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Abstract

stratification.

Background: Women with dense breasts face a double risk for breast cancer; they are at a higher risk for
development of breast cancer than those with less dense breasts, and there is a greater chance that
mammography will miss detection of a cancer in dense breasts due to the masking effect of surrounding
fibroglandular tissue. These women may be candidates for supplemental screening. In this study, a masking risk
model that was previously developed is tested on a cohort of cancer-free women to assess potential efficiency of

Methods: Three masking risk models based on (1) BI-RADS density, (2) volumetric breast density (VBD), and (3) a
combination of VBD and detectability were applied to stratify the mammograms of 1897 cancer-free women. The
fraction of cancer-free women whose mammograms were deemed by the algorithm to be masked and who would
be considered for supplemental imaging was computed as was the corresponding fraction in a screened
population of interval (masked) cancers that would be potentially detected by supplemental imaging.

Results: Of the models tested, the combined VBD/detectability model offered the highest efficiency for
stratification to supplemental imaging. It predicted that 725 supplemental screens would be performed per interval
cancer potentially detected, at an operating point that allowed detection of 64% of the interval cancers. In
comparison, stratification based on the upper two BI-RADS density categories required 1117 supplemental
screenings per interval cancer detected to capture 64% of interval cancers.

Conclusion: The combined VBD/detectability models perform better than BI-RADS and offer a continuum of
operating points, suggesting that this model may be effective in guiding a stratified screening environment.
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Background

High mammographic density is associated with in-
creased risk of developing breast cancer [1-5] and also
reduces the diagnostic accuracy of mammography due
to masking [6-8]. Compared to women with fatty
breasts, women with dense breasts are at least 3.5 times
more likely to have an interval cancer, one diagnosed
less than 1year after a negative screening mammogram
[9]. Thirty-six states in the USA have now enacted Dens-
ity Notification Laws, most requiring that women be
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informed when they have dense breasts. Many include
language stating that high breast density may affect the
diagnostic value of their mammogram and that supple-
mental screening exams could be considered. A method
of identifying those women for whom mammography
will not provide adequate detection of breast cancer
could provide a means for guiding those women toward
an alternative or supplementary method that would yield
better performance.

A stratification method must be both effective (identi-
fying women where the risk of missed detection of
breast cancer is high due to masking) and efficient in re-
ferring as few women as possible who do not have breast
cancer for supplementary screening. Breast density is
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typically assessed using the Breast Imaging Reporting
and Data System (BI-RADS) scale [10, 11], in which
mammograms are subjectively categorized in four
groups by a radiologist. Women in the two upper cat-
egories, i.e., with heterogeneously dense or extremely
dense mammograms, are considered to have dense
breasts, which corresponds to approximately 40% and
8% of mammograms, respectively [12]. Thus, approxi-
mately half of screened women are potentially eligible
for supplemental screening. Kerlikowske et al. [12] have
argued that due to this high prevalence, rather than
stratifying on BI-RADS density category alone, efforts
should be focused to women at most risk for an interval
cancer.

There are two types of risk associated with elevated
density, the underlying breast cancer risk and the risk of
masking. Here, we attempt to isolate the masking risk
and create a model that can be used to identify women
for whom mammography screening will likely be com-
promised due to masking. The two types of risk can then
be evaluated and used separately in the optimization of
strategies for screening.

We have reported previously on the development of a
“masking risk” model [13], derived from biometric and
image-based parameters that can discriminate between
the mammograms associated with screen-detected (SD)
cancers and those associated with non-screen-detected
(NSD) cancers, i.e., those which were found by other
means less than 13 months after a negative screening
examination. Most women screened do not have breast
cancer, and the feasibility of stratified screening would
depend on identifying as few of these women as possible
for supplemental screening. In this investigation, the
model is applied to mammograms from cancer-free
women to evaluate the effect of decision thresholds on
the efficiency of stratifying women at greatest risk for
interval cancer to supplemental screening.

