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Vortex domain patterns in low-dimensional ferroelectrics and multiferroics have been extensively studied
with the aim of developing nanoscale functional devices. However, control of the vortex domain structure
has not been investigated systematically. Taking into account effects of inhomogeneous electromechanical
fields, ambient temperature, surface and size, we demonstrate significant influence of mechanical load on
the vortex domain structure in ferroelectric nanoplatelets. Our analysis shows that the size and number of
dipole vortices can be controlled by mechanical load, and yields rich temperature-stress (T-S) phase
diagrams. Simulations also reveal that transformations between ‘‘vortex states’’ induced by the mechanical
load are possible, which is totally different from the conventional way controlled on the vortex domain by
the electric field. These results are relevant to application of vortex domain structures in ferroelectric
nanodevices, and suggest a novel route to applications including memories, mechanical sensors and
transducers.

N
anoscale ferroelectrics and multiferroics have been actively investigated for many years. Nanoscale
ferroelectrics and multiferroics often retain bulk properties, and even exhibit enhanced or novel prop-
erties including electronic, optoelectronic, electrochemical, electromechanical and magnetoelectric,

properties, due to effects of finite size, surfaces and interfaces. Therefore, nanoscale ferroelectrics and multi-
ferroics play important roles in the fabrication and miniaturization of nanoscale functional devices1-9. More
recently, exotic ferroelectric domain structures described as topological defects in the polarization field have
attracted an enormous amount of attention due to their fundamental scientific interest and potential applications
in domain engineering10–28. In particular, toroidal polarization patterns consisting of flux-closure domains (so-
called vortex domain structures) are found in low-dimensional ferroelectrics with extreme geometric confine-
ment. As a new kind of polarization ordering, vortex domain structures are expected to exhibit distinctive
characteristics and novel coupling with external fields, which could open exciting opportunities in designing
novel nano-memories, sensors and transducers, and other devices. Nevertheless, experimental and theoretical
studies for the vortex domain structures in low-dimensional ferroelectrics have proved to be difficult, and
properties determined by the vortex domain structures in low-dimensional ferroelectric materials are presently
poorly understood.

Existence of vortex domain structures has been predicted in some low-dimensional ferroelectric nano-
structures based on theoretical simulations10–12,21. In addition, some experimental studies have made great steps
towards unambiguous observation of nanoscale polarization vortices14,18,25,26. While it is of fundamental and
technological importance to characterize vortex domain structures in low-dimensional ferroelectrics, it is even
more important to develop methods to control the vortex domain structures in low-dimensional ferroelectrics.
Several theoretical investigations have focused on control of the vortex domain structures in low-dimensional
ferroelectrics through external electromechanical fields29–36. Using the effective Hamiltonian method,
Ponomareva et al.29 investigated effects of the electric boundary condition and epitaxial strain on the dipole
pattern of Pb(Zr0.4Ti0.6)O3 nanodots and wires. Combining simulations and an analytical model, Prosandeev and
Bellaiche30 studied the characteristics and signatures of dipole vortices in ferroelectric nanodots. Mechanisms of
vortex switching, vortex rotation and vortex-to-polarization transformation induced by various kinds of electric
fields in ferroelectric nanostructures were also investigated by effective Hamiltonian simulations31–35. Using
phase-field simulation, vortex switching under curled electric field in ferroelectric nanostructures has also been
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investigated36. These works provide useful information on how to
detect and control vortex domain structures in ferroelectric nano-
structures.

The effect of mechanical strains and stresses on polarization and
polarization-related properties in ferroelectrics and multiferroics is
well known4–10. In contrast, investigations of the mechanical load
effect on the vortex domain structures in low-dimensional ferroelec-
trics and multiferroics are scarce10,29,37. In general, it is expected that
the size, number and orientation of dipole vortices should be affected
by mechanical load. In order to exploit the coupling between the
vortex domain structure and mechanical loads in applications, a
number of questions must be answered, including how mechanical
load affects the formation and stability of vortex domain structures,
and whether mechanical-load-controlled transformations between
different ‘‘vortex states’’ are possible.

In this work, in order to understand the effect of the mechanical
load on stability and structure of the vortex domain in nanoscale
ferroelectrics, we present a theoretical investigation of the vortex
domain structure in three-dimensional ferroelectric nanoplatelets
(FNPL) with careful consideration of the effects of inhomogeneous
electromechanical fields, ambient temperature, surfaces, size, and
other factors. Systematic phase-field simulations are conducted to
explore effects of an external mechanical load on the evolution and
equilibrium of vortex domain structures in nanoplatelets. We cal-
culate temperature-stress (T-S) phase diagrams, and depict vortex
domain structure as a function of mechanical load and ambient
temperature. By considering different initial polarization distribu-
tions in nanoplatelets, transformations between different ‘‘vortex
states’’ induced by mechanical load are demonstrated, and dynamic
features during the transformations are also revealed.

