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Abstract

Accumulating evidence highlights the important role of long non-coding RNAs (lncRNAs) in

a large number of biological processes. However, the knowledge of genome scale expres-

sion of lncRNAs and their potential biological function in gastric cancer is still lacking. Using

RNA-seq data from 420 gastric cancer patients in The Cancer Genome Atlas (TCGA), we

identified 1,294 lncRNAs differentially expressed in gastric cancer compared with adjacent

normal tissues. We also found 247 lncRNAs differentially expressed between intestinal sub-

type and diffuse subtype. Survival analysis revealed 33 lncRNAs independently associated

with patient overall survival, of which 6 lncRNAs were validated in the internal validation set.

There were 181 differentially expressed lncRNAs located in the recurrent somatic copy

number alterations (SCNAs) regions and their correlations between copy number and RNA

expression level were also analyzed. In addition, we inferred the function of lncRNAs by con-

struction of a co-expression network for mRNAs and lncRNAs. Together, this study pre-

sented an integrative analysis of lncRNAs in gastric cancer and provided a valuable

resource for further functional research of lncRNAs in gastric cancer.

Introduction

Gastric cancer is the fourth most common cancer and the second leading cause of cancer-

related death worldwide [1]. Despite advances in treatment and understanding of the molecu-

lar basis of the disease, treatment outcome for gastric cancer still remains undesirable [2].

Long non-coding RNAs (lncRNAs) are a large class of non-protein-coding transcripts that

are with more than 200 nucleotide in length. Although without apparent protein coding poten-

tial, lncRNAs play critical regulatory roles in a large number of biological processes such as

chromatin remodeling, transcription, post-transcriptional processing and intracellular traf-

ficking [3, 4]. It was also reported that lncRNAs played a role in carcinogenesis and could be

diagnostic or prognostic biomarkers for gastric cancer. For example, GAPLINC was firstly

identified in gastric cancer and its upregulation was associated with shorter survival of gastric

cancer patients [5]. Another lncRNA, GClnc1, was up-regulated and associated with tumori-

genesis, tumor size, metastasis, and poor prognosis in gastric cancer. Mechanistically, GClnc1
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acted as a modular scaffold of WDR5 and KAT2A complexes and specified the histone modifi-

cation pattern on the target genes, including SOD2 [6]. However, the knowledge of genome

scale expression of lncRNAs and their potential biological function in gastric cancer is still

lacking.

In the present study, we profiled the global expression patterns and dysregulation of

lncRNAs in gastric cancer utilizing RNA-seq and clinical data from 420 gastric cancer patients

in The Cancer Genome Atlas (TCGA). We then identified the lncRNAs associated with sub-

type and prognosis. We also investigate the global relationship between copy number and

lncRNA expression. Finally, we inferred the function of lncRNAs with co-expression network

analysis.

Methods

The Cancer Genome Atlas (TCGA) data

We downloaded RNA-seq data (RNA-seq V2, fastq files) for 420 gastric cancers and 36 adja-

cent normal tissues from TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/) and the Can-

cer Genomics Hub (CGHub, https://cghub.ucsc.edu/). Their related clinical data were

obtained on 8 March 2016.

RNA-seq data processing

LncRNA catalogue was retrieved from GENCODE v19 [7]. The fastq files were aligned to the

human reference genome (Ensembl Homo sapiens GRCh37/hg19) using Subread [8] allowing

only unique mapping. Using featureCounts [9], the aligned reads were counted on gene-level

based on the gene annotation from Ensembl 75 [10] (GENCODE v19).

Differential expression analysis

Read count tables were imported into the edgeR package [11] and only genes with read

count> 0 in at least 75% of the samples were kept for downstream analysis. Then the data

were normalized and log-counts per million (log-cpm) were calculated using the voom func-

tion of the limma package [12]. The pipeline of the empirical Bayes model implemented by

limma was used to identify the differentially expressed genes between two different groups

(gastric cancer vs. adjacent normal tissue, diffuse subtype vs. intestinal subtype). Benjamini

and Hochberg method was used for adjusting for multiple testing [13]. Genes with adjusted

p-values below 0.05 and absolute fold change > 2 were considered differentially expressed.

