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ABSTRACT

Microsatellite instability (MSI) is associated with
defective DNA mismatch repair in various human
malignancies. Using a unique fluorescent technique,
we have observed two distinct modes of dinucleotide
microsatellite alterations in human colorectal cancer.
Type A alterations are defined as length changes of
<6 bp. Type B changes are more drastic and involve
modifications of =8 bp. We show here that defective
mismatch repair is necessary and sufficient for Type A
changes. These changes were observed in cell lines
and in tumours from mismatch repair gene-knockout
mice. No Type B instability was seen in these cells or
tumours. In a panel of human colorectal tumours,
both Type A MSland Type B instability were observed.
Both types of MSI were associated with hMSH2
or hMLH1 mismatch repair gene alterations. Intrigu-
ingly, p53 mutations, which are generally regarded
as uncommon in human tumours of the MSI* pheno-
type, were frequently associated with Type A
instability, whereas none was found in tumours
with Type B instability, reflecting the prevailing view-
point. Inspection of published data reveals that the

microsatellite instability that has been observed in
various malignancies, including those associated
with Hereditary Non-Polyposis Colorectal Cancer
(HNPCC), is predominantly Type B. Our findings indic-
ate that Type B instability is not a simple reflection of a
repair defect. We suggest that there are at least two
qualitatively distinct modes of dinucleotide MSI in
human colorectal cancer, and that different molecular
mechanisms may underlie these modes of MSI. The
relationship between MSI and defective mismatch
repair may be more complex than hitherto suspected.

INTRODUCTION

Microsatellites are repetitive DNA sequences comprising
short reiterated motifs dispersed throughout the eukaryotic
genome (1). Microsatellite lengths are highly polymorphic
in human populations, but appear stable during the life
span of the individual. Somatic instability of microsatellite
sequences has initially been reported in human colorectal
cancer (2,3), and particularly in the familial cancer-prone syn-
drome, hereditary non-polyposis colorectal cancer (HNPCC)
(4,5). In 1993, mutations in one of the genes encoding proteins
essential for DNA mismatch repair (MMR) were found in
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HNPCC individuals (6,7). MMR is an important editing
system. It counteracts the base mismatches and strand mis-
alignments that occur during DNA replication and recombina-
tion (8). Repetitive sequences such as those comprising
microsatellites are particularly prone to polymerase slippage
and, consequently, strand misalignment. If these errors remain
uncorrected, the mutations are fixed during subsequent rep-
lication as addition or deletion of one (or more) repeat units.
The phenomenon of unstable microsatellites, i.e. microsatel-
lite instability (MSI), in which tumour cells accumulate this
type of repeat length alterations in microsatellites, is con-
sidered to reflect MMR deficiency. The MSI" phenotype is
frequently associated with various human malignancies (9).
As defective MMR is regarded as a risk factor for familial
predisposition or second malignancies, analyses of microsatel-
lite instability have been prevalent, particularly in the field of
oncology. However, the reported frequency for MST* tumours
in each malignancy differs widely in the literature (9).

Although analysis of MSI is now commonplace, a designa-
tion of MSI" may sometimes be a difficult decision. The 1997
National Cancer Institute (NCI) workshop, ‘Microsatellite
Instability and RER Phenotypes in Cancer Detection and
Familial Predisposition’, suggested that the variety of micro-
satellites used was a major cause of discrepancies among data
from various laboratories, and recommended a panel of five
microsatellites as ‘working reference panel’ (10). We believe
that, in addition to selection of targets for analysis, methodo-
logical problems also account for some of the variability in
results. Changes in microsatellite lengths are sometimes
minor—as small as loss or gain of a single repeat unit. In addi-
tion, cells carrying changes in microsatellite sequences are not
always major in a given sample. However, in an assay system
using the conventional sequencing gel electrophoresis and
autoradiography, it appears difficult to resolve microsatellite
PCR products precisely and quantitatively. PCR itself has an
intrinsic variability. The most widely used thermostable DNA
polymerase (Taq) has a terminal deoxynucleotidyl transferase
(TDT) activity, which adds one additional base to PCR products
in a sequence-dependent manner. TDT activity of Tag poly-
merase is variably expressed, depending on the conditions used.
This property, in addition to intrinsic strand misalignment
during amplification of microsatellite repeats, increases the
complexity of PCR products. In the conventional microsatellite
analysis, intrinsic caution and the desire to avoid scoring false-
positives may have led to an underestimate of the frequency of
minor, more subtle microsatellite changes, such as alterations of
limited numbers of repeat units. We have applied our fluore-
scent technique for microsatellite instability analysis (11) to
address these problems. Here, we report that relatively subtle
alterations in microsatellites are indeed generally associated
with MMR deficiency. In contrast, most HNPCC tumours dis-
play much more extensive microsatellite changes. Our findings
suggest that there are previously unrecognized aspects of
microsatellite instability in human cancer.

