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Abstract: Background: Neonatal hypoxic-ischemic encephalopathy (HIE) is the most common cause
of mortality and neurological disability in infancy after perinatal asphyxia. Reliable biomarkers
to predict neurological outcomes of neonates after perinatal asphyxia are still not accessible in
clinical practice. Methods: A prospective cohort study enrolled neonates with perinatal asphyxia.
Biochemical blood tests and cerebral Doppler ultrasound were measured within 6 h of age and at
the 4th day old. Neurological outcomes were assessed at 1 year old. Results: Sixty-four neonates
with perinatal asphyxia were enrolled. Fifty-eight (90%) had hypoxic-ischemic encephalopathy (HIE)
including 20 (34%) Stage I, 21 (36%) Stage II, and 17 (29%) Stage III. In the asphyxiated infants
without therapeutic hypothermia, HIE stage, PH, and base excess levels within 6 h of age were
the predictors of adverse outcomes. In the asphyxiated infants receiving therapeutic hypothermia,
HIE stage failed to predict outcomes. Instead, blood lactate levels and pulsatility index (PI) of
medial cerebral arteries (MCA) either in 6 h of age or at the 4th day old independently predicted
adverse outcomes. Conclusions: Blood lactate, which is a common accessible test at the hospital and
MCA PI on cerebral ultrasound could predict adverse outcomes in asphyxiated infants receiving
therapeutic hypothermia.

Keywords: perinatal asphyxia; lactate; neurological outcomes; neonatal hypoxic-ischemic encephalopathy

1. Background

Perinatal asphyxia occurs in 1–1.5% of live births in developed countries, and higher in
developing countries [1,2]. It is an important cause of acquired neonatal brain injury in term
neonates leading to neonatal hypoxic-ischemic encephalopathy (HIE), which is the most
common cause of death and neurological disability in human neonates [3–5]. In infants
with HIE, the overall mortality was 15–25%, and up to 1/3 survivors tend to develop long-
term neurological disabilities such as mental retardation, cerebral palsy, and epilepsy [5,6].
Hypothermic treatment involves inducing the neonatal body to 33–34 ◦C for 72 h. In the
last two decades, therapeutic hypothermia has increased the rate of survival, and decreased
the prominence of disability after treatment for those ages 18–24 months [6–12]. However,
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there is still a 40–50% disability in moderate/severe HIE infants after receiving therapeutic
hypothermia [3,13]. Early prognostication remains challenging but essential for parental
counseling and intensive care management, including the use of further neuroprotective
strategies [14].

A wide variety of biomarkers from the body fluid, and neurophysiologic or neu-
roimage modalities had been tried to predict neurological outcomes in HIE patients. The
biomarkers from body fluid included neuron specific enolase (NSE), ubiquitin carboxy-
terminal hydrolase L1 (UCHL-1), brain derived neurotrophic factor (BDNF), S100B protein,
glical fibrillary acidic protein (GFAP), Tau protein, inflammatory cytokines/chemokines,
and so on [15,16]. The neurophysiologic or neuroimage modalities included electroen-
cephalography (EEG), amplitude-integrated EEG (aEEG), evoked potentials, different
magnetic resonance imaging (MRI) modalities, and cranial ultrasound [14]. Currently,
no reliable body-fluid-based biomarkers are available in clinical practice to predict out-
comes in newborns after perinatal asphyxia. The assessments of evolving brain injury
and estimates of neurologic outcomes majorly rely on clinical examination, aEEG/EEG
background severity, and MRI.

In addition to clinical examination, aEEG/EEG and MRI, several hospital-based
conventional biochemistry blood tests such as serum PH, bicarbonate, lactate, creatine
kinase (CK), Troponin-T, alanine transaminase (ALT), and lactate dehydrogenase (LDH)
are hypoxia-associated markers and are accessible to most clinicians. For example, time-
weighted mean serum lactate values have been used in predicting short-term or long-term
outcomes after out-hospital cardiac arrest, which also caused hypoxic-ischemic impacts on
the brain [17]. Moreover, bedside available ultrasound is also used widely in neonatal prac-
tice and helpful for assessing the evolution of injury and providing predictive information
on the long-term neurodevelopmental outcome of newborns with brain injury [18]. In this
study, we tried to use these hospital-based accessible tests to predict neurologic outcomes
at 1 year in newborns after perinatal asphyxia.