Additional independent dataset

Additional independent dataset from Korea [14] was downloaded from NCBI Sequence Read

Archive (accession number SRP014574). The dataset contained 32 RNA-seq data of gastric

cancer and adjacent normal tissue from 16 patients in Korea. Each sample was paired-end

sequenced with the Illumina Genome Analyzer II or with the Illumina HiSeq 2000 using

HiSeq Sequencing kits. Detailed information about the patients and samples were referenced

from the publication by Yoon [14].

LncRNAs associated with prognosis

Patients with overall survival information available were randomly divided into a training set

(n = 259, 66.8%) and a validation set (n = 129, 33.2%). In the training set, univariate Cox pro-

portional hazards regression analysis was employed to explore the associations of different

covariates, including lncRNA expression(continuous data), gender, age (cutoff point: median
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value), grade (1 + 2 vs. 3), histological type (intestinal subtype vs. diffuse subtype), AJCC stage

(stage III + IV vs. stage I + II), with patient overall survival. In the case of no death, the event

time was censored at the date of last contact. Furthermore, multivariate Cox proportional haz-

ards regression analysis was performed by combining the potential prognostic factors (with p
values< 0.01 in the univariate Cox regression analysis). P< 0.05 was considered statistically

significant in the multivariate Cox regression analysis. Then, lncRNAs associated with overall

survival were assessed in the validation set. The survival analysis was conducted using the sur-

vival package [15].

LncRNAs in regions of focal copy-number alteration

Copy number segmentation data (level 3) of the Affymetrix SNP 6.0 platform were down-

loaded from TCGA. GISTIC2.0 [16] was used to identify genomic regions that were focally

amplified or deleted. Aberrant regions were considered significant if the assigned FDR q-value

was less than 0.25. The lncRNAs within these regions were identified using BEDTools [17].

The CNTools package [18] was used to process segmentation data and format the data into a

gene-level matrix based on corresponding genomic location of lncRNAs. The correlation

between copy number values and the corresponding gene expression levels was estimated

using R (Pearson correlation).

Co-expression network analysis

Voom-transformed read counts of differentially expressed mRNAs and lncRNAs in gastric

cancer were used as input to construct signed co-expression networks using the WGCNA

package [19] in R. The adjacency matrix was calculated based on pair-wise Pearson correlation

coefficients for a signed network. A value of β = 7 was chosen as soft-threshold power on the

criterion of scale-free topology. Average linkage hierarchical clustering was performed to

group genes based on Topological Overlap-based dissimilarity matrix. Modules were identified

by using a dynamic tree-cutting algorithm with a minimum module size of 30 genes.

Gene ontology and pathway enrichment analysis

For the protein-coding genes in each modules, the DAVID bioinformatics database [20] was

used to look for enrichment of genes associated with GO biological process terms and KEGG

pathways.

Results

Differentially expressed lncRNAs in gastric cancer

To systematically identify lncRNAs related to gastric cancer, RNA-seq data of 420 gastric can-

cers and 36 adjacent normal tissues were retrieved from TCGA. After filtering of lowly

expressed transcripts, 6,488 lncRNAs were kept for downstream analysis. By the criteria of

adjusted p-value< 0.05 and absolute fold change> 2, we identified 1,294 lncRNAs differen-

tially expressed in gastric cancer compared with adjacent normal tissues, among which 846

were up-regulated and 448 were down-regulated (Fig 1A and S1 Table). Unsupervised hierar-

chical cluster analysis revealed two separate clusters between gastric cancer and normal tissues

(Fig 1C). We then analyzed the differentially expressed lncRNAs based on their categoriza-

tions. The results were indicated in Fig 1B. Antisense transcripts accounted for 44.4%, followed

by lincRNAs (43.3%). The remaining non-coding transcript types were sense_intronic tran-

scripts (6.0%), processed_transcripts (4.6%) and sense_overlapping transcripts (1.7%).
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Validation of differentially expressed lncRNAs in additional independent

dataset

To provide additional validation of differentially expressed lncRNAs in gastric cancer, we ana-

lyzed an independent dataset from Korea [14], which contained RNA-seq data of 16 paired

gastric cancers and adjacent normal tissues. The data were processed using the same method

as the TCGA dataset. We identified 342 differentially expressed lncRNAs, among which 171

were up-regulated and 171 were down-regulated (S2 Table). The overlap analysis of differen-

tially expressed lncRNAs showed that 196 were overlapped between the Korea dataset and the

TCGA dataset and only one gene was in different direction (Fig 2A). Unsupervised hierarchi-

cal cluster analysis with overlapped lncRNAs was showed as Fig 2B. Additionally, the distribu-

tion of expression differentials between two datasets was significantly concordant (Fig 2C).