MATERIALS AND METHODS
Cells and tissue specimens

Msh2~~ mouse embryonic fibroblast (MEF) cell line,
RH95021 (12) and Mlhl ~/~ MEF cell line, MC2, were kindly
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provided by Dr Hein te Riele, Amsterdam Cancer Center and
Dr Michael Liskay, University of Oregon, respectively. Cells
were cultured in DMEM supplemented with 10% fetal calf
serum, penicillin (100 U/ml) and streptomycin (100 pg/ml).
Samples of cancer tissues and the corresponding normal
mucosa were obtained from 79 patients with colorectal car-
cinoma who underwent surgery in the Department of Surgery
and Science, Kyushu University Hospital from 1996 to 1999.
Written informed consent for studies using the tissues was
obtained from each patient. Ethical approval was obtained
from the IRB of Kyushu University. Specimens, taken imme-
diately after resection, were placed in liquid nitrogen. High
molecular weight DNA was extracted and subjected to micro-
satellite analyses.

Microsatellite instability

Microsatellite analysis using fluorescence-labelled primers and
an automated DNA sequencer has been described in detail (11).
Briefly, five human dinucleotide microsatellites, D2S123,
D5S107, D10S197, D11S904 and D13S175, in genomic
DNA from tissue specimens were amplified by PCR. 5
primers were labelled with the fluorescent compound, ROX
(6-carboxy-x-rhodamine) or HEX (6-carboxy-2',4,7'.4,
7,-hexachloro-fluorescein). PCR reactions were done using
TaKaRa Taq (TaKaRa Co. Ltd., Tokyo, Japan). T4 DNA
polymerase was added to the PCR products, followed by
incubation at 37°C for 10 min. To compare electrophoretic
profiles between two samples, 1.2 ul of ROX-labelled product
and 0.3 ul of HEX-labelled product were mixed. Samples were
denatured and loaded onto the ABI 373A sequencer (Applied
Biosystems, Foster City, CA, USA). The data were processed
using the GeneScan software (Applied Biosystems). For mice,
three dinucleotide microsatellites, D1Mit62, D6Mit59 and
D7Mit91, were analysed.

DNA sequencing

All the exons and exon—intron junctions of AMSH2 and
hMLH]I were amplified by PCR using Tag polymerase with
3’ exonuclease activity, TaKaRa Ex Taq (TaKaRa Co. Ltd.,
Tokyo, Japan). Primer sequences are the same as reported by
Kolodner et al. (13,14), except that the additional sequence
complementary for M 13 universal primer was deleted, and that
one-step PCR was mainly employed. PCR products were used
as a template for cycle sequencing reactions using BigDye
terminator cycle sequencing kit (Applied Biosystems, Foster
City, CA, USA). Mutations found in one PCR product were
verified by reverse sequencing and finally confirmed in two
independently amplified PCR products. Sequencing analyses
of p53 gene (exon 5-9) were performed using p53 primers
(Nippon Gene, Tokyo, Japan).