Methods

Study population

The mammograms used in this study came from an earl-
ier study where breast density was incorporated in a risk
stratification model for breast cancer [14]. This study
had institutional review board approval. All patients
underwent informed consent for participation in the ori-
ginal study. The need for additional consent for this
study was waived, as only existing de-identified data
were used in this analysis. Both studies were compliant
with the Health Insurance Portability and Accountability
Act.

In the original study [14], all women diagnosed with
cancer at a single US institution between 2003 and 2013
and with a digital contralateral mammogram at the time
of diagnosis were eligible as cases. These were matched
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to cancer-free controls, defined here as having had two
consecutive negative screening mammograms (i.e., both
the index mammogram and the next screening mammo-
gram were negative). Women in the study were partici-
pant in an annual screening program. Women who
agreed to participate were asked to complete a question-
naire which included age and body mass index (BMI) in-
formation. BI-RADS density category (fourth edition)
was obtained from the mammography report. Volumet-
ric breast measures including total breast volume and
percent breast density by volume (VBD) were measured
using automated commercial software (Volpara 1.5.0,
Volpara Solutions, Wellington, NZ).

The calculations were performed on the index unpro-
cessed, i.e, “DICOM For Processing” mammograms,
which included at least one standard view (craniocaudal
or mediolateral oblique). Tiled views of large breasts
were excluded. Arbitrarily, the measurements were per-
formed on the left breast by default, except when the left
views were not available. When multiple views were ob-
tained for one projection, the values were averaged. Ini-
tially, there were images from 2047 cancer-free women:
4 were excluded because of tiled views; 31 and 11 were
excluded due to failure of the Volpara calculation or our
detectability algorithm (described below), respectively;
104 were excluded due to missing BI-RADS data, result-
ing in the images of 1897 women available for analysis.

Masking risk algorithm

The development of the masking risk algorithm was pre-
viously described in detail [13], but is summarized here.
(1) In a case-case analysis of 70 SD cases and 44 NSD
cases, the NSD or SD status was used as a surrogate in-
dicator that masking has occurred or not; (2) BI-RADS
density category and Volpara VBD and breast volume
were estimated on the mammograms; (3) “Maps” were
calculated for each mammogram, showing the spatial
distribution of VBD (in this case, calculated using an in-
house algorithm) and local detectability as described
below; (4) Statistical and texture metrics were derived
from the VBD and detectability maps; (5) Stepwise
multivariate logistic regressions were performed to de-
termine which of the metrics yielded the best classifica-
tion performance between NSD and SD cases. Cases in
the categories were not matched for age; however, age
was a covariate in the multivariate modeling. Each re-
gression produced a predictor of masking risk: a vari-
able-threshold classifier that rates the likelihood of a
mammography exam as being masked (i.e., being an
NSD case) or non-masked (an SD case).

In the modeling [13], the assumption was made that
the NSD cancer cases correspond to interval cancers in
their broad definition, which includes masked (ie.,
missed or false negative) cancers and “new” cancers that
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are found between regular annual screens. To allow for
the variability of the actual interval at which women
present for their screening examinations, the window for
inclusion of interval cancers was extended to 13 months.
Because these cancers were found by other means less
than 13 months after a negative mammogram and the
mean sojourn time of breast cancer is 2.0years (95th
percentile = 150 days) [15, 16], it is estimated that nearly
all of these are in the false negative category.

To predict how many women without breast cancer
would be recommended for supplementary screening with
each of the masking prediction models, it is necessary to
run the algorithms on sets of normal cases. The three
models: “BI-RADS Density,” “Adjusted Volpara,” and “DE-
TECT+,” under consideration for use for stratification are
summarized in Table 1. The ultimate covariates selected for
each model are listed in the first column. DETECT+ is an
in-house algorithm that was found in [13] to be the best
performing model describing masking probability. Note
that all of the models incorporate some measure of breast
density. DETECT+ employs a specially designed volumetric
density algorithm described by Mainprize et al. [17].

