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 Background: Bladder cancer is a malignant tumor of the genitourinary system. Different subtypes of bladder cancer have 
different treatment methods and prognoses. Therefore, identifying hub genes affecting other genes is of great 
significance for the treatment of bladder cancer.

 Material/Methods: We obtained expression profiles from the GSE13507 and GSE77952 datasets from the Gene Expression Omnibus 
database. First, principal component analysis was used to identify the difference in gene expression in differ-
ent types of tissues. Differential expression analysis was used to find the differentially expressed genes be-
tween normal and tumor tissues, and between tumors with and without muscle infiltration. Further, based on 
differentially expressed genes, we constructed 2 decision trees for differentiating between tumor and normal 
tissues, and between muscle-infiltrating and non-muscle-infiltrating tumor tissues. A receiver operating char-
acteristic curve was used to evaluate the prediction effect of the decision trees.

 Results: FAM107A and C8orf4 showed significantly lower expression in bladder cancer tissues than in normal tissues. 
Regarding muscle infiltration, CTHRC1 showed lower expression and HMGCS2 showed higher expression in 
non-muscle-infiltrating samples than in those with muscle infiltration. We constructed 2 decision trees for dif-
ferentiating between tumor and normal tissue, and between tissues with and without muscle infiltration. Both 
decision trees showed good prediction results.

 Conclusions: These newly discovered hub genes will be helpful in understanding the occurrence and development of differ-
ent subtypes of bladder cancer, and will provide new therapeutic targets and biomarkers for bladder cancer.
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FAM107A – family with sequence similarity 107 member A; CTHRC1 – collagen triple helix repeat con-
taining 1; HMGCS2 – 3-Hydroxymethylglutaryl-CoA synthase 2; ROC curves – receiver operating charac-
teristic curves
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Background

Recent cancer statistics show that bladder cancer is the sec-
ond most common malignant tumor among all urogenital tu-
mors [1]. It has become the ninth most common malignant 
tumor globally and the thirteenth most frequent cause of 
cancer-related deaths [2]. It is estimated that there are more 
than 500 000 confirmed cases of bladder cancer each year, 
and about 200 000 deaths, accounting for 5% of all cancer-
related deaths [3]. Currently, the treatment strategies used 
for bladder cancer usually combine surgery with various ad-
juvant therapies (such as chemotherapy) [4]. However, for pa-
tients with locally advanced or metastatic bladder cancer, the 
survival rate is still low [4], and the risk of recurrence is high. 
According to statistics, of the approximately 75% of patients 
diagnosed with non-muscle-invasive bladder cancer, 30-70% 
of tumors will reoccur [5], and 30% of tumors will develop into 
muscle-invasive disease [6]. Therefore, finding new diagnos-
tic and therapeutic targets is important for reducing the mor-
tality of bladder cancer.

Principal component analysis (PCA) is a multivariate statisti-
cal method that can identify patterns and classify factors that 
affect a given phenomenon. It is a technique widely used to 
identify patterns in the medical field. Machine learning can re-
place statistical methods, including differential expression [7]. 
Machine learning algorithms are divided into supervised (with 
prior knowledge) and unsupervised (without any input of pri-
or knowledge). In the latter, the dataset is divided into train-
ing and test data, where the training data are used to create 
a decision tree and test its performance.

In this study, we first obtained the expression profile for 2 da-
tasets, GSE13507 and GSE77952, from the Gene Expression 
Omnibus (GEO) database. Evaluation and comparison of gene 
expression in different kinds of tissues, using PCA, was con-
ducted on the GSE13507 and GSE77952 datasets.