Immunohistochemistry

Tissue specimens were fixed in buffered 10% paraformalde-
hyde and embedded in paraffin. Prior to the assay, the
specimens were sectioned at 4 wm and deparaffinized using
xylene. Immunohistochemistry was performed using the
streptavidin—biotin—peroxidase complex method (Histofine
SAB kit, Nichirei, Tokyo, Japan) using an automated stainer
(VENTANA Discovery System, Ventana Medical Systems
Inc., Tucson, AZ, USA). At least, two independent antibodies
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were used to confirm the status of negative staining. Sections
prepared from Msh2- and MIhI-knockout mice were also
used as negative controls. Antibodies used were as follows:
anti-MSH2; NA27 and NA26 (Oncogene Research Products,
Cambridge, MA, USA), anti-MLHI1; PM-13291A (Phar
Mingen, Hamburg, Germany), NA28 (Oncogene Research
Products) and sc-581 (Santa Cruz Biotechnology Inc., Santa
Cruz, CA, USA).

RESULTS

Two modes of dinucleotide microsatellite instability
in human cancer

We have established a sensitive fluorescent technique for
microsatellite analysis (11). Application of this technique to
human cancers revealed a number of previously unrecognized
aspects of MSI. In particular, we observed two distinct patterns
of alterations at dinucleotide microsatellites in human malig-
nancies (15-17). Examples are shown in Figure 1. In some
cases, length changes are relatively small and affect <6 bp
(Type A, Figure 1A-D). In the other, more dramatic changes
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involving =8 bp are observed (Type B) (Figure 1E-H).
Because Type B alterations involve large differences in micro-
satellite length, it can sometimes appear as if a ‘third” allele is
present in addition to the parental alleles (Figure 1E-H).
Throughout the analyses using this technique, results were
highly reproducible in several independent experiments.
Neither additional peaks nor changes in the ratio between
peaks were noted.

Microsatellite instability observed in mismatch repair
gene-knockout mice

To analyse MSI in a defined genetic background, we used
the Msh2~'~ MEF cell line RH95021 (12). Alterations in the
lengths of three dinucleotide microsatellites were analysed
in RH95021 subclones. The majority of subclones (14/21)
exhibited the same configuration at the D6Mit59 locus
(exemplified by clone a, Figure 2A). In clones that deviated
from this predominant pattern (Figure 2A, clones b—d), the
microsatellite length was altered by <4 bp. In other words,
the microsatellite changes were invariably Type A. A similar
pattern of small-scale microsatellite changes was observed at

158
E

B ﬂ

168 178 188 198 (bp)

D10S197

|

800 |
o W,

L A L

136 146 156 166 176 186(bp)
sl D5S107
800
400 ﬂ |'|
0+ L——\—Lﬂlﬂj_\ﬁ\ﬂ_l)_‘_
94 104 114 124 134 (bp)
1000{ G D13S175
800-
600- H
400-
200-
0 A AM\A“
90 98 106 114 122(bp)
D13S175

Figure 1. Type A and Type B microsatellite instability observed in human colorectal cancer. Using genomic DNA samples prepared from cancer and the
corresponding normal mucosa, microsatellite sequences, indicated at the right top of each panel, were amplified by PCR with primers differentially labelled
with fluorescence, then mixed and run on a same lane in an automated DNA sequencer. The amount of each DNA fragment was quantitatively detected and its size
was estimated with accuracy of 1 bp, by standardization with size markers run in each lane. Results representative for each mode of microsatellite instability are
shown: red lines, cancer; green lines, normal mucosa; Type A, (A) (IC678), (B) (IC810), (C) (IC721) and (D) (IC793); Type B, (E) (IC790), (F) (IC733), (G) (IC690)
and (H) (NoTa). Patient codes in the parentheses correspond to those used in Table 1.
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Figure 2. Microsatellite changes in Msh2 '~ mouse embryonic fibroblast (MEF) cells and in tumours that arose in Msh2-knockout mice. (A) More than 20 subclones
were isolated from RH95021 (Msh2~'~) MEF cells and microsatellite changes were compared among these subclones. The majority exhibited the same configuration
(clone a) and a few deviated from this predominant pattern (clone b—d). In each clone, the pattern of clone A has been superimposed with green lines, to facilitate
comparison. Results obtained in D6Mit59 microsatellite are shown. (B) RH95021 cells were continuously cultured and sampled at different passages. Results
obtained in D6Mit59 microsatellite at passage 1, 20, 30 and 81 are shown. In passage 81, the initial profile at passage 1 has been superimposed with a green line.
(C) Tumours that arose in vivo in Msh2-knockout mice were analysed. Representative results obtained in D7Mit91 (tumours a and b) and D6Mit59 (tumours ¢ and d)
microsatellites are shown: red lines, tumour; green lines, the corresponding normal tissue.