Simulation of a stratified screening program

Our approach to stratification is to try to maximize the
number of women for whom there is the potential for
cancer masking who will be identified for supplemental
screening while minimizing the number whose cancers

Table 1 Details of the predictive models for the 1-year interval
cancers showing the predictors from each model. 95%
confidence intervals are presented in brackets. The odds ratio
corresponds to the relative odds between the first and last
quartile for the continuous predictors which are used as
covariates in the multivariate models. For BI-RADS density, the
odds ratio corresponds to the relative odds between the
specified BI-RADS category and the reference category, BI-RADS
1. AUC refers to the area under the receiver operating
characteristic curve

Selected predictors Odds ratio AUC

BI-RADS density
BI-RADS 3:1 978  [216-4438] 067 [057-0.76]
BI-RADS 4:1 1333 [237-75.15]
BI-RADS 2:1 6.53 [1.44-29.56]

Adjusted Volpara
Age at exam 049 [0.30-0.80] 074 [0.62-0.83]
Breast volume (Volpara) 0.64 [0.39-1.05]
VBD (Volpara) 1.40 [091-2.17]

DETECT+
Detectability Std Dev 047 [0.24-0.89] 079  [0.69-0.87]
Density GLCM correlation  1.85 [0.98-3.49]
Age at exam 0.67 [040-1.12]

Page 3 of 9

(if present) are expected to be detectable on mammog-
raphy. These two competing factors are computed to de-
termine the efficiency of a simulated stratified screening
environment.

The masking risk is computed on each of the images
using the models described above. Each model is tested
over a range of candidate thresholds of masking risk. The
threshold (or operating point) distinguishes between im-
ages that are deemed to be “masked” or “non-masked.”
Women identified as “masked” are the ones who would be
considered as potential candidates for supplemental im-
aging. For those women, two fractions are determined: (1)
The recruitment fraction (RF), which is the fraction of
cancer-free women whose mammograms would be rated
above the masking threshold, and (2) the capture fraction
(CF), the fraction of women from NSD cases whose mam-
mograms are above the same masking threshold. We
examine the relationship between RF and CF at different
settings of the threshold. In this analysis, the cancer-free
women are used as a proxy for a screening population.

Given an underlying NSD cancer rate (assumed to be
equivalent to the interval cancer rate or ICR) in a popu-
lation of N individuals, the maximum number of NSD
cancers for potential detection by supplemental imaging
is given by N x ICR x CF. The corresponding number of
women considered for supplemental imaging is N x RF.
The number of women considered for supplemental im-
aging per interval cancer potentially detected is thus RF/
(ICR x CF). This ratio represents the “cost” of the sup-
plemental screening program, in that as more women
receive the additional screen (with the benefit of detect-
ing missed cancers), more inconvenience to women and
financial costs are imposed on the health care system.
The most efficient (or lowest cost) supplemental screen-
ing program will have the lowest RF:CF ratio. See the
Appendix for a detailed description of the calculation of
masking risk thresholds, CF and RF for the models dis-
cussed here. To evaluate performance, the C-statistic or
discrimination accuracy of the masking risk models was
computed. This is the probability that a model will score
a randomly selected NSD exam at a higher masking risk
than a randomly selected cancer-free exam.

For simulating a screening program, an ICR of 0.60
per 1000 screens was estimated using data from the
Breast Cancer Surveillance Consortium (BCSC) as re-
ported by Kerlikowske et al. [12]. Here, N was set to
100,000. Error estimates on the values of the cost func-
tion were estimated by bootstrapping, for 1000 bootstrap
replicas, using the “bootci” function in Matlab 2016b
(Mathworks Inc. Natick, MA).

