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Abstract: In plants, rapid and reversible biological responses to environmental cues may require
complex cellular reprograming. This is enabled by signaling molecules such as the cyclic nucleotide
monophosphates (cNMPs) cAMP and cGMP, as well as Ca2+. While the roles and synthesis of
cAMP and cGMP in plants are increasingly well-characterized, the “off signal” afforded by cNMP-
degrading enzymes, the phosphodiesterases (PDEs), is, however, poorly understood, particularly
so in monocots. Here, we identified a candidate PDE from the monocot Brachypodium distachyon
(BDPDE1) and showed that it can hydrolyze cNMPs to 5′NMPs but with a preference for cAMP
over cGMP in vitro. Notably, the PDE activity was significantly enhanced by Ca2+ only in the
presence of calmodulin (CaM), which interacts with BDPDE1, most likely at a predicted CaM-binding
site. Finally, based on our biochemical, mutagenesis and structural analyses, we constructed a
comprehensive amino acid consensus sequence extracted from the catalytic centers of annotated
and/or experimentally validated PDEs across species to enable a broad application of this search
motif for the identification of similar active sites in eukaryotes and prokaryotes.

Keywords: phosphodiesterase (PDE); cAMP; cGMP; calmodulin (CaM); calcium ions; protein–
protein interactions; Brachypodium distachyon

1. Introduction

Cyclic nucleotide monophosphates (cNMPs), such as 3′,5′-cyclic adenosine monophos-
phate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP), are well-established as
essential signaling and effector molecules in both prokaryotes and eukaryotes [1,2]. The
presence and physiological relevance of cyclic nucleotides in plants was controversial for a
long time because of their low concentrations as compared to animals (for review, see Ref-
erence [3]). However, recent evidence has established cNMP-dependent processes in plants
ranging from signaling to the control of transcription, translation and metabolism [4–8]
The cyclic NMP levels are dependent on the activities of two key enzymes, the cyclic
mononucleotide cyclases and cyclic mononucleotide phosphodiesterases (PDEs). Adenylyl
(AC) and guanylyl (GC) cyclases catalyze the conversions of ATP and GTP to the respective
products cAMP and cGMP. Cyclic AMP and cGMP, in turn, serve as “on signals” for cNMP-
dependent cellular processes. Consequently, the “off signal”, the hydrolysis of cAMP or
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cGMP to AMP or GMP, is enabled by PDEs that convert cNMP into 5′NMP by hydrolyz-
ing the 3′-phosphodiester bonds [9]. Although cNMPs and plant nucleotide cyclases are
increasingly recognized as essential components of many plant functions [10–15], our un-
derstanding of plant PDEs is still scant. To date, only two proteins in dicotyledonous [16,17]
and one in liverwort [18] have been reported to have PDE activity, and notably, no PDE has
yet been found in monocotyledonous plants. Our knowledge of the physiological processes
in which cNMP participate is still expanding, and the discovery and characterization of
novel PDEs will yield insights into the complex functions of cNMP-dependent processes at
the molecular and systems levels.

In plants, cAMP and cGMP signaling may be tuned by Ca2+, ROS (reactive oxygen
species) or NO (nitric oxide) [1], and interactions between Ca2+ and cNMP have been
reported to modulate physiological processes, e.g., via cyclic nucleotide-gated channels
(CNGC) that can be considered intersections of cNMP and Ca2+ signaling [19]. Crosstalk
between Ca2+ and cNMP can also occur via nucleotide cyclases, as seen in phytosulfokine
(PSK) signaling, where the GC activity of the hormone receptor (PSKR1) is significantly
enhanced by Ca2+ [20]. In the case of plant ACs, there is, as yet, no experimental evidence
of interactions with Ca2+, but it is well-documented that animal ACs are directly and
indirectly regulated by Ca2+ and/or calmodulin [21]. Considering the various regulatory
regions of animal PDEs, especially in group 1 phosphodiesterases (PDE1), which are
allosterically regulated by calmodulin [22], it is likely that Ca2+ may also modulate the
plant PDE activity and, hence, contribute to cNMP homeostasis. In view of recent reports
on plant PDEs, it may turn out that they act as intramolecular regulators moonlighting in
complex multifunctional proteins [17,18].

In this study, we identified and characterized the activity of a candidate PDE (BDPDE1)
from the monocot Brachypodium distachyon and then derived a comprehensive and inclusive
search term (amino acid motif) based on the catalytic centers of annotated PDEs across
species to enable the discovery of similar PDE centers that might be hidden in complex
multidomain proteins, particularly in plants, where investigations on the mechanisms that
govern cNMP metabolism are still in their infancy.

