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Abstract. [Purpose] Immobilization-induced atrophy is a general phenomenon caused by prolonged muscle dis-
use associated with orthopaedic conditions. However, changes in the phosphorylation of atrophy-related cofilin and 
LIM kinases are still poorly understood. In this study, we examined whether or not phosphorylation of cofilin and 
LIM kinases is altered in the skeletal muscles of rats after 3, 7, 14, and 21 days of cast immobilization. [Methods] We 
used two-dimensional gel electrophoresis, mass spectrometry, and western blotting to examine protein expression 
and phosphorylation in atrophied rat gastrocnemius muscles. [Results] The expression of the cofilin was detected in 
gastrocnemius muscle strips using proteomic analysis. Cast immobilization after 3, 7, 14, and 21 days significantly 
diminished the phosphorylation of cofilin and LIM kinases. [Conclusion] The present results suggest that cast 
immobilization-induced atrophy may be in part related to changes in the phosphorylation of cofilin and LIM kinases 
in rat skeletal muscles.
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INTRODUCTION

Cofilin is an actin binding protein with a low molecular 
weight of about 19 kDa. It was first extracted and purified 
from embryonic chick brain extracts, and is ubiquitously ex-
pressed protein in eukaryotic cells, where it regulates actin 
filament dynamics and reorganization, and other functions 
for cellular viability1–3). Actin filament dynamics and reor-
ganization are fundamental cell activities, which include 
cell division, morphogenesis, migration, endocytosis, and 
gene expression4–6). Cofilin binds to fibrous actin changing 
the fibrous actin to globular actin2). This process requires 
the dephosphorylation of cofilin by phosphatases7, 8). Phos-
phorylation abolishes cofilin activity and inhibits the sever-

ing function of cofilin9, 10), and LIM kinases, a serine kinase, 
phosphorylates cofilin9, 11). A description of the membranes 
of the LIM kinase family of serine kinases, which include 
LIM kinase 1 and 2, has been published9). Although the ex-
act signaling pathway for the activation of LIM kinases is 
not fully understood, these proteins regulate actin polymer-
ization via activation and inactivation of cofilin9–11). Skel-
etal muscle atrophy has proven to be a significant problem 
in the area of physical therapy rehabilitation12–15). However, 
changes in the levels of phosphorylation of cofilin and LIM 
kinases in immobilization-induced atrophy are not fully un-
derstood. Therefore, in the present study, we sought to dem-
onstrate the changes in the phosphorylation of cofilin and 
LIM kinases in the gastrocnemius muscles of rats subjected 
to cast immobilization.

MATERIALS AND METHODS

Male Sprague-Dawley rats (n=15) were anaesthetized 
during the attachment of the plaster of paris casting materi-
al12). Experimental procedures were performed as described 
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in previous reports12, 14). Two-dimensional gel electrophore-
sis (2-DE) and matrix-assisted laser desorption ionization 
time-of-flight/time-of-flight (MALDI-TOF/TOF) mass 
spectrometry were performed as reported in our previous 
studies14, 15). Furthermore, to measure the phosphorylation 
of cofilin and LIM kinases, gastrocnemius muscle strips 
were isolated after specific intervals of cast immobilization 
and snap-frozen in liquid nitrogen. The samples were then 
homogenized in a sample buffer. The homogenate was cen-
trifuged and the supernatant was collected. Proteins (45–50 
μg/lane) were separated on 12% polyacrylamide sodium 
dodecylsulfate (SDS) gels and then transferred electropho-
retically to a polyvinylidene fluoride membrane (Millipore; 
Bedford, MA, USA)13). Anti-cofilin and anti-LIM kinase 1 
and 2 antibodies were purchased from Santa Cruz (Santa 
Cruz, CA, USA). Antibody-specific bands were quantified 
using an image analyzer (BioRad). The present investiga-
tion conformed to the Guide for the Care and Use of Labo-
ratory Animals published by the US National Institutes of 
Health (NIH Publication No. 85-23, revised 1996). The pro-
tocol of this study was approved by the Committee of Ethics 
in Research of the University of Yongin, in accordance with 
the terms of Resolution 5-1-20, December 2006. Data are 
expressed as means±SEM. The data were statistically eval-
uated using Student’s t test for comparisons between two 
time points and by ANOVA for multiple comparisons. A p 
value of < 0.05 was considered to be statistically significant.

RESULTS

The density of the cofilin expressed in the gastrocnemius 
muscles is shown in Fig. 1A. The phosphorylation of cofilin 
and LIM kinases was significantly diminished after 3, 7, 14, 
and 21 days of cast immobilization compared with the con-
trol group (n=3–4, Fig. 1B, Table 1). However, the expres-
sion of cofilin was significantly increased after 3, 14, and 
21 days of cast immobilization compared with the control 
group (n=3–4, Fig. 1B, Table 1).