Results
Vortex domain structure in free-standing FNPL. We consider
prolate PbTiO3 nanoplatelet under open-circuit electric condition
in our simulations. The initial polarization distribution of the
nanoplatelet is either a random polarization perturbation or a
vortex domain structure as shown in Fig. 1. By controlling the
surface traction t at the top and bottom surfaces, evolution of the
spontaneous polarization P in FNPL under tensile or compressive
mechanical load along the prolate direction (i.e., z-direction) can be
simulated based on the phase-field method. The toroidal moment,

i.e., g~
1
V

ð
V

r| P{
�
P

� �
dV , is adopted to characterize the vortex

domain structure. Here V is the volume of the system, r is the
position vector, and

�
P is the mean spontaneous polarization of the

system13. To confine the toroidal moment along y-direction, a three-
dimensional 10Dx33Dy330Dz meshing at a scale of Dx 5 Dy 5 Dz
5 1 nm is employed. Results obtained in our simulations are not
only confined to this simple perovskite. Similar effects should be
found in other ferroelectric materials such as BaTiO3, BaxSr1-xTiO3

and Pb(ZrxTi12x)O3, etc., which are also predicted to adopt vortex
domain structures in low-dimensional nanostructures.

We start with an investigation on the vortex domain structure of a
free-standing nanoplatelet. Simulations of polarization evolution at
various temperatures from up to 102 sets of initial random perturba-
tions are conducted to find the possible vortex domain structures.
The random perturbations obey the normal distribution with zero
mean polarization and standard deviation being 10–4Cm–2. Simulated
results indicate that multiple ‘‘vortex states’’ (i.e., vortex domain
structures with different size and number of vortices, or toroidal
direction) are stable in the free-standing nanoplatelet, especially at
low temperature. As shown in Fig. 2, ‘‘vortex states’’ with up to three
dipole vortices are generally observed at T 5 0K. It can be seen that
the vortices lie in the x-z plane due to the strongest confinement in y-
dimension, and manifest with near-null x- and z-components of the
toroidal moment. Tracing the evolution of toroidal moment and
domain morphologies as shown in Fig. 2, we classify three typical
behaviors during the formation of vortex domain structure, i.e., nuc-
leation, growth and adjustment. At the beginning, dipole vortices
nucleate to decrease the high energy density caused by strong polar-
ization inhomogeneity. After that, the vortices grow rapidly and
generally lead to a sudden increase of toroidal moment. During the
evolution, the vortices keep adjusting their sizes to balance each

Figure 1 | Schematics of the simulated nanosystems. A ferroelectric nanoplatelet under different surface traction along its prolate direction with (a)

initial random polarization perturbation or (b) initial vortex domain structure.

Figure 2 | Evolution of the toroidal moment and domain morphology in
a free-standing nanoplatelet. Toroidal moment evolution and snapshots

of domain evolution from different initial random perturbations towards

equilibrium (a) 1-vortex, (b) 2-vortices and (c) 3-vortices states.
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other, and some of them may be extruded out or merge into a bigger
one (e.g., see Fig. 2a).

Mechanical-load-controlling vortex domain structure of FNPL.
The multiplicity of stable vortex domain structures in low-
dimensional ferroelectric nanostructures indicates an uncertainty
of achieving specific ‘‘vortex state’’, which also shows some
potential applications, such as developing multiple-bits memory
unit. The key that brings such multiplicity to application is an
efficient control of vortex domain structure through external loads.
Considering the interaction between polarization and mechanical
stress field, regular controllability of the vortex domain structure
by mechanical load is also possible. In order to summarize this
behavior, we further simulate the vortex domain structure of a
nanoplatelet under different surface traction with the initial
random perturbation as shown in Fig. 2a. For a nanoplatelet under
different surface traction t, evolution of the y-component of toroidal
moment gy is shown in Fig. 3a at room temperature (T5300K). The
initial and equilibrium domain morphologies are also depicted in the
inserts. It can be seen that the equilibrium vortex domain structure is
obviously dependent on the surface traction. As t takes values from –
2.0 GPa to 0 GPa by a step of 0.1 GPa, simulations show that the
equilibrium vortex domain structures have five vortices at t g
[22.0 GPa, 21.1 GPa], four vortices at t g [21.0 GPa,
20.7 GPa], three vortices at t g [20.6 GPa, 20.4 GPa], and one
vortex at t g [20.3 GPa, 0 GPa], respectively. Meticulously tracing
the domain morphologies evolutions, we can find that mechanical
load significantly affects the nucleation and balance of vortices and
thus results in various equilibrium vortex domain structures (see
Supplementary Fig. S1 on line).