Results
Table 2 shows descriptive statistics (age, BMI, BI-RADS
density category, and mammography vendor) for the
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Table 2 Descriptive statistics of age, BMI, BI-RADS density and
mammography vendor for the non-screen detected and cancer-
free women

Non-screen detected  Cancer-free  p

N =44 N=1897 value
Count % Count %
Age at mammography 0.036
<40 3 6.8 41 22
41-50 13 29.5 370 195
51-60 13 29.5 673 355
61-70 8 182 563 29.7
71-80 [§ 136 217 114
>80 1 23 33 1.7
BMI 0.149
<228 15 341 509 26.8
22.8-264 14 31.8 562 296
264-30.6 10 22.7 439 23.1
>30.6 5 114 387 204
BI-RADS density category 0.010
1 1 23 375 19.8
2 15 34.1 713 376
3 22 50.0 632 333
4 6 13.6 177 9.3
Mammography vendor 0011
Hologic 5 114 549 289
GE 39 88.6 1348 711

NSD cases and cancer-free women. Women with inter-
val cancers were generally younger, with lower BMI,
higher BI-RADS density, and imaged on GE systems
compared to the cancer-free women. The p value of the
difference between the two groups was computed using
a two-sample ¢ test or chi-square test for the continuous
or categorical data, respectively.

Table 3 shows CF vs. RF for the three stratification
models.

Table 4 shows the corresponding number of interval
cancers potentially detected vs. the cost function,
expressed as the number of women recommended for
supplemental screening per interval cancer potentially
detected, assuming a prevalence of 60 interval cancers in
100,000 women screened [12]. This shows that the DE-
TECT+ model generally requires the fewest supplemen-
tal exams per interval cancer detected. For example,
with a threshold set to identify 38 interval cancers (CF =
64%), supplemental screening would be performed for
RF =43%, 40%, and 28% of screening participants when
supplemental screening is triggered on the basis of BI-
RADS 3 or 4 density category, Adjusted Volpara, or DE-
TECT+, respectively. This corresponds to 1117, 1051,
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and 725 supplemental screens per interval cancer de-
tected. Figure 1 graphically shows the cost function ver-
sus the number of interval cancers potentially found for
the three stratification models. Stratification data for BI-
RADS density extrapolated from Kerlikowske et al. [12]
are also shown for comparison. The C-statistic and 95%
confidence interval for the BI-RADS, Adjusted Volpara,
and DETECT+ models were 0.63 [0.56-0.69], 0.66
[0.56-0.73], and 0.72 [0.65-0.79] respectively.

Figure 2 shows the contralateral mammograms of
women with interval cancers with mammograms rated
as BI-RADS 3 (top) and BI-RADS 4 (bottom). In each
row, the calculated masking risk increases from left to
right. If set as thresholds, they would correspond to CF
values of approximately 50%, 30%, and 20% respectively
for the DETECT+ model.

Table 5 shows data from this work and from two stud-
ies by Kerlikowske et al. [12, 18]. It is seen that the three
populations have similar distributions in the high BI-
RADS density categories for all women or cancer-free
women, while Kerlikowske et al. [18] shows a higher
proportion of interval cancer cases in the BI-RADS 4
category than the other two studies.

Discussion

The DETECT+ model offers the lowest cost over a wide
range of capture fraction (CF =14 to 98%) of interval
cancers. The cost for the Adjusted Volpara model is
lower only at the relatively low capture fraction of 10%
(i.e., 6 of 60 interval cancers potentially detected). For
example, the DETECT+ model requires 12,588 supple-
mental screens (RF =12.6%) to potentially detect 24
interval cancers (CF =40%), representing a costs of 523
supplemental screens per interval cancer. When
inverted, this costs represent 1.9 interval cancers poten-
tially detected per 1000 supplemental screens. The Ad-
justed Volpara model requires, at the same operating
point, 39% additional supplemental screens to poten-
tially detect the same amount of interval cancers in 100,
000 women. The discriminatory accuracy (C-statistic)
between interval cancer cases and cancer-free women of
the DETECT+ model was the largest at 0.72 [0.65-0.79].
Based on confidence intervals, the DETECT+ model was
statistically better than the BI-RADS model, and just
short of a statistical difference to the Adjusted Volpara
model.