It was determined that the normal and adjacent groups had 
evident clustering compared with the tumor group samples, 
and the muscle-infiltrating tumor group and non-muscle-infil-
trating tumor group had an obvious difference in clustering. 
Then, we drew a heatmap based on the gene expression lev-
el of the GSE13507 dataset and used a volcano map to show 
the differentially expressed genes (DEGs) between the normal 
group and the tumor group in GSE13507. Simultaneously, we 
draw heatmaps and volcano maps from the GSE77952 data-
set to show the DEGs between the muscle-infiltrating tumor 
group and non-muscle-infiltrating tumor group samples. In the 
GSE13507 dataset, gene set enrichment analysis (GSEA) and 
gene ontology (GO) analysis were performed to show biologi-
cal pathways that may be involved in these different subtypes. 
Finally, we added the GSE37815, GSE7476, and GSE120736 

datasets. After removing batch effects from the expression 
profiles, samples were randomly divided into a training group 
and testing group according to the ratio of 7: 3. The decision 
tree was constructed based on the DEGs from the GSE13507 
dataset (normal vs tumor samples). Finally, the expression of 
the family with sequence similarity 107 member A (FAM107A) 
and chromosome 8 open reading frame 4 (C8orf4) DEGs was 
used to classify normal samples vs cancer samples. The dif-
ferential expression analysis results between the muscle-in-
filtrating tumor group and the non-muscle-infiltrating tumor 
group in the GSE13507 dataset and the GSE77952 dataset 
were selected, and, eventually, 11 DEGs were obtained. Based 
on these 11 genes, a decision tree classifying samples into ei-
ther the muscle-infiltrating tumor group or the non-muscle-in-
filtrating tumor group was constructed. The 2 decision nodes 
of this classifier were high expression of collagen triple helix 
repeat containing 1 (CTHRC1) and 3-hydroxymethylglutaryl-
CoA synthase 2 (HMGCS2).

This research will help in the understanding of molecular mech-
anisms underlying bladder cancer and the exploration of mus-
cle-infiltrating and non-muscle-infiltrating tumor types, there-
by providing valuable clues for further study.

Material and Methods

Data Collection

The GEO database (https://www.ncbi.nlm.nih.gov/geo/) con-
tains high-throughput gene expression and microarray data [8] 
based on the “GEOquery” R package [9]. We downloaded the 
expression profiles of 5 datasets: GSE13507 (232 samples), 
GSE37815 (23 samples), GSE77952 (30 samples), GSE7476 (12 
samples), and GSE120736 (112 samples). In total, 124 mus-
cle-invasive samples, 210 non-muscle-invasive samples, and 
75 normal samples were included in the study.

Principal Component Analysis

PCA is a common sample-clustering method usually used for 
gene expression, diversity analysis, resequencing, and oth-
er sample-clustering based on various variable information. 
We first performed PCA to show clustering of gene expres-
sion by sample type, with comparison between tumor, normal, 
and paracancer tissues in the GSE13507 dataset, comparison 
between normal, muscle-infiltrating tumor, and non-mus-
cle-infiltrating tumor samples in the GSE13507 dataset, and 
comparison between muscle-infiltrating tumor and non-mus-
cle-infiltrating tumor samples in the GSE77952 dataset.

e929394-2
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Zhou J.-Q. et al: 
GEO-based decision tree to classify bladder cancer

© Med Sci Monit, 2021; 27: e929394

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



Differential Analysis

A common differential analysis method for gene expression mi-
croarray data is the “Limma” R package [10]. To discover under-
lying hub genes related to tumorigenesis and muscle infiltration, 
we performed the following differential analysis: (1) between 
tumor tissues and normal tissues (normal tissues and pan-can-
cer tissues) in the GSE13507 dataset, with gene inclusion crite-
ria of P value <0.01 and |logFC| >1.5; (2) between muscle-infil-
trating tumor and non-muscle-infiltrating tumor samples in the 
GSE13507 dataset, with gene inclusion criteria of P value <0.01 
and |logFC| >1.2; and (3) between muscle-infiltrating tumor and 
non-muscle-infiltrating tumor samples in the GSE77952 data-
set, with gene inclusion criteria of P value <0.01 and |logFC| 
>0.4. Volcanic plots were used to show DEGs and their inclu-
sion criteria; heatmaps were used to show the top 100 DEGs.