2. Methods

This is a prospective cohort study that included all the newborns admitted with
perinatal asphyxia and had a gestational age of at least 35 weeks from 2015 to 2019 in
the neonatal intensive care unit of a tertiary referral medical center. Perinatal asphyxia
was diagnosed if at least two of the following criteria were met: (a) Apgar score less
than 5 at 5 min of age; (b) a blood base excess (deficit) of greater than −10 mmol/L
during the first hour of life; (c) endotracheal intubation and intermittent positive pressure
ventilation for ongoing resuscitation at 10 min of age; (d) multiorgan failure within 24 h of
age; (e) evidence of fetal distress as indicated by thick meconium stained liquor and/or
abnormal cardiotocographic changes (sustained fetal bradycardia < 100 beats/min, late
deceleration with loss of variability and/or severe recurrent deceleration with loss of
variability) [19]. Infants received therapeutic hypothermia when they fulfilled the entry
criteria as the NICHD trials [3]. Cases with congenital heart diseases, major central nervous
system malformations, severe growth restriction (birth weight of <1800 gm), and neonatal
sepsis were excluded. Data of demographic background and medical information during
the prenatal, perinatal, and postnatal periods as well as maternal information were collected
after obtaining the parents’ consent.

2.1. Biomarker Assessments

After admission, all infants underwent a series of standardized neurologic examina-
tions performed by pediatric neurologists. Hospital-based available biochemistry blood
tests including blood gas (PH, bicarbonate, base excess), lactate, ALT, aspartate aminotrans-
ferase (AST), CK, Troponin-T, ammonia, and LDH were performed at least within 6 h of
age (acute post-injury period before hypothermia therapy) and at the 4th day old (86–92 h,
after rewarming if receiving therapeutic hypothermia).
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Cerebral ultrasonography was also carried out within 6 h of age and at the 4th day
old to rule out major congenital or traumatic abnormalities and to identify flow velocity
(peak systolic and endo-diastolic), resistance index (RI), and pulsatility index (PI) using a
digital ultrasound device Xario SSA-680A (Toshiba) with a sector 6–10 MHz transducer
and a linear 7–14 MHz transducer. Blood flow parameters were measured in the branch of
anterior cerebral arteries (ACA) located in front of the genus of the corpus callosum and
the proximal branch of the right medial cerebral arteries (MCA).

2.2. Outcome Measurements

Early neurodevelopmental outcomes were assessed at age 1 year. The pediatric neu-
rologists evaluated the children’s neuromotor conditions and the pediatric psychologists
evaluated neurodevelopment using Bayley-Scales of Infant and Toddler Development,
3rd edition (BSID-III), which providing distinct scores for cognitive, language, and motor
functions [20]. Adverse outcomes were defined as death or severe neurological disability
when BSID-III developmental scores were <70 on any of the three cognitive, language, or
motor domains or presence of deafness, blindness, or cerebral palsy.

2.3. Statistics

Data were represented as mean (standard deviation). Risk factors in biochemistry
variables and parameters from Doppler ultrasound for adverse outcomes were examined
by using univariate binary logistic regression analysis. Odds ratio (OR), as well as 95%
confidence intervals (CIs) were calculated. The potential risk factors with significance
levels of p < 0.05 were entered into a multivariable logistic regression model to evaluate the
independent associations with adverse outcomes. A receiver operating characteristic (ROC)
analysis was constructed to determine the best cut-off value to predict the outcome. The
probability was calculated using a logistic regression model, and the estimated probabilities
were used in a ROC analysis to calculate the area under curve (AUC) for different models.
A p value of < 0.05 was considered statistically significant for all tests. All analyses were
performed by using SPSS version 17 (IBM SPSS Statistics, IBM Corporation, Armonk,
NY, USA).