2. Results and Discussion
2.1. Identification and Characterization of PDE Activity in BDPDE1

Here, we set out to discover the as yet elusive monocot phosphodiesterases that are
key to the regulation of the cAMP and cGMP levels in the cell. First, we explored if the
Arabidopsis thaliana PDE ATCN-PDE1 (At1g17330) [16] had any orthologs in the monocot
B. distachyon. When the sequence of ATCN-PDE1 was used to query the B. distachyon pro-
teome, we found an ortholog, BDPDE1 (NCBI: XP_003574089.2), with 66% identical amino
acids covering 69% of the protein. A comparative analysis of the BDPDE1 sequence with its
ortholog showed that both proteins belong to the family of YpgQ-like proteins, which are
members of the highly conserved HD superfamily (Pfam 01966). This group of enzymes
exhibits broad substrate specificity, acting as a 2′-nucleotidase, pyrophosphohydrolase,
phosphatase or 2′,3′-cyclic phosphodiesterase [23–25]. YpgQ-like proteins contain an HD
motif, which is shared with the family of metal hydrolases and class I PDEs; therefore,
proteins referred to as YpgQ hydrolases can function as putative phosphodiesterases. This
is consistent with the fact that ATCN-PDE1, which participates in the opening of stomata
in response to UVA, reduces the pool of cGMP [16].

The functional evaluation of the catalytic activity of the candidate PDE was done
in vitro by enzymatic assays using cAMP and/or cGMP as a substrate. Reaction products
AMP and GMP were detected and quantified using the sensitive liquid chromatogra-
phy tandem mass spectrometry (LC-MS/MS) method (Figure 1A,B). BDPDE1 generates
both AMP and GMP as a result of the reaction; however, BDPDE1 shows a higher affin-
ity towards cAMP (Figure 1C). The Vmax for cAMP as a substrate was 2.45-nmol AMP
min−1 mg protein−1 and a KM of 0.0115 mM, whereas in the case of cGMP as a substrate,
the Vmax was 1.01-nmol GMP min−1 mg protein−1, and the affinity for cGMP was almost 10-
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fold lower (KM of 0.1133 mM). The activities obtained by BDPDE1 were somewhat lower
compared with those of the A. thaliana ortholog (Vmax 58.22-nmol min−1 mg protein−1

