—GBM surgical specimens and non-neoplastic brain 

tissues were collected for this study in accordance with a Cleveland Clinic Institutional 

Review Board-approved protocol. GSCs and non-GSCs were isolated and characterized 

from GBM surgical specimens or xenografts as previously described (Man et al., 2018). 

Briefly, tumors were disaggregated using the Papain Dissociation System (Worthington 

Biochemical) according to the manufacturer’s instructions. Isolated cells were recovered in 

stem cell medium (Neurobasal-A medium with B27 supplement, 20 ng/ml EGF and 20 

ng/ml FGF, 1 mM L-Glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin) for 

at least 6 hours and then sorted by magnetic cell sorting for GSCs using the surface marker 

CD133 (Miltenyi Biotec.). CD133+ GSCs were cultured in stem cell medium as described 

above. The cancer stem cell phenotype of GSCs was confirmed by functional assays of self-

renewal (serial neurosphere passage), stem cell marker expression, differentiation induction, 

and tumor propagation as previously described (Man et al., 2018). Non-GSCs were derived 

from GSCs that underwent a differentiation protocol using DMEM supplemented with 10% 

fetal bovine serum (FBS). Non-GSCs exhibited gain of differentiation markers including 

GFAP and loss of stem cell marker OLIG2 (Figure 2A).

Immunofluorescence Staining, Immunohistochemistry—Human glioblastoma (n = 

25) and non-neoplastic brain tissues (n = 6) were obtained under an approved Cleveland 

Clinic IRB. Immunofluorescent staining of cells and tissues sections was performed as 

previously described (Man et al., 2014, 2018). Briefly, cells or tissue sections were fixed in 

4% paraformaldehyde for 15 min at room temperature. After washing with PBS three times, 

samples were permeabilized with 0.3% Triton X-100 in PBS for 10 min, followed by three 

additional PBS washes. Samples were then blocked with 5% normal donkey serum for 60 

min at room temperature and then incubated with primary antibodies overnight at 4°C 

followed by the appropriate secondary fluorescently labeled antibodies (Invitrogen) for one 

hour at room temperature. Nuclei were counterstained with DAPI. Images were acquired 

using a SP-5 confocal microscope. The following antibodies were used: Piwil1 (Abcam 

#ab12337), Sox2 (Millipore #MAB4423), OLIG2 (Millipore, #MABN50), CD31 (Abcam # 

ab187377), BTG2 (Santa Cruz #sc-517187), FBXW7 (Abcam #ab109617), MCL1 (Santa 

Cruz #sc-819). Immunohistochemical staining of paraffin embedded tissue sections were 

performed with Mouse and Rabbit Specific HRP/AEC IHC Detection Kit (Abcam # 

ab236467). The Piwil1 antibody used was from Abcam #ab12337. Images were processed 

with ImageJ (Schneider et al., 2012).

β-Galactosidase Staining—β-Galactosidase staining was performed using Senescence 

β-Galactosidase Staining Kit (Cell signaling #9860) following the instruction. Briefly, cells 

transduced with the indicated shRNAs were seeded on Matrigel and fixed with 1X Fixative 

Solution for 15 min at room temperature after rinsed with PBS. Cells were then incubated 

with β-Galactosidase Staining Solution at pH 6.0 at 37°C for 24 hr. Images were then 

captured under bright-field microscopy.
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Immunoblot—Immunoblotting was performed as previously described (Man et al., 2014, 

2018). Briefly, cells were lysed in RIPA buffer supplemented with protease and phosphatase 

inhibitors. Protein samples were resolved by SDS-PAGE and transferred onto PVDF 

membranes. Blots were incubated with primary antibodies overnight at 4°C followed by 

HRP-conjugated species-specific secondary antibodies. The images were captured with the 

ChemiDoc Touch Imaging System (Bio-Rad) and analyzed with Image Lab software (Bio-

Rad). The following antibodies were used: cleaved Caspase 3 (Cell Signaling #9664), 

cleaved PARP (Cell Signaling #5625), BTG2 (Santa Cruz #SC-517187), FBXW7 (Abcam 

#ab109617), Cyclin D2 (Novus #NBP2-14460), p27 (Cell Signaling #2552), MCL1 (Santa 

Cruz #sc-819), Olig2 (Millipore, #MABN50), Nestin (BD Biosciences #611658).