3. Results

Sixty-four neonates with perinatal asphyxia were enrolled. The mean gestational
age of them was 37.9 ± 1.4 weeks, the mean birth body weight was 2847 ± 485 g, and
the gender ratio (male:female) was around 1:1 (Table 1). The mean Apgar score was 3 at
1 min and 5 at 5 min of age. Of the 64 asphyxiated infants, 58 (90%) had HIE including
20 (34%) Stage I, 21 (36%) Stage II, and 17 (29%) Stage III. Adverse outcomes occurred
totally in 16 (25%) asphyxiated infants including 10 (16%) with mortality and 6 (9%) with
severe disability (Table 1). Among these asphyxiated infants, 32 neonates did not receive
therapeutic hypothermia. The majority of these neonates without therapeutic hypothermia
were neonates with Stage I HIE (19) or without HIE (6), and the minority was those whose
parents refused to receive hypothermia or who had unstable vital signs (Table 1).
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Table 1. Characteristics of study patients.

Non-Hypothermia
n = 32

Hypothermia
n = 32 p Value Total

n = 64

Gestational age 38.0 ± 1.5 37.7 ± 1.4 0.430 37.9± 1.4
Gender (M/F) 17/15 14/18 0.617 31/33
Birth body weight (gm) 2789 ± 507 2905 ± 462 0.165 2847 ± 485

HIE

<0.001
Stage 1 19 1 20
Stage 2 3 18 21
Stage 3 4 13 17
No HIE 6 0 6

Apgar Score
1 min 3 ± 2 2 ± 2 0.050 3 ± 2
5 min 5 ± 2 4 ± 3 0.095 5 ± 2

Vital signs on admission
Systolic blood pressure 64 ± 10 68 ± 15 0.172
Diastolic blood pressure 39 ± 11 40 ± 10 0.514
Heart rate 144 ± 20 141 ± 27 0.588

Sentinel events

0.129
Uterine rupture 0 5 5
Placenta abruption 5 8
Shoulder dystocia 1 0 1

Maternal complications

0.032
Preeclampsia/eclampsia 0 4 4
PIH 1 6 7
GDM 2 2 4

Outcomes
Death 3 7 0.302 10
Severe disability 2 4 0.672 6

HIE: hypoxic-ischemic encephalopathy; PIH: pregnancy-induced hypertension; GDM: gestational diabetes mellitus.

The risk for adverse outcomes was analyzed among the variables from biochemistry
blood tests and Doppler ultrasound within 6 h of age and at the 4th day old (Tables 2 and 3).
In the asphyxiated infants without therapeutic hypothermia, PH (p = 0.015) and base excess
(BE) (p = 0.023) levels within 6 h of age and BE levels (p = 0.026) at the 4th day old as
well as the HIE stage (p = 0.006) were the risk variables for adverse outcomes. On the
other hand, several risk variables were significant in the asphyxia neonates who received
therapeutic hypothermia. Among biochemistry blood tests, PH (p = 0.008), BE (p = 0.009),
lactate (p = 0.015), and ammonia (p = 0.036) levels within 6 h of age (Table 2) and lactate
(p = 0.011) at the 4th day old were at risk for adverse outcomes (Table 3). Among Doppler
ultrasound, the diastolic velocity (p = 0.026), RI (p = 0.012), and PI of MCA (p = 0.015)
within 6 h of age (Table 2), and all variables except RI of MCA and PI of ACA at the 4th
day old were at risk for adverse outcomes (Table 3). When taking these risk variables into
the multivariable analysis, we selected two risk variables (one from biochemistry blood
tests, and one from Doppler ultrasound parameters) in order to avoid overfitting and
interactions. We also prefer to choose the repetitive significant risk variables at both time
points. Finally, we found that lactate and PI of MCA either within 6 h of age (lactate: OR:
1.28, 95% CI: 1.00–1.63, p = 0.046; PI: OR: 0.04, 95% CI: 0.003–0.59, p = 0.019) or at the 4th
day old (lactate: OR: 5.31, 95% CI: 1.16–24.43, p = 0.032; PI: OR: 0.002, 95% CI: 0.00–0.69,
p = 0.037) were consistently at risk for adverse outcomes among asphyxiated infants who
received therapeutic hypothermia (Table 4).
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Table 2. Risk of variables within 6 h for adverse neurological outcomes at 1 year old.