and KM 0.0258 mM) [16] and comparable to the A. thaliana K+ transporter ATKUP5
(Vmax 1.17-nmol AMP min−1 mg protein−1 and KM 0.0053 mM) [17], which also contained
a moonlighting PDE domain.
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Figure 1. Kinetic parameters of BDPDE1. (A) Ion chromatogram of AMP with the inset showing the
daughter AMP ion at m/z 136.10 [M + H]+. The fragmented product ion was used for quantitation of
the phosphodiesterase activity. Inside is a calibration curve for AMP and GMP. (B) Ion chromatogram
of GMP with the inset showing the daughter GMP ion at m/z 152.15 [M + H]+. The fragmented
product ion was used for quantitation of the phosphodiesterase activity. (C) Michaelis–Menten plots
for the cyclic nucleotide phosphodiesterase activity of BDPDE1. The Vmax for a cAMP substrate was
2.45-nmol AMP min−1 mg protein−1 and a KM of 0.011 mM, respectively. The Vmax for a cGMP
substrate was 1.01-nmol GMP min−1 mg protein−1 and a KM of 0.113 mM, respectively. The reaction
time was 25 min, and the standard reaction mixture contained: 3-mM Tris-HCl (pH 8.0), cAMP or
cGMP in a concentration ranging from 0.01 mM to 1 mM, 0.1 % (v/v) 2-mercaptoethanol, 5 µg of
GST-BDPDE1 and 0.5-mM MgCl2 and MnCl2 in a final volume of 100 µL.
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Next, we characterized the influence of temperature, ion cofactors and the PDE
inhibitor IBMX (3-Isobutyl-1-methylxanthine) on the catalytic properties of the enzyme.
The enzymatic activity was tested in the temperature range from 10 ◦C to 45 ◦C. As the
temperature increased, a significant increase in activity was noticeable, tailing off at 37 ◦C
(Figure 2A). These results are comparable with the experiments carried out on the cGMP-
stimulated PDE from calf livers [26], where the highest catalytic efficiency was achieved at
37 ◦C. Subsequently, enzymatic reactions were carried out in the presence or absence of
the cofactors 0.5-mM Mg2+ and 0.5-mM Mn2+. Divalent cations stimulated the enzymatic
activity (Figure 2B), and the addition of both the Mg2+ and Mn2+ ions resulted in the PDE
reaching the highest activity. In the case of animal PDEs, there are structural reasons for the
dependence on two metal ions: the coordinated conserved histidine and aspartate residues
that interact with Zn2+ and the weaker binding of Mg2+ in the catalytic pocket [27,28].
It appears that, in BDPDE1, the role of the metal ion is taken over by Mn2+, since, in its
presence, the enzyme has >3-fold higher activity than in the presence of Mg2+. A similar
effect was observed previously in MPCAPE-PDE (Marchantia polymorpha), where among the
tested ions, the enzymatic activity was higher in the presence of Mn2+ [18]. Furthermore,
the use of a nonselective PDE inhibitor IBMX at a concentration of 50-µM reduced the
enzymatic activity two-fold.
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Figure 2. Characterization of the biochemical properties of BDPDE1. (A) Influence of temperature on
the PDE activity. The enzymatic activity was tested in the temperature range from 10 ◦C to 45 ◦C.
The reaction time was 25 min in the standard reaction mixture containing 0.1-mM cAMP and 5 µg
of GST-BDPDE1. (B) Effect of divalent cations and inhibitor on the PDE activity of GST-BDPDE1.
The reaction was carried out in the standard reaction mixture containing 0.1-mM cAMP, 5 µg of
GST-BDPDE1 and, depending on the reaction variant, 0.5-mM MgCl2 and/or MnCl2, and 50-µM
IMBX was added. (C) Substrate specificity of GST-BDPDE1. The reaction was performed in the
presence of 5 µg of GST-BDPDE1, and depending on the substrate variant, 0.1-mM cAMP and/or
0.1-mM cGMP was added. In all the error bars, different letters indicate significant differences at
p < 0.05. (D) The purified GST-BDPDE1 protein (4 µg) was analyzed by SDS-PAGE.
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The kinetics of BDPDE1 showed that the enzyme is capable of hydrolyzing both cAMP
and cGMP. To check if there is a competition of cAMP and cGMP at the catalytic core of
the PDE domain, assays measuring the BDPDE1 activity in the presence of two substrates
simultaneously were performed, both in the same 0.1-mM concentrations. BDPDE1 favored
the cAMP substrate, having a greater Vmax and affinity for it. Interestingly, when both
substrates are present in the reaction mixture, the activity of this enzyme towards cAMP
increases >1.5-fold (Figure 2C). At the same time, the cGMP hydrolysis is negligible,
decreasing nine-fold compared to the base value. The activity of cAMP hydrolysis was
activated by the addition of cGMP, which is similar to a rat PDE2, where cGMP binds to an
allosteric site regulating the enzymatic activity [29,30]. These results indicate that, while
acting primarily as a plant cAMP PDE, BDPDE1 may also function as a cAMP-inhibited
cGMP PDE. It is therefore conceivable that cAMP-mediated signal transduction can also
cross-regulate the signaling strength of cGMP.

2.2. The Calmodulin/Ca2+ Complex Stimulates BDPDE1 Activity

Calcium-dependent cellular processes are regulated through intracellular Ca2+-binding
proteins, of which the best-studied are calmodulin (CaM), calmodulin-like proteins (CMLs)
and calcium-dependent protein kinases (CDPKs). These proteins bind Ca2+ ions through
the EF hand motif, a conserved helix–loop–helix structure that binds a single Ca2+ ion,
thereby causing a change in the conformation that, in turn, can activate target proteins or
cause self-activation [31–34]. Since it was reported that CaM/Ca2+ affects the activity of
group I animal PDEs and the PDE domain of the ATKUP5 [17,35] and that a protein se-
quence analysis revealed that BDPDE1 also contains a predicted CaM-binding site between
amino acids 50 and 70, we investigated the possible interactions of CaM and CaM-like
isoforms with plant PDE using fluorescence spectroscopy. Due to the high structural
similarities of CaM isoforms, we chose one representative of the CaM, using CaM1 and
CaM-like isoform 9 (CML9). The BDPDE1 fluorescence spectra in the presence of CaM1
and CML9 at 37 ◦C are shown in Figure 3. The control emission spectra of BDPDE1, the
buffer (TRIS), CaM1 and CML9 are shown in Supplementary Figure S1.