As ambient temperature is able to affect the weights of free energy
components and the stability of vortex domain structure (see
Supplementary Fig. S2 on line), the mechanical load effect on the
vortex domain structure in nanoplatelet is expected to be dependent
on temperature. In Fig. 3b and 3c, we depict respectively the simu-
lated mean magnitude of polarization over all sites, i.e., Ph i:
mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

1zP2
2zP2

3

p� �
, and the y-component of toroidal moment

gy of equilibrium domain structure as functions of surface traction t
at different temperatures. For each given temperature, it can be seen
in Fig. 3b and 3c that the mean magnitude of polarization and the
toroidal moment have strong dependence on surface traction, where
abrupt change at some values indicates different vortex domain
structures. At the same time, effect of temperature is also particularly
important to the mean magnitude of polarization and the toroidal
moment. For a given vortex domain structure, it can be found that
the increase of temperature tends to decrease the mean magnitude of
polarization and toroidal moment. Besides, the abrupt positions are
also changed along the axis of surface traction with variation of
temperature as shown in Fig. 3b and 3c, which indicates that the
existing ranges of specific vortex domain structures are significantly
dependent on temperature.

More importantly, in order to clearly investigate the common
influence of mechanical load and temperature on the vortex domain
structure in FNPL, we depict the temperature-stress (T-S) phase
diagram (as shown in Fig. 3d) of equilibrium vortex domain struc-
ture according to the results shown in Fig. 3b and 3c. As shown in
Fig. 3d, we obtain six different equilibrium vortex domain structures
in a nanoplatelet under the combining effects of mechanical load and
temperature. In general, the nanoplatelet tends to adopt vortex
domain structures with more/fewer vortices at more compressive/
tensile surface traction. Note that the nanoplatelet with large com-
pressive surface traction adopts vortex domain structures with four
or five vortices. However, these domain structures are difficult to
obtain from random perturbations in a free-standing nanoplatelet.
After removing the surface traction, vortex domain structures with
more vortices may remain stable or destabilize into those with fewer

vortices, which is also strongly dependent on the temperature (see
Supplementary Fig. S3a on line). Therefore, combining effects of
temperature and mechanical load, we can find the rich vortex
domain structures in a ferroelectric nanoplatelet.

Mechanical-load-controlling transformation of vortex domain
structure in FNPL. While the above results demonstrate strong
effect of mechanical load on formation of vortex domain structure,
it is of particular significance to investigate the response of existing
vortex domain structures to mechanical load, and to confirm that
mechanical-load-controlling transformations between ‘‘vortex states’’
are possible. To the best knowledge of us, such kind of vortex
transformation has not yet been predicted for three-dimensional

Figure 3 | Mechanical load effect on a nanoplatelet with initial random
perturbation. A nanoplatelet is under various mechanical loads but with a

given initial random perturbation as that shown in Fig. 2a. (a) The

evolution of the toroidal moment component gy under different surface

traction at T5300 K. The inserts depict the initial and equilibrium domain

morphologies. (b) and (c) depict the mean polarization magnitude and the

toroidal moment component of equilibrium vortex domain structure as

functions of surface traction under given temperatures. (d) Phase diagram

of the equilibrium vortex domain structure as a function of surface traction

and temperature.
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ferroelectric nanostructures. In order to find the relationship
between mechanical load and transformation of vortex domain
structure, simulations of a nanoplatelet under different surface
traction are conducted in following investigation.

The simulated results of a nanoplatelet with initial 1-vortex state
are shown in Fig. 4. According to the evolution of toroidal moment
together with the inserted initial and equilibrium domain morphol-
ogies (Fig. 4a), it can be seen that the mechanical load indeed can
induce transformations between ‘‘vortex states’’. In this case, the
initial 1-vortex state is compressed into 3-vortices state at –
1.3 Gpa and into 5-vortices state at –1.8 Gpa at room temperature,
manifested with a significant decrease of the equilibrium toroidal

moment. As what we will discuss later in this section, the above
transformations are accomplished by nucleation of new vortices at
the core of initial vortices or at the surfaces of nanoplatelet.