No Hypothermia (n = 32) Hypothermia (n = 32)

Mean ± SD OR 95% CI p Value Mean ± SD OR 95% CI p Value

HIE stage 1 ± 1 16.52 2.19–124.10 0.006 2 ± 0 0.998
Biochemistry variables

PH 7.18 ± 0.20 <0.001 0.00–0.17 0.015 6.98 ± 0.26 0.001 0.00–0.15 0.008
HCO3 13.8 ± 4.1 0.060 12.3 ± 4.0 - - 0.052
BE −14.2 ± 6.1 0.65 0.45–0.94 0.023 −18.8 ± 5.98 0.70 0.54–0.92 0.009
AST 111 ± 113 - - 0.154 226 ± 276 - - 0.297
ALT 32 ± 43 - - 0.110 65 ± 73 - - 0.276
LDH 1081 ± 1170 - - 0.477 1995 ± 1791 - - 0.192
Creatinine 0.82 ± 0.19 - - 0.070 0.86 ± 0.25 - - 0.579
Lactate 8.9 ± 2.4 - - 0.161 12.8 ± 6.3 1.22 1.04–1.44 0.015
CK 2169 ± 5842 - - 0.073 1534 ± 1374 - - 0.830
TnT 0.17 ± 0.14 - - 0.757 0.45 ± 0.55 - - 0.330
Ammonia 52 ± 68 - - 0.322 108 ± 129 1.02 1.00–1.04 0.036

Doppler ultrasound
Peak velocity

ACA 21.5 ± 8.9 - - 0.557 20.7 ± 8.5 - - 0.376
MCA 36.9 ± 13.4 - - 0.438 35.0 ± 15.4 - - 0.417

Diastolic velocity
ACA 5.3 ± 4.1 - - 0.492 8.1 ± 5.9 - - 0.171
MCA 9.3 ± 6.6 - - 0.210 14.1 ± 10.3 1.13 1.02–1.25 0.026

Resistance index
ACA 0.76 ± 0.14 - - 0.179 0.64 ± 0.15 - - 0.077
MCA 0.74 ± 0.14 - - 0.984 0.61 ± 0.17 <0.001 0.00–0.13 0.012

Pulsatility index
ACA 1.45 ± 0.51 - - 0.196 1.09 ± 0.55 0.201
MCA 1.50 ± 0.65 - - 0.107 1.05 ± 0.40 0.05 0.004–0.54 0.015

ACA: anterior cerebral artery; ALT: alanine aminotransferase; AST: aspartate aminotransferase; BE: base excess; CK: creatine kinase; HCO3:
bicarbonate; LDH: lactate dehydrogenase; MCA: middle cerebral artery; TnT: troponin T.

Table 3. Risk of variables at the 4th day old for adverse neurological outcomes at 1 year old.

No Hypothermia
n = 32

Hypothermia
n = 32

Mean ± SD OR 95% CI p Value Mean ± SD OR 95% CI p Value

Biochemistry variables
PH 7.34 ± 0.23 - - 0.053 7.38 ± 0.08 - - 0.271
HCO3 23.1 ± 5.6 - - 0.229 27.6 ± 4.4 - - 0.234
BE −2.5 ± 8.5 0.88 0.79–0.99 0.026 1.8 ± 3.9 - - 0.171
AST 75 ± 37 - - 0.183 150 ± 147 - - 0.247
ALT 30 ± 34 - - 0.070 78 ± 82 - - 0.669
LDH 751 ± 445 - - 0.276 1779 ± 1547 - - 0.255
Creatinine 0.57 ± 0.28 - - 0.731 0.71 ± 0.42 - - 0.493
Lactate 2.3 ± 0.9 - - 0.604 2.7 ± 2.2 2.97 1.28–6.90 0.011
CK 1016 ± 1421 - - 0.844 2387 ± 2483 - - 0.692
TnT 0.11 ± 0.10 - - 0.055 0.24 ± 0.29 - - 0.054
Ammonia 27 ± 12 - - 0.982 29 ± 16 - - 0.084