The results demonstrated that, at an excitation with 280 nm, BDPDE1 has a distinct
peak of fluorescent emission at 333 nm deriving from tryptophan residues. CaM1 and
CML9 lack tryptophan residues and instead contain tyrosine residues, which makes it
possible to study their interaction with BDPDE1. We found that the plant PDE fluores-
cence intensity increases with the increasing concentration of CaM1 and CML9, while
the maximum emission wavelength does not change. The results are indicative of an
interaction between investigated CaM1 and CML9 with BDPDE1. The fluorescence data of
the formation of the BDPDE1-CaM1 and BDPDE1-CML9 complexes were analyzed using
the following equation assuming a 1:1 stoichiometry [36]:

PL
[P]t

=
[P]t + [L]a + Kd −

√
([P]t + [L]a + Kd)

2 − 4[P]t[L]a
2[P]t

(1)

where Kd is the dissociation constant, [P]t is the concentration of the protein, [L]a is the total
concentration of the ligand and [PL] is the concentration of the protein–ligand complex.
The obtained fluorescence data were fitted to the one-site binding model with an applied
nonlinear least-squares regression using OriginPro software (Figure 3).
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Figure 3. The fluorescence data of BDPDE1 in the presence of (A) CaM1 and (B) CML9 at 37 ◦C. (left).
Emission spectra of BDPDE1 in the presence of CaM1 and CML9 (right) and the dependence of the
fluorescence intensity on the CaM1 and CML9 concentrations. The concentration of BDPDE1 was
0.5-µM. The concentrations of CaM1 and CML9 from “a” to “h” were 0, 0.25, 0.5, 1.0, 1.5, 2.0 and
2.5 µM, respectively.

Our studies revealed that CaM1 and CML9 strongly bind to BDPDE1, as evidenced
by the binding constant (Kb) value in the order of 106 M−1. We observed that CaM1 has
a lower affinity (0.59 ± 0.09 L/mol), while CML9 binds to BDPDE1 in a higher binding
constant of 1.11 ± 0.19 L/mol. We also determined that the dissociation constants (Kd)
value for CaM1 and CML9 were 1.69 ± 0.28 µM and 0.90 ± 0.16 µM, respectively.

Further, we examined the influence of the four CaM isoforms (1, 3, 7 and CML9) on
the PDE activity. Since calmodulins are highly conserved among plant species and show
no significant differences in their structures (Supplementary Figure S2), CaM isoforms
derived from A. thaliana were used in the experiment. All CaM isoforms stimulated both
cAMP and cGMP hydrolysis after the formation of the active CaM/Ca2+ complex in the
presence of 10-µM Ca2+ ions (Figure 4A,B). The highest increase in activity for both cAMP
and cGMP hydrolysis were noted with the addition of CML9. For individual CaM isoforms,
the increase in PDE activity was 3.5-fold for cGMP (Figure 4B) and 1.5-fold for cAMP
(Figure 4A), and for CML9, it was 4.5-fold for cGMP and three-fold for cAMP. After the
addition of 1-mM EGTA, which chelates Ca2+ ions, the active CaM/Ca2+ complex was not
formed, and the presence of CaM isoforms did not affect the reaction.
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Figure 4. Regulation of the enzyme activity by CaM and CaM-like isoforms. (A) BDPDE1 and BDPDE1L52K activity in
the presence of various CaM isoforms, which were in active or inactive complexes (addition of 1-mM EGTA chelate). The
reaction was carried out for 25 min in the standard reaction mixture containing 0.1-mM cAMP, 0.625-µM GST-BDPDE1, 2-µM
of each CaM isoform, 12.5-µM CaCl2 and 1-mM EGTA, depending on the variant. Different letters indicate significantly
different data between the groups at p < 0.05. (B) The BDPDE1 and BDPDE1L52K activity in the presence of various CaM
isoforms, where 0.1-mM cGMP was used as a substrate.

We further investigated the effect of the CaM-binding on BDPDE1 activity with site-
directed mutagenesis. In the determined CaM-binding site, leucine at position 52 was
mutated to lysine, which disrupts CaM-binding [37]. This substitution resulted in no
increase in BDPDE1 activity in the presence of an active CaM/Ca2+ complex. No CaM
isoform had an effect on the cAMP and cGMP hydrolysis reactions; however, a slight
increase in BDPDE1 activity was noted for CML9. This may be due to the fact that CMLs
show significant structural differences from CaMs, and their binding may also alter the
conformation of plant proteins in other ways.