Gene Set Enrichment Analysis and Enrichment Analysis

To explore the potential molecular mechanisms behind our 
constructed DEGs, enriched terms were found by performing 
GSEA [11,12]. We utilized the R package “clusterprofiler” [13] 
to perform GSEA and enrichment analysis. GO terms or Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways with 
adjusted P<0.05 were considered statistically significant and 
visualized by “GOplot” (R package) [14].

Removal of Batch Effect

Since the 5 datasets included in the study were not sequenced 
from the same batch, further removal of batch effects was 
needed. Batch effects are technical, systematic biases intro-
duced by sequencing samples that were not correlated with 
biological status when processed and measured in different 
batches. In this study, the ComBat function of the “sva” R pack-
age was used to remove batch effects and the differences be-
fore and after batch effect removal were assessed using PCA.

Construction of Decision Trees

Supervised classification was performed using Recursive 
Partitioning and Regression Tree (RPART) and was implement-
ed through the “Rpart” R package. After integrating all sam-
ples from the 5 datasets, they were randomly divided into 
training and testing groups (training group: testing group ra-
tio=7: 3). A decision tree was constructed based on the DEGs 
between normal tissues and tumor tissues in the GSE3507 
dataset. The decision tree construction from the muscle-infil-
trating tumor and the non-muscle-infiltrating tumor samples 
was based on the intersection of differentially expressed hub 
genes in muscle-infiltrating tumor vs non-muscle-infiltrating 
tumor samples in the GSE13507 dataset and GSE77952 datas-
et. Receiver operating characteristic curves (ROC curves) were 
used to evaluate the predictive effect of decision trees in the 
training and testing sets.

Intergroup	Differences	in	Hub	mRNAs

To compare the differences in expression of hub mRNAs in dif-
ferent types of samples, our study compared hub mRNA ex-
pression differences between normal and tumor samples in 5 
datasets, and the hub mRNA expression differences between 
muscle-infiltrating tumor and non-muscle-infiltrating tumor 
samples, using the Wilcoxon test.

Results

Principal Component Analysis

We performed PCA on the normal samples and tumor samples 
in the GSE13507 dataset. The results showed significant differ-
ences between normal samples (including normal samples and 
adjacent samples) and tumor samples in the GSE13507 data-
set (Figure 1A). Tumor samples and normal samples formed 
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Figure 1.  (A–C) Principal component analysis of different types of tissues in the GSE13507 and GSE77952 datasets.
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distinct clusters. The PCA of muscle-infiltrated samples and 
non-muscle-infiltrated samples in the GSE77952 dataset and 
GSE13507 dataset showed a few differences in clustering be-
tween muscle-infiltrating tumors and non-muscle-infiltrating 
tumors (Figure 1B, 1C).

Differential Expression Analysis

In the GSE13507 dataset, 67 normal samples (including pa-
ra-cancerous samples) and 165 tumor samples were includ-
ed. The difference heatmap and volcano map of the 2 groups 
were drawn according to their different gene expression levels 
(Figure 2A). Five upregulated genes and 141 downregulated 
genes emerged from the screening (P value <0.01 and |logFC| 
>1.5) (Figure 2D). The GSE13507 dataset’s cancer samples in-
cluded 62 samples that were invasive and 103 samples that 
were non-invasive. A heatmap of the 2 groups’ gene expres-
sion levels was drawn, and a volcano map was used to visual-
ize the DEGs (Figure 2B, 2E). There were 39 upregulated genes 

and 26 downregulated genes (P value <0.01) and |logFC | >1.2). 
Finally, in the GSE77952 dataset, we drew a heatmap of be-
tween-samples gene expression differences in the muscle-infil-
tration group vs the non-muscle-infiltration group (Figure 2C), 
and used the volcano map to show the DEGs (Figure 2F). The 
screening yielded 45 upregulated and 17 downregulated genes 
(P value <0.01 and |logFC| >0.4).