DNA Constructs and Lentiviral Transfection—Lentivirus DNA clones of control and 

Piwil1 shRNAs were purchased from Sigma-Aldrich. Flag-Piwil1 was generated by PCR 

from cDNA and cloned into the pCDH-MCS-T2A-Puro-MSCV lentiviral vector (System 

Biosciences), CCND2, MCL1 and OLIG2 were generated by PCR from cDNA and cloned 

into pCDH-EF1α-MCS-IRES-neo lentiviral vector (System Biosciences).

Lentivirus were produced in 293T cells. Briefly, lentivirus plasmids were transfected with 

packaging plasmid psPAX2 and envelope plasmid VSV-G (at a ratio of 1:1:1) into 293T 

cells. After 12 hours, the media were changed to neural basal media and incubated for 

another 48 hours. The collected mediums were passed through 0.45 μm filters and stored at 

−80°C.

Cell Viability Assays—For cell viability assays, 1000 cells transduced with shRNAs were 

seeded in 96-well plate. Cell titers were measured at the indicated days using the Cell Titer-

Glo Luminescent Cell Viability Assay kit (Promega). All data were performed in triplicates 

and normalized to day 0 and presented as mean ± standard deviation.

In vitro Limiting Dilution Assay—GSCs transduced with shRNAs were digested into 

single cells and seeded into 96-well plates with gradient cell concentrations of 1, 5, 10, 20, 

50, 100 and 200 cells per well and 12 wells for each concentration. After incubation for 7 

days, wells without tumor spheres were counted. The stem cell frequency was estimated 

with the online extreme limiting dilution assay (ELDA) tool (Hu and Smyth, 2009) (http://

bioinf.wehi.edu.au/software/elda/).

EdU Incorporation—EdU incorporation experiment was performed using Click-iT EdU 

Imaging Kits (Thermo Fisher) following the instruction. Briefly, GSC spheres or matrigel-

attached cells were incubated with Edu (1:2000) for 3 hours. Then the cells were fixed in 

3.7% formaldehyde in PBS. After wash with 3% BSA in PBS, cells were permeabilized in 

0.5% Triton X-100 for 20 min followed by two washes. The cells were incubated with 

Click-iT reaction cocktail for 30 min. After wash, cells were counter-stained with Hoechst 

33342 and mounted for microscopic imaging. For each condition, EdU incorporation 

numbers were counts in at least 200 cells.

In vitro Transwell Migration and Wound Healing Assays—For in vitro transwell 

migration assays, 10000 cells transduced with control shRNA (shNT) or shPiwil1 lentivirus 
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were suspended with neural basal medium with 1/10 supplements and plated on top of the 

filter membrane in transwell inserts (Corning), both sides of which were coated with 1% 

Matrigel (Corning). The inserts were placed in a 24-well plate with neural basal medium 

with full supplements. After incubation for 24 hours, the inserts were removed from the 

plate. Cells and media inside the inserts were removed using cotton-tipped applicator. Then 

the inserts were put in 70% ethanol to allow cell fixation for 10 minutes and then stained 

with 0.2% crystal violet for 10 minutes and washed extensively with distilled water. 

Transwell membranes were allowed to dry. Cells were viewed using an inverted microscope 

and the number of cells in different fields of view were counted.

For the in vitro wound healing assay, 3 × 106 cells transduced with control shRNA (shNT) or 

shPiwil1 lentivirus were seeded on 2% Matrigel (Corning) in a 6-well plate. After overnight 

incubation, the cells reached 100% confluence. A 200 μL pipette tip was used to scratch the 

cells to make a wound. The width at 20 sites per wound was measured immediately and after 

24 hours incubation. The migration distances were calculated.