Given that, in plants, many proteins have been reported as calcium-binding (e.g.,
CDPKs (calcium-dependent protein kinases), SnRKs (SNF-related serine/threonine-protein
kinases) or SOSs (salt overly sensitive) and responsive to calcium [32,38], we wanted to
determine if we could rule out the possibility of a nonspecific increase in activity due to
the presence of Ca2+. Therefore, we tested the effect of different concentrations of Ca2+

ions (0–10 µM) on the BDPDE1 enzymatic activity and noted no significant differences
in the enzyme activities (Figure 5). This is consistent with no unspecific binding of Ca2+

to BDPDE1.
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statistically significant differences at p < 0.05.
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2.3. Probing the Catalytic Center of BDPDE1 and Construction of an Expanded PDE Search Motif

Previous studies using a search motif approach to discover novel plant PDEs have
shown that it might identify functional PDEs that moonlight in complex, multidomain
proteins [17]. The motif [YFW]Hx[YFW]Rx{20,40}[HRK][DE] reported previously [17]
is present in the catalytic centers of all the previously experimentally confirmed plant
PDEs (Figure 6A). However, the PDE motif that was deliberately made stringent to iden-
tify candidate PDEs with high probability may be insufficiently broad, as no monocot
orthologs harbor the full motif. Since BDPDE1 is functionally active in vitro, we probed
the PDE catalytic center through mutagenesis studies, which are guided by a combination
of sequence and structural analyses, to reveal other functionally important amino acids,
especially in monocots. Through a sequence analysis, we found that, in BDPDE1, which is
the monocot ortholog of ATCN-PDE1, alanine (A) and leucine (L) rather than an aromatic
amino acid (YFW), occupy position 1 and 4 of the motif. Notably, these two amino acids
are also conserved in other monocot orthologs, such as Oryza sativa (NCBI: EEC67204.1)
and Zea mays (NCBI: NP_001148226.1) (Figure 6B). To account for a broader identification
of PDE active sites in monocots and dicots, we therefore decided to include the conserved
A and L amino acids in an expanded PDE motif.

We then probed the structure at the catalytic center of BDPDE1 to visualize how
catalysis at the predicted PDE center might occur. Since the BDPDE1 crystal structure is
unknown, we employed a homology modeling strategy to build a 3D model for BDPDE1
using the crystal structure of a metal-dependent HD domain-containing hydrolase from
Bacillus halodurans (PDB ID: 3DTO) as the template. This has a 37.04% identity to BDPDE1
at the region between R80 to A315 and covers 91% of the queried amino acids. There is,
however, no suitable template structure to model the N-terminal region of BDPDE1 that
contains the predicted CaM-binding site at N50–F70 (Figure 6C) and was thus omitted
from the structural analysis.

Based on the BDPDE1 model, the PDE center is solvent-exposed and occupies a
distinct cavity that could dock cAMP with a binding affinity of −4.9 kcal/mol, as predicted
by molecular docking simulations (Figure 7A). Of the key amino acids in the original
PDE motif [YFW]Hx[YFW]Rx{20,40}[HRK][DE] reported in Reference [17], only H122,
R125, H155 and D156 are present in the PDE center (labeled black), while the additional
amino acids R233 and Y237 (labeled green) that could also interact with cAMP are found in
positions 77 and 81 downstream of D156, respectively (Figure 6B). These amino acids are
not only spatially close to the substrate, but they also orientate toward cAMP at the PDE
center (Figure 7A), thus implying that they could participate in key catalytic functions. The
structural analysis not only provides confidence that the predicted PDE center in BDPDE1
could bind cAMP, which is the first step for catalysis and, presumably, also the subsequent
hydrolysis of cAMP to 5′AMP, but also guides mutagenesis experiments to probe the role
of the key amino acids in the PDE motif.

Based on our sequence and structural analyses, we identified L124, H155, D155
and Y237 as possible loss-of-function mutations to glycine (G) or glutamine (E), since
these residues are spatially close to, and orientate towards, the substrate and are present in
monocots, as well as in dicots and/or bacterial orthologs. The mutagenesis of the key amino
acids H155 and D156, which appeared in the original PDE motif reported in Reference [17],
reduced the enzymatic activity by four-fold, generating only 0.604 and 0.572-nmol AMP
min−1 mg protein−1, respectively. While L124E mutagenesis did not significantly affect
the catalytic efficiency, the BDPDE1Y237E mutant, however, generated only 0.5-nmol AMP
min−1 mg protein−1, which is approximately five-fold lower than the wild-type BDPDE1
(Figure 7B). This is consistent with our structural evaluations, which also revealed the
possibility of R233 and Y237 being located downstream of the original PDE motif to interact
with cAMP. Significantly, we found that these amino acids also appear downstream in
bacterial orthologs, and this further justifies their inclusion into an expanded PDE motif
(Figure 6B).
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are marked as red letters, and the calmodulin binding site is marked as blue letters.
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Figure 7. Computational assessment of the PDE catalytic center in BDPDE1. (A) The PDE center of BDPDE1 is shown
as orange in the surface model (right) and as individual atoms in the ribbon model (left). The PDE center is solvent-
exposed and occupies a distinct cavity that docks cAMP with a binding affinity of −4.9 kcal/mol. Key amino acids
in the original PDE motif [YFW]Hx[YFW]Rx{20,40}[HRK][DE] reported in Reference [17] and in the expanded PDE
motif [AYFW]Hx[LEYFW]Rx{20,40}[HRK][DE]x{60,90}Rx{3}[YFW] constructed in this study are labeled black and green,
respectively. These amino acids, which could interact with cAMP at the PDE center, are colored according to their charges
in the surface model and as individual atoms in the ribbon model. The BDPDE1R80-A315 3D structure modeled against
the crystal structure of a metal-dependent HD domain-containing hydrolase from B. halodurans (PDB ID: 3DTO) using
MODELLER (ver. 9.25) [39] and cAMP docking simulations were performed using AutoDock Vina (ver. 1.1.2) [40].
Molecular graphics and analyses were performed with the UCSF Chimera package [41]. Chimera was developed by the
Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by
NIGMS P41-GM103311). (B) The effect of site-directed mutagenesis on PDE activity. Mutations of H155G, D156G and Y237E
in the wild-type (WT) BDPDE1 domain significantly reduced the enzyme activity, while L124E did not affect the activity.
The reaction time was 25 min, and the standard reaction mixture contained 0.1-mM cAMP and 5 µg of the mutated protein.
Different letters indicate significantly different values as compared to the control sample (p < 0.05).