Gene Set Enrichment Analysis and Enrichment Analysis

To explore the potential mechanism behind the DEGs, GSEA 
and enrichment analysis were performed. We found that the 
differential gene enrichment results of the tumor and normal 
samples were: aminoacyl tRNA biosynthesis, base excision 
repair, cell cycle, DNA replication, Fanconi anemia pathway, 
and homologous recombination. In the muscle-infiltrating tu-
mor group and the non-muscle-infiltrating tumor group, the 
differentially expressed gene sets were enriched in: com-
plement and coagulation cascades, DNA replication, IL-17 
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signaling pathway, pertussis, prion diseases, and rheumatoid 
arthritis (Figure 3A, 3B). The GO enrichment analysis showed 
that the GO annotations of DEGs could be divided into 3 cat-
egories: biological processes, cell composition, and molecu-
lar functions. We found that DEGs between normal samples 
and tumor samples were enriched in: antigen processing and 
presentation of exogenous peptide antigen via major histo-
compatibility complex (MHC) class II, antigen processing and 
presentation of peptide antigen via MHC class II, antigen pro-
cessing and presentation of peptide or polysaccharide antigen 
via MHC class II, muscle system process, extracellular matrix 
organization, extracellular structure organization, interferon-
gamma-mediated signaling pathway, T-cell receptor signaling 
pathway, muscle cell differentiation, and enrichment in myo-
fibril assembly (Figure 3C). The DEGs between the infiltrating 
group and the non-infiltrating group were mainly enriched in: 
extracellular matrix organization, extracellular structure or-
ganization, muscle contraction, cellular zinc ion homeostasis, 
zinc ion homeostasis, prostate gland morphogenesis, prostate 
gland development, response to the metal ion, connective tis-
sue development, and detoxification of copper ion (Figure 3D).

Removal of Batch Effects

Before removing batch effects, the direct batch effect of the 5 
datasets was first evaluated using PCA, and the results of the 
analysis are shown in Figure 4A, where the 5 datasets showed 
separate clustering with obvious differences. The results of 
the PCA after removing the batch effect through the ComBat 
function are shown in Figure 4B. There was no separate clus-
tering of expression between the datasets.

Construction of the Decision Trees

Due to the small sample size of GSE13507 and GSE77952, we 
added 3 more datasets (GSE37815, GSE7476, and GSE120736). 
The samples included muscle-invasive tumor (124 cases), non-
muscle-invasive tumor (210 cases), and normal tissue (75 cas-
es). The patients were randomly separated into a training set 
(n=286) and testing set (n=123).

After the grouping was completed, applying RPART to the train-
ing set, a decision tree to distinguish normal from tumor tis-
sue was constructed. The decision tree contains 2 decision 
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nodes: FAM107A and C8orf4 (Figure 5A). The testing dataset 
(30% of the total data) was used to measure the performance 
of the decision tree. The discriminative power of this classifi-
er was then evaluated by ROC curve. The discriminative pow-
er of this decision tree in training and testing sets is shown in 
Figure 5C, 5D. The area under the curve (AUC) was 0.845 in 
the training set and 0.7133 in the testing set. That is, the de-
cision tree consisting of FAM107A and C8orf4 showed a good 
ability to discriminate tumor from normal samples in both the 
training set and the testing set.

After excluding the normal samples from the training and test-
ing sets, the same method was used for the construction of a 
decision tree to distinguish between muscle-infiltrating tumor 
samples and non-muscle-infiltrating tumor samples. This de-
cision tree contained 2 decision nodes, HMGCS2 and CTHRC1 
(Figure 5B). The discriminative power of this decision tree in 
training and testing sets is shown in Figure 5E, 5F. The AUC 
was 0.7133 in the training set and 0.7038 in the testing set. 
This indicates that the decision tree, consisting of HMGCS2 
and CTHRC1, showed a good ability to discriminate muscle-
infiltrating tumor from non-muscle-infiltrating tumor samples 
in both the training set and the testing set.