To clearly study the effect of mechanical load on vortex domain
structure in FNPL, the equilibrium mean magnitude of polarization
and the toroidal moment are simulated as functions of surface trac-
tion at different temperatures (Fig. 4b and 4c). At T 5 0K, the mean
magnitude of polarization and the toroidal moment decrease
smoothly with increasing magnitude of surface traction from 0 to
2.0 GPa. At higher temperature, abrupt changes of the two quantities
as function of surface traction are observed, indicating that transfor-
mations of the initial 1-vortex state into other ‘‘vortex states’’. Similar
to the result of a nanoplatelet with initial random perturbation (see
Fig. 3), the abrupt positions have strong dependences on the tem-
perature. From the calculated T-S phase diagram as shown in Fig. 4d,
it can be seen that these abrupt changes correspond to transforma-
tions of the initial 1-vortex state into ‘‘vortex states’’ with three, four
and five vortices, respectively. Increasing temperature tends to
decrease magnitude of the minimum transforming surface traction.
For example, for transformation from 1-vortex state to 3-vortices
state, the minimum compression surface traction changes from
21.7 GPa to 20.6 GPa with the increase of temperature from
100 K to 500 K. This indicates that ambient temperature can signifi-
cantly affect the transforming barrier of the ‘‘vortex states’’. More-
over, the domain structures with more vortices may remain stable or
destabilize into other ones with fewer vortices, and the transforma-
tions are also dependent on temperature (see Supplementary Fig. S3b
on line).

For a nanoplatelet with initial 2-vortices state (note, the vortices
are in similar size as that shown in Fig. 2b), the effect of mechanical
load is further investigated. Fig. 5a depicts the evolution of toroidal
moment at room temperature, where the initial 2-vortices state is
compressed into domain structures with four and six vortices at
t521.7 GPa and 21.9 GPa, respectively, and it can be also
stretched into 1-vortex state when t reaches 1.3 GPa. Combining
effects of mechanical load and temperature, we also calculate the
mean magnitude of polarization, the toroidal moment, and the cor-
responding T-S phase diagram. The results are shown in Fig. 5b and
5c. Note that the investigated temperature is no higher than 300 K, as
the 2-vortices state for a FNPL with free-standing condition is
unstable when temperature is higher than about 330 K. Compared
with the case of initial 1-vortex state, transformations of 2-vortices
state into ‘‘vortex states’’ with more vortices seem more difficult,
since nucleation of new vortices at the core of smaller vortex or at
the surfaces is more difficult. In the investigated range of surface
traction, no transformation is observed at T 5 0 K and T 5

100 K. Nevertheless, transformation from 2-vortices state to 4-
vortices state is observed at T 5 200 K, and that from 2-vortices state
to 6-vortices state is also found possible at T 5 300 K. Furthermore,
transformation of 2-vortices state to 1-vortex state can be induced by
a tensile surface traction at room temperature, yet appears in a not
very regular way as shown in Fig. 5c. Our simulations show that this
transformation happens only with the surface traction t between
1.3 GPa and 1.5 GPa. According to the vortex domain structure in
Fig. 5c, we attribute this stable 2-vortices state to the similar size of
the two vortices, which easily leads to a balance of the two vortices
under range of our analyzed stress load. For the initial 2-vortices state
with vortices in distinct size, or for the initial 3-vortices state, their
transformations into 1-vortex state are much easier to be induced by
tensile surface traction (see Supplementary Fig. S4 on line).

In view of the above results, we would like to investigate the evolu-
tions of mechanical-load-controlling transformations between ‘‘vor-
tex states’’. At room temperature, Fig. 6a and 6b depict evolutions of a
nanoplatelet with initial 2-vortices state transforming into 4-vortices
state at t521.7 GPa and 1-votex state at t51.4 GPa, respectively.
Results of other different kinds of transformations can be found in

Figure 4 | Mechanical load effect on a nanoplatelet with initial 1-vortex
state. A nanoplatelet is under various mechanical loads but with an initial

1-vortex state obtained at free-standing condition. (a) The evolution of the

toroidal moment component gy under different surface traction T5300 K.

The inserts depict the initial and equilibrium domain morphologies. (b)

and (c) depict the mean polarization magnitude ,P. and the toroidal

moment component gy of equilibrium vortex domain structure as

functions of surface traction under given temperatures. (d) Phase diagram

of the equilibrium vortex domain structure as a function of surface traction

and temperature.

www.nature.com/scientificreports
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Supplementary Fig. S5 on line. For the 2-vortices to 4-vortices trans-
formation as shown in Fig. 6a, it can be seen that new vortices
nucleate at the core of the initial vortex. In general, through this
way, the initial big vortex evolves into (2n11) small vortices, with
n being the integer. Transformations such as 2-vortices state to 6-
vortices state, 1-vortex state to 3-vortices state and 1-vortex state to
5-vortices state are all through this mechanism. It should be noted
that vortex nucleation at the surface is also possible (e.g., transforma-
tion from 1-vortex state to 4-vortices state as shown in Supple-
mentary Fig. S5 on line). As depicted by Fig. 6b, under influence of
tensile traction, the transformation from 2-vortices state to 1-vortex
state is fulfilled by the squeezing out of one vortex. This squeezing out
mechanism is more likely to happen when the initial vortices have

different size. Otherwise, the vortices may fall into a balance that is
difficult to break.