LncRNAs associated with subtype

Gastric cancer is a heterogeneous disease comprised of two major histological subtypes, intes-

tinal subtype and diffuse subtype [21]. Therefore, we compared lncRNA expression between

these two subtypes. We found 192 lncRNAs were up-regulated and 55 were down-regulated in

diffuse subtypes compared with intestinal subtypes (Fig 3A and S3 Table). Of the 247 lncRNAs

that differentially expressed between two subtypes, 154 lncRNAs were differentially expressed

between gastric cancer and adjacent normal tissue. Fig 3B and 3C showed the expression levels

of two examples, PGM5-AS1 and UCA1.

LncRNAs associated with prognosis

To identify lncRNAs associated with clinical outcome in gastric cancer, patients were divided

into a training set and a validation set and survival analyses were performed (Fig 4).In the

training set, the univariate Cox regression analysis indicated that AJCC stage (p = 0.0027) and

102 lncRNAs were significantly associated with the overall survival of gastric cancer patients.

Fig 1. Differentially expressed lncRNAs in gastric cancer. (a) Volcano plot of the differential expression

analysis of lncRNAs. (b) Pie charts showing the number of differentially expressed lncRNAs in each category.

(c) Heatmap of unsupervised hierarchical clustering of differentially expressed lncRNAs in all samples.

https://doi.org/10.1371/journal.pone.0183517.g001
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The multivariate Cox regression analysis demonstrated that AJCC stage (p = 0.0016) and 33

lncRNAs were independent prognostic factors (Table 1). We then tested whether these 33

lncRNAs were associated with overall survival in the validation set.6 lncRNAs (shown in bold

type in Table 1) were validated to be associated with overall survival in the validation set in

univariate Cox regression analysis with p value< 0.05.

LncRNAs in regions of somatic copy number alterations

To characterize the focal somatic copy number alterations (SCNAs) that harbor differentially

expressed lncRNAs in gastric cancer, GISTIC2.0 [16] was used to identify genomic regions

that were focally amplified or deleted. Then the lncRNA-containing loci were mapped to these

focal alteration regions. We found 181 differentially expressed lncRNAs located in the recur-

rent SCNA regions (Fig 5A and S4 Table).

To estimate the contribution of SCNAs to lncRNA dysregulation in gastric cancer, we ana-

lyzed the correlation between copy number and RNA expression level for differentially

expressed lncRNAs (Fig 5B). 32.42% of the lncRNAs were shown positive correlations

Fig 2. Validation of differentially expressed lncRNAs in additional independent dataset. (a) Venn

diagram showing the overlap of differentially expressed lncRNAs in the TCGA dataset versus the Korea

dataset. (b) Heatmap of unsupervised hierarchical clustering of differentially expressed lncRNAs in the Korea

dataset. (c) Distribution of expression differentials between the TCGA dataset and the Korea dataset.

https://doi.org/10.1371/journal.pone.0183517.g002

Fig 3. LncRNAs associated with subtype. (a) Volcano plot of the differential expression analysis of lncRNA

between the two subtypes. (b) The box plot showing differential expression of PGM5-AS1 among diffuse

subtype, intestinal subtype and normal tissue. (c) The box plot showing differential expression of UCA1

among diffuse subtype, intestinal subtype and normal tissue.

https://doi.org/10.1371/journal.pone.0183517.g003
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(R> 0.2) between their copy numbers and RNA expression levels. For example, PVT1 and

KB-1208A12.3 had a pattern of increased expression driven by copy number amplication (Fig

5C and 5D).