Doppler ultrasound
Peak velocity

ACA 32.4 (7.4) - - 0.518 30.4 (10.4) 1.13 1.02–1.26 0.023
MCA 52.1 (14.8) - - 0.129 55.7 (23.2) 1.11 1.02–1.20 0.012

Diastolic velocity
ACA 10.0 (4.1) - - 0.894 11.3 (7.5) 1.21 1.04–1.41 0.014
MCA 16.4 (7.5) - - 0.507 22.7 (13.8) 1.10 1.02–1.18 0.015
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Table 3. Cont.

No Hypothermia
n = 32

Hypothermia
n = 32

Mean ± SD OR 95% CI p Value Mean ± SD OR 95% CI p Value

Resistance index
ACA 0.69 (0.09) - - 0.539 0.65 (0.16) 0.001 0.00–0.81 0.043
MCA 0.71 (0.12) - - 0.648 0.62 (0.14) - - 0.275

Pulsatility index
ACA 1.25 (0.30) - - 0.362 1.11 (0.42) - - 0.064
MCA 1.24 (0.31) 0.643 1.07 (0.32) 0.002 0.00–0.25 0.011

ACA: anterior cerebral artery; ALT: alanine aminotransferase; AST: aspartate aminotransferase; BE: base excess; CK: creatine kinase; HCO3:
bicarbonate; LDH: lactate dehydrogenase; MCA: middle cerebral artery; TnT: troponin T.

Table 4. Multivariable analysis among asphyxia neonates with therapeutic hypothermia.

Univariate Multivariable Model 1 Multivariable Model 2

OR p Value OR 95% CI p Value OR 95% CI p Value

Significant variables with 6 h of age
PH 0.001 0.008 - - - - - -
BE 0.701 0.009 - - - - - -

Lactate 1.221 0.015 1.32 1.04–1.69 0.024 1.28 1.00–1.63 0.046
Ammonia 1.019 0.036 - - - - - -

Diastolic velocity
MCA 1.126 0.026 1.19 1.01–1.42 0.043 - - -

Resistance index
MCA <0.001 0.012 - - - - - -

Pulsatility index
MCA 0.045 0.015 - - - 0.04 0.003–0.59 0.019

Significant variables at the 4th day old
Lactate 2.972 0.011 4.11 1.14–14.81 0.031 5.31 1.16–24.43 0.032

Peak velocity
ACA 1.130 0.023 - - - - - -
MCA 1.084 0.011 - - - - - -

Diastolic velocity
ACA 1.211 0.014 - - - - - -
MCA 1.066 0.046 1.05 0.965–1.15 0.254 - - -

Resistive index
ACA 0.001 0.042 - - - - - -

Pulsatility index
MCA 0.002 0.011 - - - 0.002 0.00–0.69 0.037

BE: base excess; ACA: anterior cerebral artery; MCA: middle cerebral artery.

The optimum cut-off values for lactate and PI of MCA in the asphyxiated infants who
received therapeutic hypothermia were identified by drawing ROC curves (Figure 1). The
area under ROC curves (AUC) and cut-off values were shown in Table 5. Within 6 h of age,
the cut-off value of lactate was 14 mmol/L (p = 0.015) and PI of MCA was 1.15 (p = 0.015).
At the 4th day old, the cut-off value of lactate was 2.8 mmol/L and PI of MCA was 1.05.
The sensitivity and specificity of either lactate (p = 0.011) or PI of MCA (p = 0.011) at the
4th day old were better than that within 6 h of age (Table 5).



Life 2021, 11, 1193 7 of 11

Life 2021, 11, x FOR PEER REVIEW 7 of 11 
 

 

Table 5. Cut-off value of predictors of adverse outcome. 