Tracing the evolution of the free energies as shown in Fig. 6c and
6d, it can be seen that the transformations are driven by decreasing of
the total free energy of the system. The elastic energy, Landau energy
and gradient energy contribute most of the total free energy, and they
change significantly during transformations of the vortex domain
structures. Meanwhile, the electric energy and surface energy remain
small levels but also change a little bit. For the transformation from 2-
vortices state to 4-vortices state shown in Fig. 6a, as compressive
mechanical load acts on the nanoplatelet, the elastic energy contrib-
uted by the coupling of compressive stress and z-directed polariza-
tion is relatively large, and causes a depressing of z-polarization
domains. This is accompanied by increase of the Landau energy
and decrease of the gradient free energy. Vortex nucleation takes
place as the decrease of elastic and gradient energy overwhelms the
increase of Landau energy. At this point, local depolarization field
should play an important role in vortex nucleation. After that, the
Landau energy decreases and the gradient free energy increases sig-
nificantly due to the growth of new vortices. For transformation from
2-vortices state to 1-vortex state, the evolutions of the free energies
indicate different features. In this case (see Fig. 6d), the decrease of
total free energy is more significant, which is mainly driven by the
decrease of elastic energy and Landau energy. The squeezing out of
one vortex induced by the tensile loading increases the magnitude of
polarization quite an amount, and results in large decrease of elastic
energy and Landau energy, but also an increase of gradient energy.
Nevertheless, despite the large thermodynamic driving force, the
transformation from 2-vortices state to 1-vortex state takes a much
longer simulating time than that from 2-vortices state to 4-vortices
state, which indicates a larger kinetic barrier.

Figure 6 | Evolution of the domain morphology and free energies during
transformations of vortex states. Snapshots of the domain evolution

during (a) the transformation from 2-vortices state to 4-vortices state

under compressive loading t521.7 GPa and (b) the transformation from

2-vortices state to 1-vortex state under tensile loading t51.3 GPa at

T5300 K. (c) and (d) depict the corresponding evolutions of the free

energy and its components during the two transformations, respectively.

Figure 5 | Mechanical load effect on a nanoplatelet with initial 2-vortices
state. A nanoplatelet is under various mechanical loads but with an initial

2-vortices state obtained at free-standing condition. (a) The evolution of

the toroidal moment component gy under different surface traction

T5300 K. The inserts depict the initial and equilibrium domain

morphologies. (b) and (c) depict the mean polarization magnitude and the

toroidal moment component gy of equilibrium vortex domain structure as

functions of surface traction under given temperatures. (d) Phase diagram

of the equilibrium vortex domain structure as a function of surface traction

and temperature.

www.nature.com/scientificreports
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Discussion
Our simulations demonstrate significant effects of mechanical load
on the vortex domain structure and its transformation in ferroelec-
tric nanoplatelet. Results show that the size and number of dipole
vortices in the domain structure of ferroelectric nanoplatelet can be
regularly controlled by adjusting the mechanical load, and yields rich
temperature-stress (T-S) phase diagrams of vortex domain structure.
Vortex domain structures with more/fewer vortices can be generally
obtained by applying compressive/tensile mechanical load to the
ferroelectric nanoplatelet. Consequently, the toroidal moment of
the nanoplatelet and the polarization magnitude of the dipoles
exhibit remarkable controllability. As an important finding, our cal-
culations demonstrated that the mechanical-load-controlling trans-
formations between different ‘‘vortex states’’ are possible, which are
totally different from those conventionally controlled on the vortex
domain by external electric fields. The regular controllability of vor-
tex domain structure and control of its transformation by mechanical
load are believed common in nanoscale ferroelectrics adopting vor-
tex domain structures. At the same time, results in present work
should be relevant for applications exploiting the vortex domain
structure of nanoscale ferroelectrics.

Nevertheless, we only have considered nanoplatelets with a special
size and shape under open-circuit condition in present work.
According to configuration of the ferroelectric nanoplatelets, the
direction of the toroidal moment is strongly fixed along the y-axis,
thus mechanical load mostly affect the magnitude of toroidal
moment by changing the size and number of vortices and the polar-
ization magnitude of dipoles. Actually, for other ferroelectric nano-
structures, such as nanodots and nanorods, not only the magnitude
but also the orientation of toroidal moment should be strongly
dependent on the mechanical load. Moreover, ambient temperature,
boundary conditions and size of the system can strongly affect the
relative weights of the components of free energy, thus the combina-
tion of these factors and mechanical load should bring more com-
plicated vortex domain patters. These issues need further
investigations in the future.