Table 1. "MSH2 and hMLH 1 alterations found in tumours exhibiting Type A and Type B MSI

mSI NUCLEAR SEQUENCE SUMMARY
A/B | EXPRESSION |exon hMSH2 exon hMLH1

PATIENT hMSH2 |hMLH1 [1|2[3(4(5|6|7[8|9(10{11[12(13(14|15[16(1[2|3[4[5(6|7|8[9(10(11]12[13[14(15[16[17[18[19

1C669 A P N y ic hMLH1

IC678 A P P @ L521I (CTC to ATC)

1C692 A P P (] G132G (GGC to GGA)

Ic721 A P P @ L390F (CTT to TTT)

IC724 A P P @ G178R (GGA to AGA)

IC759 A P P

IC793 A P N hMLH1

1C807 A P P A 1219V (ATC to GTC)

IC810 A P P @ Al hMSH2 ; L390F /[ hMLH1 ; I219v

IC815 A P P

IC824 A P [3

icseo_____ JENY, O S A P U A R A ol O A Y A O U

1C622 B P P

1C653 B P [3

IC676 B P P

1C690 B P N Qj R226Q (CGA to CARA) / cytoplasmic hMLH1, HNPCC

1C698 B P P A I219V (ATC to GTC)

IC733 B P [3

IC790 B P P

IC853 B P P O G132G (GGC to GGA)

1C873 B P P O 06040 (CAA to CAG)

NoTa B P* N* hMLH1__silencing, HNPCC

MSI, microsatellite instability; P, positive nuclear staining inimmunohistochemistry; N, negative; *, determined by immunoblotting; Closed circle, base substitution
with amino acid change; open triangle, possible polymorphism; Open rectangle, base substitution without amino acid change.
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two other dinucleotide microsatellites, D1Mit62 and D7Mit91
(data not shown). To investigate whether Type B variations
might simply reflect the accumulation of numerous smaller
alterations over many generations, RH95021 cells were con-
tinuously cultured, and sampled periodically at different
passages. As shown in Figure 2B, even after undergoing 81
population doublings (2%" corresponds to 10*%), there was no
detectable appearance of shorter or longer D6Mit59 alleles.
Similar patterns were observed at the two other microsatellite
loci (data not shown). Thus, there was no evidence of the
accumulation of changes consistent with Type B instability
at any of the three microsatellites in these MMR-defective
MEFs. Similar data were obtained using a second MMR-
deficient MEF cell line, MC2, which derived from an
MIhl~~ mouse (data not shown).

We also examined microsatellite instability in lymphomas
and adenocarcinomas that arose in various organs of
Msh2™'“mice. Among 16 tumours that were analysed at the
three microsatellite loci, each contained alterations at one
or more locus. In all cases, changes were limited to <6
bp (examples are shown in Figure 2C) and no Type B altera-
tion was observed. Intriguingly, an examination of published
microsatellite changes in cells of MMR gene-knockout mice
clearly indicates that most changes are of Type A (12,18,19).

Analysis of microsatellites in MEFs and tumours from
MMR-defective animals therefore indicates that Type A
MSI is a direct consequence of defective MMR. The absence
of more extensive microsatellite length changes may indicate
further that an Msh2 or MIhl defect is insufficient for the
development of Type B instability.