RNA Isolation and Real-time PCR—Total RNA was extracted from cells using 

PureLink RNA Mini Kit (Thermo Fisher). cDNA was synthesized with Invitrogen 

SuperScript IV VILO Master Mix (Thermo Fisher). Real-time PCR was performed with 

PowerUp SYBR Green Master Mix (Thermo Fisher) in ABI7500 instrument. Data were 

analyzed from at least three independent experiments and shown as the mean ± SD.

For mRNA stability measurements, cells expressing shNT or shPiwil1 were treated with 

Actinomycin D (Thermo Fisher) and collected at different time points (0, 30, 60, 

90,120,180,240 min). RNAs were isolated and relative mRNA levels were calculated by 

normalizing with ACTIN and 0 min time point after real-time PCR.

UV-RNA Immunoprecipitation—GSCs stably expressing Flag-Piwil1 were collected and 

washed with cold PBS, and then irradiate once with 800 mJ/cm2 at 254 nm on ice. After 

wash with cold PBS, cells were lysed in polysome lysis buffer (10 mM HEPES, pH7.0, 100 

mM KCl, 5 mM MgCl2, 25 mM EDTA, 0.5% NP-40, 2 mM DTT) with protease inhibitors 

and RNase inhibitor and passed through 27G needles. After centrifugation at 1000 g for 10 

min, the supernatants were collected and added to RIP buffer (50 mM Tris-Cl, pH7.4, 150 

mM NaCl, 0.1% SDS, 1% NP-40, 0.5% sodium deoxycholate with protease inhibitors and 

RNase inhibitor). The lysates were incubated with anti-Flag antibody (Sigma) or control 

mouse IgG and then with Protein G Dynabeads (Thermo Fisher). The samples were washed 

extensively with RIP buffer and RIP buffer with 500 mM NaCl, then with 1 M urea. After 

washing, the beads were digested with protease K in PK buffer (50 mM Tris-Cl, pH 7.4, 1% 

SDS, 100 mM NaCl, 0.5% NP-40) at 55°C for 1 hour and then extracted with Phenol/

Chloroform and precipitated in 70% ethanol at −80 °C. The pellets were dissolved in water 

and cDNA was synthesized to perform qPCR. The relative enrichment was normalized to 

IgG for each gene and at least three independent experiments were performed.

Cell Cycle Analysis—Cells were digested with Accutase solution (Thermo Fisher) into 

single cells and fixed in cold 70% ethonal at −20°C. After washed with PBS, the cells were 

stained with Propidium Iodide Solution (Thermo Fisher) for 30 min at room temperature and 
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then analyzed at BD Biosciences LSR II instrument. Cell cycle data were analyzed with 

Modfit LT software and at least three independent experiments for each cell line were 

performed.

Orthotopic Mouse Xenograft Studies—Intracranial transplantation of GSCs to 

establish GBM xenografts was performed as described (Man et al., 2014). Briefly, 24 hours 

after infected with shNT or shPiwil1 lentivirus, 2 × 104 GSCs were implanted into the right 

frontal lobes of 4-week old NOD scid gamma (NSG) mice. Animals were monitored daily 

and euthanized when they displayed neurologic signs. Animals were necropsied and 

underwent cardiac perfusion with PBS. Brains were harvested and fixed with 4% 

paraformaldehyde for 48 hours, cryopreserved in 30% sucrose at 4°C and cryosectioned for 

immunostaining and histological analysis.

Microarray and Bioinformatics Analysis—Total RNA was extracted from GSCs 

transduced with the indicated shRNAs using PureLink RNA Mini Kit (Thermo Fisher) and 

microarray analysis using HumanHT-12 v4.0 Gene Expression BeadChip (Illumina). Four 

replicates were used for each sample. Differential gene expression analysis and pathway 

analysis were performed using publicly available platforms including the biostatistics 

program R with packages beadarray (Dunning et al., 2007), limma (Ritchie et al., 2015), 

clusterProfiler (Yu et al., 2012).