Methods
Phase field simulation on ferroelectric nanoplatelet. In the phase field simulation,
the domain structure of a ferroelectric is described by the order parameter, i.e., the
spontaneous polarization P 5 (P1, P2, P3). The electric displacement field is expressed
in terms of electric field, linear induced polarization and nonlinear spontaneous
polarization as D 5 e0E 1 xbE 1 P 5 ebE 1 P, where E 5 2=Q is the electric field, Q is
the electric potential, xb is the background susceptibility tensor, e0 is the vacuum
permittivity, and eb 5 e0 1 xb is the dielectric constant tensor of background
material38-40. Since the background material is in cubic paraelectric phase, the
background dielectric constants along the three axis directions are the same, i.e., eb 5

e11b 5 e22b 5 e33b.
The evolution of polarization field toward its equilibrium distribution is driven by

the decrease of total free energy of the system, which is phenomenologically described
by the time-dependent Ginzburg–Landau (TDGL) equations, i.e.,

LPi

Lt
~{M

dF
dPi

, i~1, 2, 3ð Þ ð1Þ

where F is the total free energy, M the kinetic coefficient related to the domain wall
mobility and t the time.

Based on the phenomenological theory, the total free energy of the system is
expressed as a functional of order parameter field and applied fields. For the FNPL
considered here, taking into account effects of mechanical stress, electric field, surface
and spatial polarization variation, the total Gibbs free energy could be written as sum
of the Landau free energy FLand, elastic energy Felas, gradient energy Fgrad, electrostatic
energy Felec and surface energy Fsurf, that is,

F~FLandzFelaszFgradzFeleczFsurf

~

ð
V

fLandzfelaszfgradzfelec
� �

dVz

ð
S

fsurf dS
ð2Þ

where fLand, felas fgrad, felec and fsurf are the corresponding free energy densities, V and S
the volume and surface of the FNPL.

For perovskite ferroelectrics, the Landau free energy density fLand can be generally
expressed up to eight-order polynomial expansion for a zero stress as41-44,

fLand~a1

X
i

P2
i za11

X
i

P4
i za12

X
iwj
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i P2

j za111
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P6
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X
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i P2

j zP4
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i
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za123P
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X
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� �

za1122

X
iwj

P4
i P4

j za1123

X
i=j=k,jwk

P4
i P2

j P2
k

ð3Þ

where ai, aij, aijk and aijkl are dielectric stiffness and higher order coefficients fitted to
bulk properties.

Under the condition of applied stress, the mechanical stress field (applied and
internal) and its coupling with polarization contribute to the elastic energy density,
which is described by,

felas~{QijklsijPkPl{
1
2

sijklsijskl , ð4Þ

where sijkl and Qijkl are the fourth-rank elastic compliance and electrostrictive coef-
ficients, respectively. sij are stress field components caused by the incompatibility of
eigenstrains and external mechanical load. In the absence of body forces, sij are
determined by the mechanical equilibrium equations sij,jjV 5 0 and corresponding
mechanical boundary condition tkjS 5 nisikjS, where the comma in the subscript
denotes spatial differentiation, tk are the surface tractions and ni the ith component of
the unit vector normal to the surface.

The spatial polarization variation contributes a gradient energy to the total free
energy. To the lowest order of Taylor expansion, the gradient energy density takes the

form as fgrad~
1
2

GijklPi,jPk,l , with Gijkl being the fourth-rank gradient energy coeffi-

cients. Due to truncation at the surface of nanoplatelet, the spontaneous polarization
is inhomogeneous across the out-of-plane direction. Thus an additional surface
energy is necessary to describe this intrinsic effect. Using the so-called extrapolation
length45, the surface energy density of the ferroelectric nanoplatelet can be approxi-

mately given by fsurf ~
1
2

DS
i P2

i

�
deff

i , where deff
i are extrapolation length and DS

i the

material coefficients related to the gradient energy coefficients and the surface ori-
entation. According to the previous works38,39,46, the electric energy density of a given

polarization distribution is written as felec~{PiEi{
1
2

ebEiEi . In the absence of

external electric field, the total electric field is equal to depolarization field induced by
spatial polarization variation and incomplete screening of the polarization charges at
truncated surfaces. Under the open-circuit condition, for a free-charge-absent body
the depolarization field can be calculated by the electrostatic equilibrium equation
Di,ijV 5 0 and the corresponding boundary condition DinijS 5 0.