The BI-RADS-based model was considered, primarily
because this system is widely used by breast radiologists;
however, its major limitations are that it has higher costs
and has only three operating points. For example, if the
threshold for suggesting supplemental screening was for
women with extremely dense breasts (BI-RADS 4) only,
9331 supplemental screens (RF =9.3%) would be re-
quired, with 8 of the interval cancers potentially detected
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Table 3 Select operating points of the capture fraction of interval cancers potentially detected (CF) vs. the recruitment fraction for
supplemental imaging (RF) for the three stratification models in a simulated annual screening program. The rows or operating
points correspond to specific thresholds for masking risk. The results were linearly interpolated when necessary. Shaded rows align
with the three BI-RADS thresholds (i.e., women in density category 4 only; 3 and 4; 2, 3, and 4)

a) | CF: fraction of interval RF: fraction of women rgcruited for supplemental
) imaging [%]
cancers potentially Adjusted
detected [%] BI-RADS DETECT+
Volpara
10.0 2.1 2.5
13.6 BI-RADS 4:9.3 4.2 3.1
20.0 8.7 5.0
40.0 17.6 12.6
60.0 31.8 26.3
63.6 BI-RADS 3+4:42.6 40.1 27.7
80.0 58.0 42.1
97.7 BI-RADS 2+3+4: 80.2 94.5 80.7

(CF=13.6%). This corresponds to a cost of 1140 supple-
mental screens per interval cancer detected. Interest-
ingly, at the same CF, the DETECT+ model would label
only approximately 18% of the BI-RADS 4 examinations
as masked, yet has a cost of only 374 supplemental
screens per interval cancer (RF = 3.1%).

This implies that high masking does not necessarily occur
in all BI-RADS 4 women, but at the same time high mask-
ing can occur in images with lower BI-RADS scores. Al-
though there is a correlation between BI-RADS density and
masking, there are additional subtleties that can disrupt this
correlation and are revealed through the DETECT+ metric
where not only the area of the breast occupied by dense tis-
sue, but also the intensity and texture of tissue attenuation
are considered. It is also worth emphasizing that in
addition, there can be considerable intra- and inter-

observer variability in assigning BI-RADS density categories
and that the results may shift systematically if the different
definitions of the BI-RADS fifth edition were used.

While the sample population used in this analysis is
small, which leads to large uncertainties in the calculated
rates and cost functions, it is proportioned similarly in BI-
RADS density compared to larger studies [12, 18]. It is
noted that small differences in those proportions can have
a large impact in the cost function, due to the small-val-
ued interval cancer rate that appears in the denominator.

Holland et al. [19] have performed a similar analysis
using a masking model (DTMAM) that is based on Vol-
para VBD as well as lesion size and location. The per-
formance of the DETECT+ metric in a supplemental
screening environment is similar but marginally better
than their results. They also present results using

Table 4 For a cohort of 100,000 screening participants with 60 interval cancers, the cost function (supplemental screens per interval
cancer detected) versus the number of interval breast cancers potentially detected at the same operating points as in Table 3). The
rows or operating points correspond to specific thresholds for masking risk. The results were linearly interpolated when necessary.
Shaded rows align with the three BI-RADS thresholds (i.e, women in density category 4 only; 3 and 4; 2, 3, and 4)

b) | Interval cancers | Supplemental screens per interval cancer potentially detected
potentially found BI-RADS Adjusted Volpara DETECT+
6.0 332 423
8.2 BI-RADS 4: 1140 509 374
12.0 727 413
24.0 731 523
36.0 883 732
38.2 BI-RADS 3+4: 1117 1051 725
48.0 1208 876
58.6 BI-RADS 2+3+4: 1368 1611 1375
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Number of supplemental screens per
interval cancers potentially detected Q)
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interval cancers potentially detected T
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* BI-RADS* * BI-RADS*
0 0
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Interval cancers potentially found Interval cancers potentially found