In the bacterial orthologous of BDPDE1, A is present in position 1 of the PDE mo-
tif, much like in monocot PDE candidates, but in position 4, E is present in place of L
(Figure 6B). Thus, considering the sequence, biochemical and structural analyses in our
study, we included the A and L/E amino acids, which are conserved in monocot and bacte-
rial PDE candidates in positions 1 and 4 of the PDE motif, as well as the R and Y amino
acids located downstream of the HD domain, to yield a more comprehensive and inclu-
sive PDE motif [AYFW]Hx[LEYFW]Rx{20,40}[HRK][DE]x{60,90}Rx{3}[YFW] (Figure 6C).
This motif can be broadly applied to discover PDEs not just in monocots but, also, in
other organisms from prokaryotes and eukaryotes and identifies 25 putative PDEs in the
B. distachyon proteome (Supplementary Table S1). Further bioinformatics and experimental
characterizations of these candidates will afford a more complete understanding of the
cyclic nucleotide signaling in plants and beyond.
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3. Materials and Methods
3.1. Expression Vector Construct

The total RNA was isolated from leaves and stalk of B. distachyon using the RNeasy
Plant Mini Kit (Qiagen, Hilden, Germany). The first-strand cDNA for RT-PCR was synthe-
sized using the GoScript™ Reverse Transcription System (Promega, Madison, WI, USA)
following the manufacturer’s instructions. In order to construct the expression plasmid for
the GST-BDPDE1, the cDNA fragment was amplified by RT-PCR using specific primers:

-BDPDE1 (forward)
5′-GGATCCCCAGGAATTCCCATGTGGCCAGCATCCAAAACAC-3′

-BDPDE1 (reverse)
5′-GATGCGGCCGCTCGAGAATCAAGCCCTGCCACTCCAC-3′

The PCR reactions were performed with cDNA as the template, forward and reverse
primers and CloneAmp HiFi PCR Premix (Takara Bio USA, Mountain View, CA, USA).
The amplified DNA fragments were purified using an Agarose-Out DNA Purification Kit
(Eurx, Gdańsk, Poland). The amplified PCR products were cloned into the pGEX-6P-2
vector (Cytiva, Uppsala, Sweden) in the EcoRI–XhoI restriction sites using an In-fusion
Cloning kit (Takara Bio USA, Mountain View, CA, USA).

3.2. Site Directed Mutagenesis of BDPDE1

GST-BDPDE1(L124E), GST-BDPDE1(H155G), GST-BDPDE1(D156G), GST-BDPDE1(Y237E)
and GST-BDPDE1(L52K) mutants were constructed by site-directed mutagenesis using the
QuikChange II XL Site-Directed Mutagenesis Kit (Agilent, Cedar Creek, TX, USA). Specific
primers used in the reaction are in the Supplementary Materials.