Ferroelectric phase transition involves structural changes and results spontaneous
strains. At stress-free state, these strains are called eigenstrains, which are related to the
polarization as e0

ij~QijklPkPl . Considering the eigenstrains, the stress fields are given by

sij~cijklekl~cijkl ekl{e0
kl

� �
ð5Þ

where ekl are the elastic strains and ekl the total strains, which must be compatible and

are related to the displacement as eij~
1
2

ui,jzuj,i
� �

.

Substitute Eq. (5) into the mechanical equilibrium equations and its boundary
condition, we have

cijkluk,lj

��
V
~cijkle

0
kl,j

���
V

tj

��
S
~nicijkl uk,l{e0

kl

� ���
S

8<
: ð6Þ

Similarly, we have the electrostatic equilibrium equation and its boundary condition
in term of the potential as

ebQ,ii

��
V
~Pi,ijV

ebQ,ini

��
S
~PinijS

(
ð7Þ

Phase-field simulations are conducted by numerically solving the TDGL Eq. (1)
together with the mechanical and electrostatic equilibrium Eqs. (6) and (7). The
TDGL equations are solved using the finite difference method, whereas the mech-
anical and electrostatic equilibrium equations are solved by the finite element
method. The time step is chosen to be Dt 5 0.01a0M, with a0 5 ja1jT5300K. Values of
the expansion coefficients of the Landau-potential, electrostrictive coefficients, elastic
properties in calculations are listed Table 1. For PbTiO3, a commonly used six-order
Landau-potential is adopted in this study.

Finite element method to solve mechanical and electrostatic model. In our phase
field simulation, the inhomogeneous mechanical stress and electric fields are solved
using the finite element method. According to the variation relationship, the
mechanical and electrostatic equilibrium equations, i.e., Eqs. (6) and (7), can be
solved by finding the extreme value of following functionals, i.e.,

Ielas uið Þ~
ððð
V

1
2

cijkl eij{e0
ij

� �
ekl{e0

kl

� �
dV{

ðð
S

tiuidS ð8aÞ

Ielec Qð Þ~
ððð
V

ebQ,iQ,iz2QPi,i
� �

dV{2
ðð
S

QPinidS ð8bÞ
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where the freedoms of the two functionals are the displacement ui and the electric
potential Q, respectively.

In the following, it is convenient to rewrite Eqs. (8) into matrix form, i.e.,

Ielas uið Þ~
ððð
V

1
2

ef g{ e0
	 
� �T

C½ � ef g{ e0
	 
� �

dV{

ðð
S

tf gT uf gdS

~

ððð
V

1
2

Lu½ � uf g{ Q½ � P2
	 
� �T

C½ � Lu½ � uf g{ Q½ � P2
	 
� �

dV{

ðð
S

tf gT uf gdS

ð9aÞ

Ielec~

ððð
V

eb +Qf gT +Qf gz2QPi,i

� �
dV{2

ðð
S

QPinidS

~

ððð
V

eb LQ

	 

Q

� �T
LQ

	 

Q

� �
z2QPi,i

h i
dV{2

ðð
S

QPinidS

ð9bÞ

with some vectors and matrices defined as follows,

uf g~
u1

u2

u3

8><
>:

9>=
>;, tf g~

t1

t2

t3

8><
>:

9>=
>;, +Qf g~

LQ

Lx
LQ

Ly
LQ

Lz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

, sf g~

s11

s22

s33

s23

s13

s12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

, ef g~

e11

e22

e33

2e23

2e13

2e12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

,

e0
	 


~

e0
11

e0
22

e0
33

2e0
23

2e0
13

2e0
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

, P2
	 


~

P2
1

P2
2

P2
3

P2P3

P1P3

P1P2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

, LQ

	 

~

L
Lx
L
Ly

L
Lz

8>><
>>:

9>>=
>>;,

Lu½ �T~

L
Lx

0 0 0
L
Lz

L
Ly

0
L
Ly

0
L
Lz

0
L
Lx

0 0
L
Lz

L
Ly

L
Lx

0

2
66666664

3
77777775

,

C½ �~

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

2
666666664

3
777777775

and Q½ �~

Q11 Q12 Q12 0 0 0

Q12 Q11 Q12 0 0 0

Q12 Q12 Q11 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q44 0

0 0 0 0 0 Q44

2
666666664

3
777777775
ð10Þ

In the finite element method of this study, the simulated ferroelectric is meshed into
eight-node cubic elements. The displacement vector and the electric potential at the
ith nodes of an element are denoted as dif g~ ui

1ui
2ui

3

	 

and Qi, with i 5 1, 2, 3, …, 8.