Fig. 1 Plot of the cost function (number of supplemental screens per interval cancer potentially detected) vs. the number of interval cancers for
potential detection. Left panel: the Adjusted Volpara model; right panel: the DETECT+ model. Data points denoted with an asterisk, obtained from
ref. [12] and rescaled, represent the cost function of supplemental screening using BI-RADS density from a large dataset. Shaded region or error
bars correspond to the 95% confidence interval

Volpara VBD alone, which outperforms the Adjusted underlying breast cancer risk, whereas our models were
Volpara model shown in this analysis. This finding may  optimized to discriminate between interval and screen-
be due to the fact that the models of Holland et al. [19]  detected cancer cases.

were created from direct comparisons between interval Kerlikowske et al. [18] have also performed a similar
cancer cases and cancer-free controls, and thus may analysis, computing the discriminatory accuracy (C-stat-
show a compound effect of masking risk and the istic) between interval cancer cases and normal cancer-

~N

BI-RA,DS Masking Risk Values
density
CF =50% CF =30% CF=20%
BI-RADS 3
BI-RADS 4
Fig. 2 Example mammograms from the interval cancer cohort at different BI-RADS and masking risk values. Images shown are in the “For
Presentation” format
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Table 5 Comparison of the distribution in the dense BI-RADS categories and the corresponding costs (in supplemental screens per
interval cancer detected) for BI-RADS stratification of this work and of other studies

Kerlikowske et al. [12] Kerlikowske et al. [18] This work
Percent Cost Percent Cost Percent Cost
Interval cancer All women Interval cancer Cancer-free Interval cancer Cancer-free
BI-RADS 4 148 80 892 279 85 508 136 93 1140
BI-RADS 3 554 394 456 333 50.0 333
BI-RADS 3 +4 70.2 474 1124 735 418 948 63.6 426 117

free controls of BI-RADS and automated BI-RADS
(using Volpara VBD), reporting respective accuracies of
0.72 and 0.70. The models were adjusted for multiple
breast cancer risk factors. As in the work of Holland et
al. [19], the models likely show a compound effect of
both masking and breast cancer risks.

By combining BI-RADS density and BCSC 5-year risk,
Kerlikowske et al. [12] report a cost of 694 supplemental
screens per interval cancer potentially found. After re-
scaling for a total population of 100,000 women, this
corresponds to CF=27.9% and RF =11.5%. At that CF
value, the DETECT+ model is about 23% more efficient,
with a cost of 532 supplemental screens per interval can-
cer (RF = 8.9%).

We believe that it is a strength of the design of the
DETECT+ model that it predicts masking risk only, i.e.,
when mammography is likely to be diminished in accur-
acy. It may then be used in conjunction with separate
established breast cancer risk models to guide breast
cancer screening stratification. For example, women with
low masking risk would benefit from mammography
screening, at possibly different intervals depending on
their underlying breast cancer risk. Conversely, women
with high masking risk would benefit from more sensi-
tive screening modalities, also at possibly different inter-
vals depending on their breast cancer risk.

An imbalance between NSD and cancer-free groups
according to mammography vendor was observed with
proportionally more NSD cases imaged with GE sys-
tems. A subset analysis performed using the GE data
only showed the C-statistic of the DETECT+ model to
be unchanged at 0.72 [0.64—0.79]; however, there were a
relatively small number of Hologic NSD cases in the set.
In ongoing work with a broader data set, we will deter-
mine if a system-dependent covariate will improve the
model. It is noted that the GE system was introduced to
the clinic earlier when experience with digital mammog-
raphy was quite limited and the majority of the NSD
cases come from this time period.