Mismatch repair gene inactivation is associated
with both Type A and Type B MSI in human
colorectal cancer

HNPCC patients inherit mutations in MMR genes (6,7). More
than 90% of HNPCC tumours are MSI" (20). The MSI* pheno-
type is also frequent among sporadic colorectal carcinomas
(2-4,6,21). Inspection of published data derived from the con-
ventional microsatellite analysis reveals that microsatellite
changes thus far reported in various tumours, including those
in HNPCC individuals, are largely Type B (2-4,20-22).
We considered the possibility that the more subtle Type A
MSI might have remained undetected in some cases. Using our
fluorescent assay with a panel of five dinucleotide repeat
microsatellites, we found that the frequencies of Type A
and Type B MSI among 79 colorectal carcinomas were 30%
and 17%, respectively. In agreement with previous observa-
tions that Type B instability is common in HNPCC colon
tumours, the IC690 tumour and the colorectal carcinoma
cell line, NoTa (Table 1), both of which were derived from
patients who fulfilled the Amsterdam Criteria II for HNPCC
(23), exhibited Type B instability (Figure 1G and H). Our
finding that 17% of colorectal tumours display Type B MSI
is consistent with the generally reported figure of around 20%
for MSI among colorectal carcinomas (20,24,25). The obser-
vation that a further 30% of tumours displayed Type A MSI
suggests that the frequency of MSI, at least in colorectal car-
cinomas, has previously been underestimated.

The relationship between MSI and defective MMR in our
set of colorectal tumours was investigated further. AMSH?2 and
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Figure 3. hMSH2 and hMLH] alterations in tumours exhibiting Type A or
Type B microsatellite instability. (A) Sequences for all the exons including
exon-intron boundaries of AMSH2 and hMLHI were determined using an
automated sequencer. Sequence alterations found at (a) codon 390 of AMSH?2
(patient IC810), (b) codon 219 of hAMLHI (patient IC810) and (c) codon 226
of hMLH]I (patient IC690) were shown. (B) Abnormal expression of hMLH1
proteins observed in a panel of human colorectal carcinomas. (Panel a) A typical
result with a strong nuclear staining implying normal hMLHI expression
(IC853). (Panel b) Complete loss of hMLH1 expression in tumour cells, which
suggest a possible epigenetic silencing (IC793). (Panels ¢ and d) Results with-
out evident nuclear staining, but with an accumulation of hMLHI1 antigens in
the tumour cytoplasm, which may suggest an abnormal intracellular distribu-
tion of this protein (IC690 and 1C669).

hMLHI MMR genes of 12 tumours with Type A and 9 with
Type B MSI were sequenced. The same genes in the NoTa cell
line were also sequenced (Figure 3A and Table 1). Sequence
alterations causing amino acid substitutions were identified
in 5 of the 21 tumours. Four of these (80%) were associated
with Type A MSI. In addition, one patient with Type A MSI
(IC793) in whom no mutation was identified was negative for
immunohistochemical staining of hMLH1 (Figure 3B, panel
b). This is consistent with a possible epigenetic AMLHI gene
silencing (26-28). In one other Type A case (IC669) and one
Type B case (IC690), there was an abnormal intracellular
distribution of hMLH1 which remained predominantly cyto-
plasmic (Figure 3B, panels ¢ and d). Among the 10 tumours
displaying Type B MSI, there was an example of base sub-
stitutions causing amino acid change in AMLH]. In this case,
1C690, the failure of hMLH1 to localize to the nucleus was
associated with the codon 226 mutation in exon 8 (Figure 3A,
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No. Patient EXO05 EX06 EX07 EXO08 EX09 Codon change Base substitution (type) AA change MSI
1 1C628 273 CGT — CAT G:.C — AT TS Arg — His N
2 1C630 196 CGA — TGA G:C — AT TS Arg — stop A
3 1C634 306 CGA — TGA G:C — AT TS Arg — stop N
4 1C668 193 CAT — CGT AT — G:C TS His — Arg N
5 1C669 175 CGC — CAC G:C — AT TS Arg — His A
6 1C673 176 TGC — AGC AT — T:A TV Cys — Ser N
7 1C674 285 GAG — AAG G:C — AT TS Glu — Lys N
8 1C680 ND 255 ATC — ACC A:T — G:C TS Ile — Thr A
9 1C693 179 CAT — CTIT AT — T:A TV His — Leu A