Intergroup	Differences	in	Hub	mRNAs

To compare the expression differences of FAM107A and 
C8orf4 in normal and tumor samples, differential expression 
of HMGCS2 and CTHRC1 was compared in muscle-infiltrat-
ing tumor and non-muscle-infiltrating tumor samples. In our 
study, the expression differences between genes in the 5 da-
tasets were compared using the Wilcoxon test. The results 
show that FAM107A and C8orf4 both show statistically signif-
icantly higher expression in normal samples in the GSE13507, 

GSE37815, and GSE7476 datasets. GSE77952 and GSE120736 
do not include normal tissue samples, so they were not part of 
this comparison. Compared with the muscle-infiltrating tumor 
samples, CTHRC1 showed low expression and HMGCS2 showed 
statistically significantly higher expression in non-muscle-infil-
trating tumor samples. This indicates that high expression of 
FAM107A and C8orf4 may play an important role in the devel-
opment of bladder cancer, and could possibly be used as a new 
biomarker for identifying tumors. In tumor samples, HMGCS2 
and CTHRC1 might be used to discriminate between muscle-
infiltrating tumor and non-muscle-infiltrating tumor samples. 
Also, the change in expression of HMGCS2 and CTHRC1 may 
play a large role in the progression from non-muscle-infiltrat-
ing to muscle-infiltrating tumors (Figure 6).

Discussion

Bladder cancer is a severe health problem worldwide and is 
the second most common malignant tumor among all urogen-
ital tumors [1]. Approximately 75% of patients are diagnosed 
with non-muscle-invasive bladder cancer, and 30-70% of these 
tumors will reoccur [5]. Unfortunately, the treatment of blad-
der cancer has made little progress. At present, transurethral 
bladder tumor resection is the most common surgical meth-
od for non-invasive bladder cancer, but the recurrence rate is 
high [15]. Therefore, there is an urgent need to find new treat-
ment strategies and biomarkers.

In our study, we found that the decision tree constructed based 
on FAM107A and C8orf4 can be used to distinguish between 
normal and bladder cancer tissues, as expression of FAM107A 
and C8orf4 in bladder cancer tissues is reduced compared 
with that in normal bladder tissues. This finding heralds the 
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potential role of FAM107A and C8orf4 in bladder cancer diag-
nosis, prognosis, and anti-cancer therapy.

Low expression of FAM107A, in fact, is not only associated 
with bladder cancer, but may also play an important role in 
other tumors. A study by Kiwerska et al showed that FAM107A 
has a low expression level in larynx squamous cell carcinoma 
[16]. There is also loss of FAM107A expression in non-small 
cell lung cancer samples, and the key silencing mechanism is 
not related to promoter hypermethylation [17]. As an activator 
of the Wnt signaling pathway, C8orf4 is involved in the devel-
opment of many tumors; for example, cervical squamous cell 
carcinoma, and high-grade squamous intraepithelial lesions 
showed significant differences in C8orf4 expression compared 
with normal cervical tissues or low-grade squamous intraep-
ithelial lesions [18]. Yi-Wen Zheng et al investigated the role 
of C8orf4 in lung cancers from the perspective of methylation 
and expression level, and the results showed that the meth-
ylation level of C8orf4 in lung cancer tissues was lower than 
that in normal tissues, and high expression of C8orf4 correlated 
with poor prognosis [19]. Zhu et al found that C8orf4 showed 
low expression in liver cancer stem cells and hepatocellular 

carcinoma tissues, and that self-renewal of liver cancer stem 
cells is regulated by C8orf4 via suppression of NOTCH2 sig-
naling [20]. These studies all demonstrate the important role 
of FAM107A and C8orf4 in tumor formation and progression.