The displacement vector and the electric potential of the eight nodes in each element
is then expressed by column vectors as

def g~ d1f g d2f g d3f g d4f g d5f g d6f g d7f g d8f gf gT ð11aÞ

Qef g~ Q1Q2Q3Q4Q5Q6Q7Q8f gT ð11bÞ
The displacement and the electric potential in the element are expressed in terms of
those of the nodes, i.e.,

uf g~ Nu½ � def g and Q~ NQ

� �
Qef g ð12Þ

in which

Nu½ �~
Nu1 0 0 Nu2 0 0 � � � Nu8 0 0

0 Nu1 0 0 Nu2 0 � � � 0 Nu8 0

0 0 Nu1 0 0 Nu2 � � � 0 0 Nu8

2
64

3
75 ð13Þ

and

NQ

� �
~ NQ1NQ2 � � �NQ8
� �

ð14Þ

where Nui and NQi are the interpolation functions.
Substitute Eqs. (12) into Eqs. (9), we have,

Ielas~
X

e

ððð
Ve

1
2

Bu½ � def g{ Q½ � P2
	 
� �T

C½ � Bu½ � def g{ Q½ � P2
	 
� �

dV

{
X

e’

ðð
Se

tf gT Nu½ � def gdS

ð15aÞ

Ielec~
X

e

ððð
Ve

eb BQ

� �
Qef g

� �T
BQ

� �
Qef g

� �
z2Pi,i NQ

� �
Qef g

h i
dV

{
X

e’
2
ðð
Se

Pini NQ

� �
Qef gdS

ð15bÞ

where e and e’ label the elements in the volume and those at the surface, respectively,
matrices [Bu];[Lu][Nu] and [BQ];[LQ][NQ].

Variation of the two functionals in Eqs. (15) with respect to the displacement {de}
and the electric potential {Qe} at all nodes should be zero, which results

dIelas~
X

e

ððð
Ve

Bu½ � def g{ Q½ � P2
	 
� �T

C½ � Bu½ �d def gdV

{
X

e0

ðð
Se

tf gT Nu½ �d def gdS~0

ð16aÞ

dIelec~
X

e

2
ððð

Ve

eb Qef gT BQ

� �T
BQ

� �
zPi,i NQ

� �h i
d Qef gdV

{
X

e’
2
ðð
Se

Pini NQ

� �
d Qef gdS~0

ð16bÞ

Based on the variation principle, the following element equations can be obtained
from Eqs. (16), i.e.,

Ke
u

� �
def g~ Fe

u

	 

and Ke

Q

h i
Qef g~ Fe

Q

n o
ð17Þ

where

Ke
u

� �
~

ððð
Ve

Bu½ �T C½ � Bu½ �dV ð18aÞ

Ke
Q

h i
~

ððð
Ve

eb BQ

� �T
BQ

� �
dV ð18bÞ

Fe
u

	 

~

ððð
Ve

Bu½ �T C½ � Q½ � P2
	 


dVz

ðð
Se

Nu½ �T tf gdS ð18cÞ

Fe
Q

n o
~

ððð
Ve

Pi,i NQ

� �T
dVz

ðð
Se

Pini NQ

� �T
dS ð18dÞ

Table 1 | Values of parameter used in the phase-field simulations
(SI units and T in K)

Parameter Value Unit

a1 3.85(T2752)3105 C22m2N
a11 27.33107 C24m6N
a12 7.53108 C24m6N
a111 2.63108 C26m10N
a112 6.13108 C26m10N
a123 23.73109 C26m10N
s11 8.0310212 m2N21

s12 22.5310212 m2N21

s44 9.0310212 m2N21

Q11 0.089 C22m4

Q12 20.026 C22m4

Q44 0.0675 C22m4

G11 3.46310210 m4NC22

G12 0 m4NC22

G44 1.73310210 m4NC22

G944 1.73310210 m4NC22

DS
i 3.46310210 m4NC22

di
eff 531029 m

eb 4.425310210 Fm21

Values of the expansion coefficients of the Landau potential, elastic compliance and electrostrictive
coefficients are from ref. 42, the isotropic gradient coefficients are from ref. 47, the extrapolation
length is from ref. 48, and the background dielectric constant is from ref.38 and 39.
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are the stiffness matrices and node force vectors of element e. Assembling the stiffness
matrices, displacement and electric potential vector, and the force vectors of all the
elements together yields the global equations:

Ku½ � Uf g~ Fuf g and ½KQ

�
Qf g~ FQ

	 

ð19Þ

where [Ku] and [KQ] are global stiffness matrices, {Fu} and {FQ} are global force
vectors, and {U} and {W} are the vectors containing all the node displacement and
electric potential, respectively. The node displacement and electric potential can be
conveniently determined by solving Eqs. (19) using the Gauss-Seidel iteration
method.
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