3.3. Expression and Purification of the Recombinant Protein

The resulting plasmids were introduced into E. coli BL21(DE3) pLysS-competent cells
(Promega, Madison, WI, USA) in order to produce the fusion proteins with a glutathione-
S-transferase (GST) affinity tag. The transformants were grown in LB medium (500 mL)
containing ampicillin (100 µg/mL) and 2% glucose at 37 ◦C. Fusion protein expression was
induced by adding isopropyl-ß-D-thiogalactopyranoside (IPTG) to a final concentration
of 0.5 mM at OD600 = 0.6 and incubating the culture at 20 ◦C for 3.5 h. The bacteria
were harvested by centrifugation, and the pellet was suspended in lysis buffer (50-mM
Tris-HCl, pH 8.0, 150-mM NaCl, 5-mM EDTA, 5-mM EGTA, 1 % (v/v) Triton X-100, 1-
mM PMSF and 0.2-mg/mL lysozyme) and disrupted by sonication. The cell extract was
centrifuged at 18,000× g for 35 min, and the supernatant was loaded onto glutathione-
Sepharose 4B beads (Cytiva, Uppsala, Sweden). Afterward, the column was washed
multiple times with a buffer containing 50-mM Tris-HCl (pH 8.0) and 150-mM NaCl,
and the GST fusion protein was eluted with 10-mM glutathione in 50-mM Tris-HCl (pH
9.0). The recombinant calmodulins (CaM1, 3, 7 and CML9) were purified according to
Reference [32]. The homogeneity and purity of the eluted protein fraction was analyzed by
SDS–PAGE electrophoresis (10% gel) with the Coomassie Blue gel staining.

3.4. Structural Analysis of the PDE Center and CaM-Binding Site in BDPDE1

The BDPDE1R80-A315 3D structure was modeled against the crystal structure of a
metal-dependent HD domain-containing hydrolase from B. halodurans (PDB ID: 3DTO)
using MODELLER (ver. 9.25) [39], and cAMP docking simulations were performed using
AutoDock Vina (ver. 1.1.2) [40]. In the docking simulations, all bonds in the cAMP were
allowed to move freely, but BDPDE1R80-A315 was set as rigid. Docking simulations consider
both spatial and charge at the vicinity of the PDE center based on predetermined grids that
cover the entire catalytic center. Molecular graphics and analyses were performed with the
UCSF Chimera package [41]. Chimera was developed by the Resource for Biocomputing,
Visualization, and Informatics at the University of California, San Francisco (supported by
NIGMS P41-GM103311).
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3.5. PDE Biochemical Assay and LC-MS/MS Analysis

PDE in vitro activity was determined by using LC-MS/MS to determine the rate of
AMP or GMP formation. The reaction time was 25 min, and the standard reaction mixture
contained: 3-mM Tris-HCl (pH 8.0), 0.1-mM cAMP or cGMP, 0.1% (v/v) 2-mercaptoethanol,
5 µg of GST-BDPDE1 and 0.5-mM MgCl2 and MnCl2 in a final volume of 100 µL. To inves-
tigate if calmodulin regulates the activity of PDE, four different CaM isoforms were added
to the reaction in the concentration of 2-µM, together with 12.5-µM CaCl2, and the GST-
BDPDE1 protein concentration was 0.625-µM. The concentration of free Ca2+ ions was cal-
culated using the Maxchelator program available online at: maxchelator.stanford.edu [42].
The samples were incubated at 37 ◦C for 25 min. The enzyme reaction was terminated by
incubation at 100 ◦C for 10 min, and the samples were centrifuged at 13,200× g for 10 min.

LC-MS/MS experiments were performed using the Nexera UHPLC and LCMS-8045
integrated systems (Shimadzu Corporation, Kyoto, Japan). The ionization source parame-
ters were optimized in positive ESI mode using pure AMP and GMP dissolved in HPLC
grade water (Sigma, St. Louis, MO, USA). The samples were separated using a XSelect CSH
Phenyl-Hexyl column (100 × 2.1 mm, 3.5 µm, Waters, Dublin, Ireland). A gradient of sol-
vent A (0.05 % (v/v) formic acid with 5-mM ammonium formate) and solvent B (100 % (v/v)
acetonitrile) was applied over 3 min: B: 0–5%, followed by washing and conditioning of
the column with a flow rate of 0.4 mL/min. The interface voltage was set at 4.0 kV for
positive (ES+) electrospray. Data acquisition and analysis were made with the LabSolutions
workstation for LCMS-8045.

3.6. Fluorescence Studies

The fluorescence spectra of plant phosphodiesterase (BDPDE1) in the absence and
presence of CaM1 and CML9 in 10-mM glutathione and 50-mM Tris-HCl (pH 9.0) were
performed on a JASCO FP-8300 spectrofluorometer with 10-mm quartz cells (Hellma Ana-
lytics, Müllheim, Germany). The measurements were recorded in the range of 300–600 nm
after excitation at λ = 280 nm at 37 ◦C. The samples were prepared in 2-mL Eppendorf
tubes and contained BDPDE1 at a concentration of 0.5-µM alone or with CaM1 and CML9
at the following concentrations: 0.25, 0.5, 1.0, 1.5, 2.0 and 2.5 µM, and 10-mM glutathione
in 50-mM Tris-HCl (pH 9.0) was added to each tube, up to 2 mL. Then, the spectrum was
recorded, and the emission spectra were measured three times. The fluorescence data were
fitted by applying nonlinear least-squares regression using OriginPro software Version
2016 (OriginLab Corporation, Northampton, MA, USA).