Our research also found that HMGCS2 and CTHRC1 can be used 
to distinguish between muscle-infiltration samples and non-
muscle-infiltration samples. In non-muscle-infiltration sam-
ples, CTHRC1 showed low expression and HMGCS2 showed 
high expression. This might mean that CTHRC1 may promote 
tumor progression. This viewpoint has been supported by gas-
tric cancer studies, in which CTHRC1 was found to be capable 
of promoting gastric cancer metastasis via the HIF-1a/CXCR4 
signaling pathway [21]. In addition, high expression of CTHRC1 
has been demonstrated to be closely linked to the prognosis 
of prostate cancer; immune function related to prostate cancer 
may be suppressed by CTHRC1; and high expression of CTHRC1 
is related to tumor recurrence [22]. CTHRC1 has also been re-
ported to be involved in the progression of liver fibrosis, hepa-
tocellular carcinoma, cervical squamous cell carcinoma, non-
small cell lung cancer, and other tumors [23-26]. Similarly, the 
protective value of HMGCS2 for tumor prognosis has also been 
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Figure 5.  (A, C, D) Decision tree, used to classify normal samples and tumor samples. The area under the curve (AUC) was 0.845 in the 
training set and 0.7133 in the testing set. (B, E, F) Decision tree, used to classify muscle-infiltrating tumor samples and non-
muscle-infiltrating tumor samples, AUC is 0.7133 in the training set and 0.7038 in the testing set.
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Figure 6.  FAM107A and C8orf4 both showed high expression in normal samples from the GSE13507, GSE37815, and GSE7476 
datasets. CTHRC1 showed low expression and HMGCS2 showed high expression in the non-muscle-infiltrating tumor 
samples, compared with the muscle-infiltrating tumor samples.

demonstrated: HMGCS2 overexpression increased intracellu-
lar ketone levels and inhibited cell proliferation, cell migration, 
and xenograft tumorigenesis in hepatocellular carcinoma [27]. 
In prostate cancer, HMGCS2 has been shown to act as a tu-
mor suppressor [28]. Tumor inhibition was also demonstrat-
ed in esophageal squamous cell carcinoma [29].

Decision trees have been used quite extensively in medicine; 
for example, decision trees for the selection of surgical ap-
proach for hepatectomy for hepatocellular carcinoma [30] 
and MRI-based decision trees in the diagnosis of biliary atre-
sia in jaundiced infants [31]. Sherafatian et al constructed a 
decision tree for lung cancer diagnosis and subtype determi-
nation based on miRNA expression data in the database [32]. 
With the development of genomics and the cost reduction of 
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second-generation sequencing, more and more sequencing 
data are available for our further study, and combining ge-
nomics data and decision trees is prudent for cancer research.

In this study, we constructed 2 decision trees for differentiat-
ing between tumor and normal tissue and between muscle-
infiltrating and non-muscle-infiltrating tumor tissue. These 
trees will be beneficial for early diagnosis in bladder cancer 
patients, and may even have the potential to replace tradition-
al diagnostic methods if supported by further studies, which 
would serve to provide a simple and accurate strategy for the 
diagnosis of bladder cancer. Meanwhile, the results regarding 
FAM107A, C8orf4, HMGCS2, and CTHRC1 also suggest impor-
tant roles for these genes in bladder cancer progression; they 
may serve as potential therapeutic targets and deserve fur-
ther investigation.

Conclusions

This study found that FAM107A and C8orf4 show low expres-
sion in bladder cancer tissues compared with normal blad-
der tissues. Also, with regard to muscle-infiltration, CTHRC1 
showed lower expression and HMGCS2 showed higher expres-
sion in non-muscle-infiltrating tumor samples than in muscle-
infiltrating tumor samples. On the bases of our findings, we 
constructed 2 decision trees for differentiating bladder can-
cer tumor tissue from normal bladder tissue, and muscle-infil-
trating tumor tissue from non-muscle-infiltrating tumor tissue. 
Both of these decision trees showed good predictive results.
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