 AUC Cut-off Value Specificity (%) Sensitivity (%) PPV (%) NPV (%) p Value 
Significant variables within 6 h of age  

Lactate  0.803 14.0 0.625 0.938 0.714 0.909 0.015 
PI of MCA  0.818 1.15 0.778 0.850 0.895 0.700 0.015 

Significant variables at the 4th day old  
Lactate  0.859 2.80 0.818 0.905 0.905 0.818 0.011 

PI of MCA  0.849 1.05 0.727 0.938 0.833 0.889 0.011 
MCA: middle cerebral artery; NPV: negative predictive value; PI: pulsatility index; PPV: positive predictive value. 

 

Figure 1. ROC curve analysis for the efficacy of lactate and pulsatility index of medial cerebral arteries for predicting 
adverse outcomes. 

4. Discussion 
We demonstrate the ability of some bed-side available, relatively objective examina-

tions in asphyxiated infants during the acute postnatal period to severe as the early pre-
dictors of adverse neurodevelopmental outcomes at 1 year old. For asphyxiated infants 
who did not receive or indicate therapeutic hypothermia, the particular predictor was the 
initial HIE stage within 6 h of age (OR: 16.5, 95% CI: 2.19–124.10, p = 0.006). In contrast, 

Figure 1. ROC curve analysis for the efficacy of lactate and pulsatility index of medial cerebral arteries for predicting
adverse outcomes.

Table 5. Cut-off value of predictors of adverse outcome.

AUC Cut-Off Value Specificity (%) Sensitivity (%) PPV (%) NPV (%) p Value

Significant variables within 6 h of age
Lactate 0.803 14.0 0.625 0.938 0.714 0.909 0.015

PI of MCA 0.818 1.15 0.778 0.850 0.895 0.700 0.015
Significant variables at the 4th day old

Lactate 0.859 2.80 0.818 0.905 0.905 0.818 0.011
PI of MCA 0.849 1.05 0.727 0.938 0.833 0.889 0.011

MCA: middle cerebral artery; NPV: negative predictive value; PI: pulsatility index; PPV: positive predictive value.

4. Discussion

We demonstrate the ability of some bed-side available, relatively objective exami-
nations in asphyxiated infants during the acute postnatal period to severe as the early
predictors of adverse neurodevelopmental outcomes at 1 year old. For asphyxiated infants
who did not receive or indicate therapeutic hypothermia, the particular predictor was the
initial HIE stage within 6 h of age (OR: 16.5, 95% CI: 2.19–124.10, p = 0.006). In contrast,
the initial HIE stage was not a predictor of adverse outcomes for asphyxiated infants who
received therapeutic hypothermia. The lactate and pulsatility index of MCA either within
6 h of age (lactate: OR: 1.28, 95% CI: 1.00–1.63, p = 0.046; PI: OR: 0.04, 95% CI: 0.003–0.59,
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p = 0.019) or after rewarming from hypothermia at the 4th day old (lactate: OR: 5.31, 95%
CI: 1.16–24.43, p = 0.032; PI: OR: 0.002, 95% CI: 0.00–0.69, p = 0.037) became the independent
predictors of adverse outcomes. The cut-off point of lactate was 14 and 2.8 mmol/L and of
MCA PI was 1.15 and 1.05, respectively, measured within 6 h of age and at the 4th day old.