10 1C694 273 CGT — CAT G:C — AT TS Arg — His A

11 IC711 239 AAC — GAC A:T — G:C TS Asn — Asp N

12 1C721 175 CGC — CAC G:C — AT TS Arg — His A

13 1C748 190 ND CCT — CTT G:C — AT TS Pro — Leu A

14 1C754 196 CGA — CCA G:C — CG TV Arg — Pro N

15 1C763 151 CCC — CAC G:C — T:A TV Pro — His N

16 1C772 175 CGC — CAC G:C — AT TS Arg — His A

17 1C778 175 ND CGC — CAC G:C — AT TS Arg — His N

18 1C784 214 ND ND CAT — CGT AT — G:C TS His — Arg A

19 1C808 205 TAT — GAT AT — C:G TV Tyr — Asp A

20 1C812 190 CCT — CTT G:C — AT TS Pro — Leu N

21 1C816 273 CGT — CAT G:C — AT TS Arg — His A

22 1C819 248 CGG — CAG G:C — AT TS Arg —Gln N

23 1C860 273 CGT — CAT G:C — AT TS Arg — His A

MSI, microsatellite instability; N, negative; A, Type A MSI; TS, transition; TV, transversion; ND, not determined. Bold codon numbers indicate the acknowledged

hot-spots for mutation.

panel c). These findings suggest that Type A instability, as well
as Type B, is indeed associated with MMR defects.

P53 mutation is strongly associated with Type A
MSI in human colorectal cancer

One view of the involvement of MMR defects in cancer devel-
opment is that the ‘microsatellite mutator phenotype (MMP)’
(29,30) in mismatch repair-defective cells offers an alternative
to chromosomal instability as a mechanism for genetic instab-
ility in cancer (31). On this model, MSI and chromosomal
instability represent mutually exclusive pathways of tumour
development. This reasoning is based partly in the observation
that p53 mutations, commonly associated with chromosomal
instability, are infrequent among MSI* tumours (2,32-34). To
examine the relationship between Type A/B instability and
p53 mutation, we sequenced the p53 gene in our panel of
79 colorectal tumours. p53 mutations resulting in an amino
acid substitution were detected in 23 tumours (29.1%). The
mutations were predominantly transitions in acknowledged
hot spots; codons 175, 248 and 273 (Table 2). Of the p53
mutations that were found in MSI" tumours, all were associ-
ated with Type A MSI (Tables 2 and 3). No p53 mutations
were detected among the 14 Type B tumours. Among Type A
tumours, the frequency of p53 mutation approached 50%
(12/25). These findings confirm that p53 mutations are rare
in tumours with Type B MSI. More importantly, they suggest
that, in contrast to prevailing opinion, defective MMR is sig-
nificantly associated with p53 mutation, at least in human
colorectal cancer.

DISCUSSION

The fluorescent technique we used here allows the unequi-
vocal designation of Type A and Type B MSI, and has revealed

Table 3. p53 mutation highly correlates with Type A MSI

MSI Subtotal
Type A Type B Negative
Wild type 13 14 29 56
pS3
Mutant 12 0 11 23
Subtotal 25 14 40 79

p = 0.006. MSI: Microsatellite instability.