The TCGA GBM, provisional dataset (including 160 patients) in cBioPortal (https://

www.cbioportal.org/) was used to analyze the expression of Piwil1 through Piwil4 genes. 

mRNA Expression z-Scores (RNA Seq V2 RSEM) were set to 1.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical analyses were performed at Graphpad Prism software. All grouped data are 

presented as mean ± SD unless otherwise specified. All in vitro experiments were repeated 

at least three times and values of n were reported in the figure legends. Differences in means 

between groups were analyzed using two-tailed unpaired Student’s t test. A probability 

value of 0.05 or less was considered significant. For mouse xenograft studies, 12 mice were 

used for each group and significance testing was done by log rank test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Piwil1 is overexpressed in glioblastoma and particularly in GSCs

• Targeting Piwil1 impairs GSC maintenance

• Piwil1 regulates mRNA stability in GSCs

• Targeting Piwil1 decreases tumor growth and promotes mouse survival
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Figure 1. Piwil1 Is Frequently Overexpressed in GBM
(A) Immunohistochemical staining of Piwil1 in human GBM.

(B) Immunofluorescence staining of Piwil1 (red) and Sox2 (green) in human GBM. Nuclei 

were counterstained with DAPI (blue).

See also Figure S1.
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Figure 2. Piwil1 Is Preferentially Expressed in GSCs
(A) Western blots of Piwil1, stem cell maker Olig2, and astrocyte marker GFAP in four 

paired GSCs and non-GSCs.

(B) Immunofluorescence imaging of Piwil1 (red) and stem cell markers (green) Sox2 (top), 

Olig2 (middle), and Nestin (bottom) in human GBM specimens. Nuclei were counterstained 

with DAPI (blue).

(C) Quantification of percentages of Sox2+ (n = 9 high-powered fields) and Olig2+ (n = 9 

high-powered fields) cells in Piwil1+ cells.

(D) Immunofluorescence imaging of Piwil1 (red), Sox2 (green), and endothelial cell marker 

CD31 (gray) in human GBM specimens. Nuclei were counterstained with DAPI (blue).
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(E) Quantification of Piwil1+ cells percentage within and beyond 100 μm distance from 

blood vessels (n = 15 high-powered fields).

****p < 0.0001. Data are represented as mean ± SD. See also Figure S2.
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Figure 3. Piwil1 Is Required for GSC Maintenance and Survival
(A) Top panels: immunoblots show Piwil1 knockdown efficiency. Bottom panels: cell 

viability of 4121 and 3832 GSCs after Piwil1 knockdown (n = 4 replicates for each group).

(B) Top panels: representative images of tumorspheres in control shNT and shPiwil1 #1 and 

#2 GSCs. Scale bar, 200 μm. Bottom panels: quantification of tumor sphere numbers after 

Piwil1 knockdown (n = 12 replicates each group).

(C) Left panels: immunofluorescence imaging of EdU incorporation in 4121 and 3832 GSC 

tumorspheres after Piwil1 knockdown. Right panel: quantification of the fraction of EdU+ 

cells (n > 1,000 cells for each group).

(D) Western blot of cleaved PARP and cleaved caspase 3 proteins in GSCs after Piwil1 

knockdown.
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(E and F) in vitro limiting dilution assays of 4121 (E) and 3832 (F) GSCs after Piwil1 

knockdown. Tables on the right show the estimated stem cell frequencies in control shNT 

and shPiwil1 knockdown groups.

***p < 0.001; ****p < 0.0001. Data are represented as mean ± SD. See also Figures S3 and 

S4.
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Figure 4. Molecular Pathways Regulated by Piwil1
(A) Volcano plot of differentially expressed genes in 3832 GSCs after Piwil1 knockdown.