Co-expression network analysis

To illustrate the function of lncRNAs, we constructed a co-expression network for both

mRNAs and lncRNAs that were identified as differentially expressed in gastric cancer. Using

WGCNA [19], we clustered highly co-expressed genes into 6 co-expression modules (Fig 6A

and S5 Table). The module size ranged from 96 to 2,951 genes. The percentage of lncRNAs in

each module ranged from 13.54% (red module) to 78.92% (brown module) (Fig 6B). The tur-

quoise module had both the highest number of genes and of lncRNAs (2,951 genes of which

629 lncRNAs).

KEGG pathway analyses and Gene ontology (GO) enrichment analyses were performed on

each single module (S6 Table). Notably, pathway analysis showed that genes in green module

were highly enriched in the activated pathways such as ECM-receptor interaction, focal adhe-

sion and TGF-β signaling pathway (Fig 6C). Genes in the blue module were significantly

enriched in cell cycles, p53 signaling pathway and DNA replication (Fig 6D).

Discussion

Here, we comprehensively analyzed the expression patterns of lncRNAs in gastric cancer

using RNA-seq data from TCGA. We identified more than 1,000 lncRNAs differentially

expressed in gastric cancer. As expected, we validated some known gastric cancer related

lncRNAs, such as HOTAIR [29], PVT1 [30], GAPLNC [5], et al, which giving us confidence

in our methodology. Also, we identified a large number of lncRNAs that had not been pre-

viously reported in gastric cancer. To functionally characterize these lncRNAs may substan-

tially expand our understanding of the molecular mechanisms involved in gastric cancer

pathogenesis.

We compared lncRNA expression between two major subtypes of gastric cancer, intestinal

subtype and diffuse subtype. It was reported that there are underlying biologic and genomic

distinctions between these two subtypes [31, 32]. Our study identified hundreds of lncRNAs

showing significant subtype-specific expression patterns, which may have an important func-

tion in individual subtypes.

Fig 4. Flow chart of identification of lncRNAs associated with prognosis.

https://doi.org/10.1371/journal.pone.0183517.g004
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To identify lncRNAs with potential biological function, we analyzed the correlation

between the expression levels of lncRNAs and patient overall survival using univariate and

multivariate Cox regression analyses. In the training set, we identified 33 prognosis-associated

lncRNAs in gastric cancer. Some of them were reported to be associated with malignancies. 6

lncRNAs were validated to be associated with overall survival in the internal validation set.

However, the prognostic significance of these lncRNAs needs further investigation in an inde-

pendent patient cohort. Our analysis missed some lncRNAs that have reported to be associated

with overall survival of gastric cancer patients, such as GAS5 [33] and HOTAIR [34]. We think

it was due to the different distributions of the patient populations in terms of age, gender, his-

tological subtype, stage, etc.

Table 1. The list of lncRNAs independently associated with overall survival of gastric cancer.

GeneID GeneName GeneBiotype HR P.Value Associated Malignancies

ENSG00000223477 LINC00842 lincRNA 3.0811 4.60E-04

ENSG00000248664 CTC-498J12.3 antisense 3.8 6.20E-04

ENSG00000257877 RP3-462E2.3 lincRNA 0.272 1.00E-03 lung adenocarcinoma [22]

ENSG00000228623 ZNF883 lincRNA 2.2771 1.41E-03

ENSG00000259005 RP3-449M8.6 lincRNA 4.5295 1.97E-03 papillary thyroid cancer [23]

ENSG00000205562 RP11-497E19.1 lincRNA 2.6712 2.01E-03

ENSG00000249650 RP11-310P5.1 antisense 2.4037 2.10E-03

ENSG00000265148 BZRAP1-AS1 antisense 0.1808 2.99E-03 nasopharyngeal carcinoma [24]

ENSG00000254985 RSF1-IT2 sense_intronic 0.3269 4.47E-03

ENSG00000229431 RP1-92O14.6 antisense 0.1069 6.25E-03

ENSG00000232593 LINC01155 lincRNA 0.069 6.33E-03

ENSG00000256268 RP11-221N13.3 lincRNA 0.4815 8.14E-03 oral cancer [25]