It is known that lactate is a common product of glycolysis, an anaerobic metabolic
pathway. Hence, it was prominent why lactate levels increase when oxygen levels decrease
and/or when tissues underwent hypoperfusion. In the situations of hypoperfusion or
hypoxia, pyruvate will no longer enter into the mitochondria for aerobic metabolism,
instead, it is preferentially reduced to lactate, resulting in the accumulation of lactate
in the blood [21]. As blood lactate can be easily and quickly determined, it has been
used as a surrogate of low brain oxygenation or mitochondria dysfunctions in some
neurological diseases, such as traumatic brain injury and multiple sclerosis as well as
neonatal HIE [22–27]. Traumatic brain injury could create mitochondrial damage and
impair oxidative metabolism with lactate production. Hence, serum lactate on admission
was reported to strongly suggest severe injury and to predict in-hospital mortality in
pediatric patients with traumatic brain injury [22,24]. In multiple sclerosis, alternations in
mitochondria lead to diminish ATP supply, increase glycolysis, accumulate pyruvate, and
produce lactate. Monitoring serum lactate could reflex “virtual hypoxia” and therapeutic
outcomes in multiple sclerosis [23]. In the neonatal population, elevated postnatal lactate
levels have been described as a risk factor indicating the possible onset and development
of severe, postpartum asphyxia [25]. Postnatal hyperlactatemia has also been established
to correlate with the severity of HIE as well as neurological morbidity and mortality in the
first days of life [26–28]. However, postnatal lactate as a potential predictor of the long-term
outcome of asphyxiated infants has not yet been comprehensively studied, particularly in
the post-hypothermia era [29]. We observed that lactate either within 6 h of age or after
rewarming from hypothermia at the 4th day old is the independent predictor of adverse
outcomes in asphyxiated infants who received therapeutic hypothermia. In accordance
with our findings, studies of Polackova et al. and Chiang et al. included asphyxiated infants
who had moderate to severe HIE and received therapeutic hypothermia and showed lactate
levels at 3, 6, 12, 24, 36 h of age, or after 72 h of therapeutic hypothermia were significantly
higher in those with adverse outcomes at 2 years old compared with those with favorable
outcomes [29,30]. In our study, we had a larger sample size (64 infants) compared with
these two previous studies (51 and 17 infants, respectively), and we further could offer the
cut-off value of lactate (14 mmol/L within 6 h of age; 2.8 mmol/L at the 4th day old after
hypothermia) to aid in predicting adverse outcome in clinical practice. In addition, we
included all asphyxiated infants either with or without therapeutic hypothermia. Hence,
our findings illustrated that, on the other hand, lactate would not predict outcomes in
asphyxiated infants without therapeutic hypothermia.

Doppler ultrasound with spectral analysis of the cerebral blood flow is a safe, bed-side
available, and cost-efficient modality to measure neonatal cerebral hemodynamic status
following HIE [31]. After asphyxia, the hyperemic phase with cerebral vasodilatation
resulting in a fall of vascular resistance is responsible for secondary brain injury. Through
measuring cerebral vascular changes from the ACA and MCA, several Doppler parameters
including cerebral blood flow velocities and RI particularly at the age of 12 ± 2 h had been
known to serve as an early predictor for neuromotor outcomes in the asphyxiated infants
in the pre-hypothermia era [32–34]. Nonetheless, recent studies showed that hypothermia
makes RI a poor predictor unless it was measured after rewarming from 72 h of therapeutic
hypothermia when it could regain the predictive power for adverse outcome [35,36]. In
contrast, we found that either within 6 h of age or at the 4th day old after rewarming, the
PI of MCA instead of cerebral blood flow velocities or RI is the independent predictor
of adverse outcome in asphyxiated infants who received therapeutic hypothermia. The
reason for the PI better than RI in our study is not clear. The PI primarily depends on mean
velocity, whereas the RI is mainly affected by systolic velocity [37]. It can be hypothesized
that PI involves mean flow velocity that included both peak-systolic and end-diastolic flow
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velocity and could represent the cerebral vascular changes of the entire cardiac cycle better
than systolic velocity only. It may be similar to the fact that mean blood pressure is a better
indicator of perfusion of vital organs compared with systolic blood pressure and a better
predictor of outcome in critical patients [38].

There are some limitations to the study. The blood samples in our study were mostly
taken from umbilical veins through catheters to minimize the regional tissue hypoxia effects
on the lactate levels during sampling. Usually, the cerebral ultrasound was performed
while the vital signs of these asphyxiated babies were relatively stable to minimalize the
systemic circulation influences on the cerebral blood flow. The neurological outcomes
are difficult to be measured in young children only by physical examinations at clinics.
Hence, we quantify the outcomes by using BSID-III, which is the most commonly used
psychometric instrument by health care professionals [39]. Our findings will still require
validation in a larger cohort.

5. Conclusions

Blood lactate, which is a common accessible test at the hospital and MCA PI on
cerebral ultrasound in as early as 6 h of age could predict adverse outcomes in asphyxiated
infants receiving therapeutic hypothermia.
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