a previously unrecognized complexity in the relationship
between dinucleotide MSI and defective DNA MMR in
human cancer. Type A MSI (changes < 6 bp) is clearly linked
with MMR inactivation in both mice and humans, which
implies that Type A MSI is a direct consequence of defective
MMR. Since we found no evidence of Type B instability
(changes = 8 bp) in MMR-defective animals, it is possible
that changes in addition to repair deficiency contribute to, or
are responsible for, Type B MSI. One important finding of this
study is that Type A instability is frequent among human
tumours. Type A MSI predominated in our large panel of
colorectal carcinomas. We suggest that, because the changes
associated with Type A instability are more subtle, the fre-
quency of MSI among colorectal tumours may have been
considerably underestimated. Our findings also reveal a hith-
erto unrecognized association between defective MMR and
p53 mutation. Significantly, Type A MSI was strongly asso-
ciated with p53 mutation in human colorectal tumours. Since
Type A instability is unequivocally associated with MMR
deficiency, this novel finding implies that, in contrast to
prevailing opinion, p53 mutations are common in MMR-
defective tumours, at least in human colorectal cancer.
Established guidelines for classification of MSI utilize
the frequency of changes in a defined set of microsatellite
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markers, i.e. MSI-H and -L (10). However, qualitative
differences in microsatellite changes are not widely discussed.
In one of the earliest report of the MSI phenomenon, however,
Thibodeau et al. divided microsatellite changes into two cat-
egories; Type I and II mutations (3). The former was defined a
‘significant increase (expansion) or decrease (deletion) in the
apparent fragment size’ and the latter as a ‘single 2 bp change’.
This distinction has received little attention since then. Our
data indicate that Type A MSI, which appears similar to their
Type Il mutation, is more frequent than hitherto suspected, and
suggest that it represents the bona fide MMR-deficient pheno-
type. On the other hand, Type I mutations may correspond to
our Type B instability. The problem is that mutations in MMR
genes have been reported in tumours displaying this type of
instability. More than 90% of HNPCC tumours are MSI* (20),
and this type of MSI can be categorized as Type B/Type I
(2-4,20-22). However, the frequencies of mutation in the two
major MMR genes, "M SH2 and hMLHI, in HNPCC kindred
are not high in some reports (35—40). Among the panel of
tumours displaying Type B MSI, we found a base substitution
mutation in AMLHI and one case with a possible AMLH]
silencing. This incidence of MMR gene inactivation in the
Type B group is not unduly low, compared with the reported
frequencies in the literature (25,36,41-43). The relationship
between Type B MSI and defective MMR is probably more
complex than hitherto suspected.

Type B MSI may involve molecular abnormalities in addi-
tion to defective MMR. We suggest that whereas Type A MSI
probably reflects the uncorrected DNA polymerase slippage
events that accumulate in MMR-defective cells, inappropriate
processing of damage by recombinational DNA repair may
contribute to Type B MSI. This hypothesis may be supported
partly by our observation that there was no evidence of the
emergence of Type B instability in MMR gene-knockout
animals. It is known that microsatellite alterations occur via
several independent mechanisms, including recombination
(44-46), and MMR counteracts incorrect strand alignment
during homologous recombination (47). The drastic micro-
satellite changes in Type B MSI may be more consistent
with dynamic events, such as recombination, than with rep-
lication slippage. In this context, defective MMR might be a
promoting, and consequently highly coincidental, but insuffi-
cient factor for Type B changes. Connection between MSI and
the recombinational repair pathway in tumours, particularly in
HNPCC, may warrant attention.

Type A MSl is also strongly associated with p53 mutation in
human colorectal tumours. This observation may be compat-
ible with several recent reports (36,48,49) that have shown a
connection between p53 mutation and the MSI-L phenotype,
since in colorectal cancer Type A MSI tends to be observed in
a limited number of markers and, consequently, categorized
as MSI-L. This finding may also provide an insight to
the mechanism of genetic instability in tumours. Genetic
instability in tumours has been regarded as deriving from
two mutually exclusive pathways, chromosomal instability
(CIN)—frequently associated with mutations in various onco-
genes or tumour suppressor genes such as p53—and ‘micro-
satellite mutator phenotype (MMP)’ (29,30), in which p53
mutations are rare and, instead, mutations are found in mono-
nucleotide repeats within genes of a different variety. Several
recent reports suggest that there might be an oversimplification

in this distinction (50-53). From our observations, dinucleotide
MSI in tumours can be divided into two modes, Type A and
Type B, and Type A instability is the direct consequence of
defective MMR. A close association of Type A MSI with p53
mutation may suggest a hitherto unrecognized causal relation-
ship between p53 mutation and defective MMR. p53 muta-
tions may derive from a state with an elevated mutation rate,
i.e. MMR-deficient phenotype, as initially suspected. Thus,
our observations suggest added complexities to the relation-
ship between MMR defects and MSI, and also shed light
on previously unrecognized fundamental processes in the
molecular mechanisms of genetic instability underlying
tumour development.
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