This study has several limitations. In the dataset, there
were a small number of cancers with extremely dense
BI-RADS category, very high VBD or very low detect-
ability, resulting in the fairly wide confidence intervals
seen for low numbers of interval cancers detected. These

women, who have the highest masking risk, would likely
be offered supplementary screening according to any of
the models used.

These models are currently being tested in a larger
population for further validation and to predict the costs
of supplemental screening. The simplifying assumption
was also made that all interval cancers would be de-
tected by supplemental screening tests. While supple-
mental screening will increase cancer detection [20],
some cancers will also be missed by those tests, and
some rapidly growing cancers will always evade detec-
tion by screening.

Conclusions

The masking risk estimator presented in this investiga-
tions shows good potential for guiding stratification of
breast cancer screening. This estimator is more efficient
than using BI-RADS density and provides a continuous
scale, allowing for optimizing the balance between the
number of women receiving supplemental screening ver-
sus the number of interval cancers potentially detected.

Appendix

Included here are supplementary data and details of calcu-
lation procedures for the three models discussed in the
main article, specifically for determining the thresholds for
masking risk and for estimating CF and RF for those
thresholds. In our previous work (ref. [13]), logistic regres-
sion by a generalized linear model was used to fit binary
data (masked cases and non-masked controls), such that
the logarithm of the odds of being masked versus non-
masked is:

10g<1‘1_9;‘> = Bo + Brxia + Byxin + ...,

L

Table 6 List of the regression coefficients for the DETECT+
logistic model

Model and predictor Coefficient ()

Intercept —1.6350
Detectability Std Dev —0.0526
Density GLCM correlation 3.8189

Age at exam —0.0251
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Table 7 Masking risk thresholds of the models shown in Tables 3 and 4. Shaded rows align with the three BI-RADS thresholds (i.e,,

women in density category 4 only; 3 and 4; 2, 3, and 4)

Masking risk threshold
Capture Adjusted
fraction CF [%] BI-RADS DETECT+

Volpara
10 0.7028 0.6620
13.6 0.4706 0.6529 0.6552
20 0.5760 0.6249
40 0.4769 0.5404
60 0.3797 0.4388
63.6 0.3947 0.3414 0.4306
80 0.2689 0.3432
97.7 0.3034 0.1272 0.1369

where p; is the probability that the ith subject is a case
(i.e., masked), x; its corresponding jth predictor (e.g.,
age, BI-RADS density, detectability), 3; the fitted coeffi-
cients for each predictor, and f3, the intercept. Table 6 in
the Appendix shows the parameters for the DETECT+
logistic regression model. The parameters for the other
models can be found in ref. [13].

The predictors listed in the table above were com-
puted on cancer-free and masked cancer subjects. For
example, cancer-free subject no. 100 had values of 4.38,
0.883, and 50.86 for Detectability Std Dev, density
GLCM correlation, and Age at exam, respectively, which
leads to a masking risk or probability p;go=0.557. Any
value of the probability is a potential masking risk
threshold p,, allowing the determination of the capture
and recruitment fractions CF and RF at that threshold.
For example, at p, = 0.431, there are 28 (of 44) and 525
(of 1897) subjects with masked cancer and who are can-
cer-free with p > p,, respectively, leading to CF = 63.64%
and RF =27.68%. Given a screening population of 100,
000 individuals and an interval cancer rate of 0.6 per
1000, this corresponds to 27,675 supplemental screens
and 38.2 interval cancers potentially detected, for a cost
of 724.8 supplemental screens per interval cancer. This
masking risk threshold value (or operating point) corre-
sponds to row 6 in each of Tables 3 and 4. The thresh-
olds were obtained by interpolation, increasing the
threshold value until a desired CF was obtained. Table 7
in the Appendix lists the thresholds for the three mask-
ing models at the operating points shown in Tables 3
and 4.
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