DISCUSSION

Our previous study demonstrated that the transcription-
al regulation of the protein ligase, muscle RING finger-1 
(MuRF-1), is upregulated in rat gastrocnemius muscles, and 
is involved in the development of cast immobilization-in-
duced muscle atrophy12). Mitogen-activated protein kinas-

es, such as extracellular signal-regulated kinase 1/2, stress-
activated protein kinase/c-Jun NH2-terminal kinase, and 
p38 mitogen-activated protein kinase, are simultaneously 
involved in muscle atrophy induced by immobilization and 
cell starvation12, 13). Furthermore, in another study, we dem-
onstrated that cast immobilization increases the expression 
of myoglobin in rat gastrocnemius muscles15). These pre-
vious results suggest that changes in mitogen-activated 
protein kinase expression, causes myoglobin to adapt in 
response to physical stress, such as immobilization12–15). 
Meanwhile, cofilin, one of the actin-depolymerizing factor/
cofilin family proteins, which includes cofilin-1, cofilin-2, 
and actin-depolymerizing factor (also called destrin) in 
mammals, binds to actin and plays a role in actin dynamics 
and reorganization, and other cellular functions3, 16). Co-
filin activity is regulated by the phosphorylation of Ser-3 
on its NH2-terminal17). Phosphorylation of cofilin is also 
performed by LIM kinases (LIM kinase 1 and LIM kinase 
2 in mammals), and inhibits actin binding and severing, and 
the depolymerizing activities of cofilin9, 16). LIM kinases 
are named after LIM motif-containing protein kinases, and 
the name is derived from an acronym of three transcription 
factors, Lin11, Isl-1, and Mec-318). The kinases responsible 
for this phosphorylation are Rho-associated protein kinase 

Fig. 1. Changes in phosphorylation of proteins, and a schematic 
representation of cellular responses to the immobilization. 
Proteomic (A) and immuno-blotting (B) analysis in the 
cast-immobilized skeletal muscle. 2DE and 1DE, two- and 
one-dimension gel electrophoresis; p-LIMK, phosphory-
lated LIM kinases; D, days; R, receptor; G-actin, globu-
lar actin; Rho-Rac-Cdc42, Rho family small GTPases; 
ROCK, Rho-associated protein kinase; PAK, p21-acti-
vated protein kinase; SSH, cofilin-specific phosphatase, 
slingshot.

Table 1.  Changes in expression and phosphorylation of proteins in rat gastrocnemius muscles sub-
jected to cast immobilization

Experimental 
period

p-Cofilin 
(%)

Cofilin 
(%)

p-LIM kinases 
(%)

LIM kinases 
(%)

0 day (control) 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
3 days 7.7±1.8* 246.7±14.5* 73.3±12.0* 99.7±0.3
7 days 19.0±4.9* 116.7±21.9 58.3±7.3* 98.7±4.2

14 days 33.3±10.1* 203.3±14.5* 60.0±7.6* 100.7±3.0
21 days 26.7±10.1* 173.3±12.0* 45.0±10.4* 98.0±4.4

Means±SEM. p, phosphorylated protein; LIM kinase, a serine kinase. The basal levels of proteins and 
phosphorylated proteins in controls (0 days) were considered to be 100%. *: vs. 0 day control, p<0.05
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(ROCK) and p21-activated protein kinase (PAK), which are 
downstream kinases of the Rho family small GTPases such 
as Rho, Rac, and Cdc4219–21). Whereas, the dephosphoryla-
tion of cofilin is mediated by the cofilin-specific phospha-
tase, slingshot (SSH)7, 8)(Fig. 1C). Especially, cofilin is ex-
pressed in vascular smooth muscle cells and tissues, where 
it has been implicated in the regulation of cellular responses 
to reactive oxygen species (ROS), such as H2O2

3), and the 
progression of bladder cancer22). Although cofilin is identi-
fied in skeletal muscle using proteomic analysis14), it has not 
previously been reported that phosphorylation of cofilin is 
related to muscle atrophy induced by cast-immobilization. 
In the present study, we have demonstrated for the first time 
that decrease of phosphorylation of cofilin and LIM kinases 
is associated with skeletal muscle atrophy induced by cast 
immobilization. However, further systematic studies cover-
ing electrotherapy, neurotherapy, hydrotherapy and others 
are needed to confirm the mechanisms of cofilin and LIM 
kinases in various muscle atrophy conditions23–27) (Fig. 
1C). In summary, the phosphorylation of cofilin and LIM 
kinases decreased in cast-immobilized rat gastrocnemius 
muscles. The present results suggest that cast immobiliza-
tion-induced atrophy may be mediated by LIM kinase and 
cofilin in rat gastrocnemius muscles.
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