(B) Gene Ontology analysis of differentially expressed genes in 3832 GSCs after Piwil1 

knockdown. Bar plot shows top altered pathways and the numbers at the right end of each 

bar show the numbers of genes affected in each pathway.

(C) Network map of top differentially expressed genes and pathways in 3832 GSCs after 

Piwil1 knockdown. The size of the circle denotes gene numbers in each pathway. Fold 

change in gene expression is shown.
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Figure 5. Piwil1 Regulates Cell Cycle, Senescence, and Stem Cell Marker Expression
(A and B) qRT-PCR (upper panel, n = 3 replicates for each group) and immunoblot (lower 

panel) of BTG2, FBXW7, CDKN1B, CCND2, MCL1, and OLIG2 in 4121 (A) and 3832 (B) 

GSCs after Piwil1 knockdown.

(C) Cell-cycle analysis showing percentages of cells in each phase of the cell cycle in GSCs 

after Piwil1 knockdown (n = 3 replicates for each group).

(D) β-galactosidase staining of 4121 and 3832 GSCs on Matrigel after Piwil1 knockdown.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Data are represented as mean ± SD. 

See also Figure S5.
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Figure 6. Piwil1 Regulates mRNA Stability and Binds to Specific mRNAs
(A and B) qRT-PCR showing the fraction of mRNA remaining at different time points after 

actinomycin D treatment in 4121 (A) and 3832 (B) GSCs (n = 3 replicates for each group).

(C) qRT-PCR of mRNAs in Flag-Piwil1 UV-RNA immunoprecipitation in 4121 and 3832 

GSCs (n = 3 replicates for each group).

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Data are represented as mean ± SD.
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Figure 7. Piwil1 Knockdown Reduces Tumor Growth and Improves Animal Survival
(A) Kaplan-Meier survival curve of mice implanted with 4121 or 3832 GSCs transduced 

with shNT or shPiwil1 shRNAs (n = 12 mice for each group).

(B) Immunofluorescence staining of Piwil1 and cleaved caspase 3 in shNT and shPiwil1 

mice. Representative data from 3832 GSC-derived xenografts are shown. Nuclei were 

counterstained with DAPI (blue).

(C) Immunofluorescence staining of BTG2, FBXW7, and MCL1 in shNT and shPiwil1 

mice. Representative data from 3832 GSC-derived xenografts are shown. Nuclei were 

counterstained with DAPI (blue).

****p < 0.0001.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-BTG2 Santa Cruz Cat#sc-517187

Rabbit monoclonal anti-CCND2 Novus Biologicals Cat# NBP2-14460

Mouse monoclonal anti-CD31 Abcam Cat#ab187377, RRID:AB_2756834; 
lot#GR317844-4

Rabbit monoclonal anti-Cleaved-Caspase 3 Cell Signaling Technology Cat#9664, RRID: AB_10891784‘

Rabbit monoclonal anti-Cleaved-PARP Cell Signaling Technology Cat#5625S, RRID: AB_10699459; lot#13

Rabbit polyclonal anti-FBXW7 Abcam Cat#ab109617; RRID:AB_2687519; 
lot#GR190912-1

Mouse monoclonal anti-Flag Sigma-Aldrich Cat#F1804, RRID: AB_262044

Mouse monoclonal anti-GAPDH Santa Cruz Cat# sc-47724, RRID:AB_627678; lot#F2216

Rabbit polyclonal anti-GFAP Agilent Cat#Z0334, RRID:AB_10013382; lot#00085136

Mouse monoclonal Human Nuclei antibody Millipore Cat#MAB1281, RRID:AB_94090; lot#3129247

Rabbit polyclonal anti-MCL1 Santa Cruz Cat# sc-819; RRID:AB_2144105

Mouse monoclonal anti-Nestin BD Biosciences Cat# 611658, RRID:AB_399176; lot#13748

Mouse monoclonal anti-Olig2 Millipore Cat# MABN50, RRID:AB_10807410; 
lot#3109744