ENSG00000227857 RP4-533D7.5 antisense 0.4507 8.32E-03

ENSG00000251161 RP11-540O11.1 lincRNA 0.3641 1.17E-02

ENSG00000267583 RP11-322E11.5 lincRNA 0.4109 1.18E-02

ENSG00000235298 RP11-575L7.8 antisense 3.4252 1.19E-02

ENSG00000230107 CTA-126B4.7 lincRNA 0.4419 1.29E-02

ENSG00000203441 LINC00449 antisense 0.2775 1.74E-02

ENSG00000272109 CTD-2260A17.3 antisense 2.4311 1.77E-02

ENSG00000223396 RPS10P7 lincRNA 4.4906 1.88E-02

ENSG00000235052 RP1-150O5.3 lincRNA 1.8873 1.98E-02 malignant mesothelioma [26]

ENSG00000242147 RP13-463N16.6 lincRNA 1.7058 2.04E-02

ENSG00000272707 RP11-534C12.1 lincRNA 0.3848 2.16E-02

ENSG00000157152 SYN2 processed_transcript 1.811 2.33E-02

ENSG00000267493 CIRBP-AS1 antisense 5.2374 2.48E-02 lung cancer [27]

ENSG00000227914 RP11-130C19.3 antisense 0.5584 3.53E-02

ENSG00000270605 RP5-1092A3.4 antisense 2.8997 3.65E-02

ENSG00000232710 RP4-669P10.16 sense_intronic 2.3053 3.87E-02

ENSG00000267649 CTD-2587H24.10 lincRNA 0.4847 4.49E-02

ENSG00000229656 RP11-462L8.1 lincRNA 2.1174 4.70E-02

ENSG00000271816 RP11-574K11.28 processed_transcript 0.3661 4.74E-02

ENSG00000228214 LINC00693 antisense 0.5436 4.92E-02 pancreatic ductal adenocarcinoma [28]

ENSG00000224066 RP4-622L5.7 antisense 0.3485 4.99E-02

HR: hazard ratio.

Bold type indicates lncRNAs validated to be associated with overall survival in the validation set.

https://doi.org/10.1371/journal.pone.0183517.t001
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It has been suggested that cancer driver genes are often located in the SCNAs [35]. Previous

studies have identified lncRNAs as drivers such as GAPLINC [5] and FAL1 [36]. Here, we

identified 181 differentially expressed lncRNAs located in the recurrent SCNA regions. Fur-

thermore, we identify lncRNAs which were shown positive correlations between their RNA

expression levels and their gene copy numbers. For example, we found PVT1 had a pattern of

increased expression driven by copy number amplication, which has been validated in a previ-

ous study [37]. We anticipated further function analysis of the lncRNAs associated with

SCNAs will help to find driver lncRNAs in gastric cancer.

To illustrate the function of lncRNAs, we constructed a co-expression network for mRNAs

and lncRNAs. Pathway analysis revealed genes in green module were enriched in ECM-recep-

tor interaction, focal adhesion and TGF-β signaling pathway. It is reported these pathways

played critical roles in cancer invasion and metastasis [38, 39]. So lncRNAs in this module

may be involved in invasion and metastasis of gastric cancer. Interestingly, RP11-838N2.4

(also known as GAPLINC [5]) and LINC00152 [40], two lncRNAs in green module, were both

reported to be associated with invasion of gastric cancer. Genes in the blue module were signif-

icantly enriched in cell cycles, p53 signaling pathway and DNA replication. It is well known

that p53 signaling pathway plays the central role in maintenance of genomic stability by acting

through cell-cycle arrest, senescence, and apoptosis [39, 41]. Of note, two of most well-known

oncogenic lncRNAs HOTAIR [29] and PVT1 [30] were in this module. So we inferred that

lncRNAs in the blue module may play important roles in gastric cancer.

Taken together, we presented an integrative analysis of lncRNAs in gastric cancer. We identi-

fied a panel of dysregulated lncRNAs that may be potential drivers and diagnostic, therapeutic

Fig 5. LncRNAs in regions of somatic copy number alterations. (a) Chromosomal view of amplification

and deletion peaks of gastric cancer. (b) Histogram of correlations between copy number and RNA

expression level. (c) The correlation between copy number and expression level of PVT1. (d) The correlation

between copy number and expression level of KB-1208A12.3.

https://doi.org/10.1371/journal.pone.0183517.g005
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biomarkers of gastric cancer, although targeted validation of these lncRNAs is still needed. This

study provided a valuable resource for further functional research of lncRNAs in gastric cancer.
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