3.7. Statistical Analyses

All experiments were performed in at least triplicate. Values are expressed as the
mean± SE. Differences between the groups were calculated by one-way ANOVA, followed
by a Tukey–Kramer multiple comparison test using SigmaPlot 11.0 software. In all cases,
the confidence coefficient was set at p < 0.05.

4. Conclusions

Degradation of cNMPs by PDEs is an integral component of cyclic nucleotide-dependent
signaling in organisms across the tree of life; yet, plant PDEs have remained largely elusive.
Given the recent discovery of PDEs in dicots [16,17], we set out to identify novel PDEs in
monocots. Our results showed that a B. distachyon ortholog of the A. thaliana PDE ATCN-
PDE1, BDPDE1, can hydrolyze cNMPs to 5′NMPs with a preference for cAMP over cGMP
in vitro, and importantly, the PDE activity was significantly enhanced by the CaM/Ca2+

complex. Through bioinformatics-guided mutagenesis studies, we also ascertained the
key residues involved in both PDE catalytic activity and in the interaction of CaM. Our
results imply that plant PDE domains may be embedded within complex multidomain
proteins where they are likely to modulate intra- and intermolecular domains, thereby
acting as tuners of downstream signals. Finally, based on our biochemical, mutagenesis
and structural analyses, we constructed a comprehensive amino acid consensus sequence
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that is a diagnostic for annotated and/or experimentally validated PDEs across kingdoms,
thus affording broad applications of this search motif for the identification of PDE active
sites in eukaryotes and prokaryotes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22179654/s1.
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15. Świeżawska, B.; Duszyn, M.; Kwiatkowski, M.; Jaworski, K.; Pawełek, A.; Szmidt-Jaworska, A. Brachypodium distachyon
Triphosphate tunnel metalloenzyme 3 is both a triphosphatase and an adenylyl cyclase upregulated by mechanical wounding.
FEBS Lett. 2019, 594, 1101–1111. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms22179654/s1
https://www.mdpi.com/article/10.3390/ijms22179654/s1
http://doi.org/10.1007/164_2015_35
http://doi.org/10.3389/fpls.2017.01704
http://doi.org/10.1186/1478-811X-8-15
http://doi.org/10.5772/24757
http://doi.org/10.1111/j.1365-313X.2005.02616.x
http://doi.org/10.1098/rstb.1995.0139
http://doi.org/10.1104/pp.010502
http://doi.org/10.1016/j.jprot.2013.02.032
http://doi.org/10.3389/fpls.2016.00576
http://www.ncbi.nlm.nih.gov/pubmed/27200049
http://doi.org/10.1073/pnas.171104598
http://doi.org/10.3389/fmolb.2019.00136
http://doi.org/10.1074/jbc.M110.168823
http://doi.org/10.3390/ijms22126243
http://doi.org/10.1016/j.febslet.2015.11.038
http://doi.org/10.1002/1873-3468.13701


Int. J. Mol. Sci. 2021, 22, 9654 14 of 14

16. Isner, J.-C.; Olteanu, V.-A.; Hetherington, A.J.; Coupel-Ledru, A.; Sun, P.; Pridgeon, A.J.; Jones, G.S.; Oates, M.; Williams, T.A.;
Maathuis, F.J.M.; et al. Short- and long-term effects of UVA on Arabidopsis are mediated by a novel CGMP phosphodiesterase.
Curr. Biol. 2019, 29, 2580–2585.e4. [CrossRef] [PubMed]

17. Kwiatkowski, M.; Wong, A.; Kozakiewicz, A.; Gehring, C.; Jaworski, K. A tandem motif-based and structural approach can
identify hidden functional phosphodiesterases. Comput. Struct. Biotechnol. J. 2021, 19, 970–975. [CrossRef] [PubMed]

18. Kasahara, M.; Suetsugu, N.; Urano, Y.; Yamamoto, C.; Ohmori, M.; Takada, Y.; Okuda, S.; Nishiyama, T.; Sakayama, H.; Kohchi,
T.; et al. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Sci. Rep. 2016, 6,
39232. [CrossRef] [PubMed]
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