Rabbit polyclonal anti-p27 Cell Signaling Technology Cat# 2552, RRID:AB_10693314; lot#7

Rabbit polyclonal anti-Piwil1 Abcam Cat#ab12337; RRID:AB_470241; 
lot#GR312421-1

Mouse monoclonal anti-Sox2 Millipore Cat#MAB4423, RRID: AB_11213224; 
lot#3112625

Mouse monoclonal anti-α-Tubulin Sigma-Aldrich Cat# T6199, RRID:AB_477583

Biological Samples

GBM specimens Cleveland Clinic Brain Tumor Bank N/A

Chemicals, Peptides, and Recombinant Proteins

EGF R&D Cat#236-EG

FGF R&D Cat#4114-TC

Actinomycin D Invitrogen Cat#A7592

Critical Commercial Assays

Cell Titer-Glo Promega Cat#G7572

Mouse and Rabbit Specific HRP/AEC IHC 
Detection Kit

Abcam Cat#236467

Senescence β-Galactosidase Staining Kit Cell Signaling Technology Cat#9860S

Click-iT EdU Imaging Kits Thermo Fisher Cat#C10338

Transwell polycarbonate membrane cell culture 
inserts

Corning Cat#3422

SuperScript IV VILO Master Mix Thermo Fisher Cat# 11756050

PowerUp SYBR Green Master Mix Thermo Fisher Cat#A25742

Deposited Data

Raw and analyzed data This paper GEO: GSE160437

Experimental Models: Cell Lines
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REAGENT or RESOURCE SOURCE IDENTIFIER

293T ATCC Cat# CRL-3216, RRID:CVCL_0063

4121 Gifts from Dr. Jeremy Rich N/A

3832 Gifts from Dr. Jeremy Rich N/A

387 Gifts from Dr. Jeremy Rich N/A

3359 Gifts from Dr. Jeremy Rich N/A

Experimental Models: Organisms/Strains

NSG mice The Jackson Laboratory Cat# 005557

Oligonucleotides

qPCR primers, see Table S1 This paper N/A

Recombinant DNA

pCDH-MCS-T2A-Puro-MSCV lentiviral vector System Biosciences Cat#CD522A-1

pCDH-EF1 α-MCS-IRES-neo lentiviral vector System Biosciences Cat#CD532A-2

pMSCV-Flag-Piwil1 This paper N/A

pEF1 α-Flag-MCL1 This paper N/A

pEF1 α-Flag-OLIG2 This paper N/A

pEF1 α-Flag-CCND2 This paper N/A

shRNA human pLKO.1 CTRL shRNA Sigma-Aldrich Cat# SHC002

shRNA human pLKO.1 Piwil1 shRNA#1 Sigma-Aldrich TRCN0000417558

shRNA human pLKO.1 Piwil1 shRNA#2 Sigma-Aldrich TRCN0000007878

Software and Algorithms

GraphPad Prism 8 GraphPad Software RRID:SCR_002798; https://www.graphpad.com/

ImageJ Schneider et al., 2012 RRID:SCR_003070; https://imagej.nih.gov/ij/

ELDA Hu and Smyth, 2009 RRID:SCR_018933; http://bioinf.wehi.edu.au/
software/elda/

Modfit LT Verify Software House RRID:SCR_016106; http://www.vsh.com/
products/mflt/

R Bioconductor package: Beadarray 2.36.1 Dunning et al., 2007 RRID:SCR_001314; https://bioconductor.org/
packages/release/bioc/html/beadarray.html

R Bioconductor package: clusterProfiler 3.14.3 Yu et al., 2012 RRID:SCR_016884; https://bioconductor.org/
packages/release/bioc/html/clusterProfiler.html

R Bioconductor package: limma 3.42.2 Ritchie et al., 2015 RRID:SCR_010943; https://bioconductor.org/
packages/release/bioc/html/limma.html
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