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Abstract

Background: Astroviruses infect a variety of mammals and birds and are causative agents of
diarrhea in humans and other animal hosts. We have previously described the identification of
several sequence fragments with limited sequence identity to known astroviruses in a stool
specimen obtained from a child with acute diarrhea, suggesting that a novel virus was present.

Results: In this study, the complete genome of this novel virus isolate was sequenced and analyzed.
The overall genome organization of this virus paralleled that of known astroviruses, with 3 open
reading frames identified. Phylogenetic analysis of the ORFs indicated that this virus is highly
divergent from all previously described animal and human astroviruses. Molecular features that are
highly conserved in human serotypes 1-8, such as a 3'NTR stem-loop structure and conserved
nucleotide motifs present in the 5'NTR and ORFIb/2 junction, were either absent or only partially
conserved in this novel virus.

Conclusion: Based on the analyses described herein, we propose that this newly discovered virus
represents a novel species in the family Astroviridae. It has tentatively been named Astrovirus
MLBI.

Background

Astroviruses are non-enveloped, single stranded, positive
sense RNA viruses. Their genomes range from approxi-
mately 6 to 8 kb in length, are polyadenylated, and have
both 5' and 3' non-translated regions (NTR) [1]. Their
genomes have three open reading frames (ORFs) organ-
ized from 5' to 3' as follows: ORF 1a, which encodes a ser-
ine protease; ORF1b, which encodes the RNA dependent
polymerase; and ORF 2, which encodes the structural pro-
teins. A frameshift must occur during the translation of
ORF1lain order for ORF1b to be translated. ORF 2 is trans-
lated from a sub-genomic RNA and produces a polypro-
tein which is cleaved by cellular proteases [1].

The family Astroviridae includes 8 closely related human
serotypes as well as additional members that infect cattle,
sheep, cats, dogs, deer, chickens, turkeys, and ducks [2].
Although some of the animal astroviruses are known to
cause hepatitis or nephritis [3], astroviruses typically
cause diarrhea in their hosts. Human astrovirus infections
most frequently cause watery diarrhea lasting 2-4 days,
and less commonly vomiting, headache, fever, abdominal
pains, and anorexia in children under the age of 2, the eld-
erly, and immunocompromised individuals [3]. The
known human astroviruses account for up to ~10% of
sporadic cases of non-bacterial diarrhea in children [4-8].
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Diarrhea is the third leading infectious cause of death
worldwide and is responsible for approximately 2 million
deaths each year as well as [9] an estimated 1.4 billion
non-fatal episodes [10,11]. In children, rotaviruses, calici-
viruses, adenoviruses and astroviruses are responsible for
the greatest proportion of cases [5,6,12-14]. Most epide-
miological studies fail to identify an etiologic agent in
~40% of diarrhea cases [15-19]. Recently, we conducted
viral metagenomic analysis of diarrhea samples using a
mass sequencing approach with the explicit goal of iden-
tifying novel viruses that may be candidate causes of
diarrhea. One of the stool samples we analyzed was col-
lected in 1999 at the Royal Children's Hospital in Mel-
bourne, Australia from a 3-yr old boy with acute diarrhea.
Seven sequence reads were identified in this sample that
shared < 67% amino acid identity to known astrovirus
proteins, suggesting that a novel astrovirus was present in
the sample [20]. In this paper, we report the full sequenc-
ing and characterization of the genome of this astrovirus,
referred to hereafter as astrovirus MLB1 (AstV-MLB1).

Results and discussion

Genome sequencing and analysis

In the previous metagenomic study [20], we identified
seven sequence reads with limited identity to known
astroviruses that could be assembled into two small con-
tigs in a clinical stool sample. The contigs had 42-44%,
and 59-61% amino acid identity to human astrovirus ser-
ine proteases and RNA-polymerases, respectively. In this
study, the complete genome of the astrovirus present in
the original stool specimen was sequenced to an average
of >3x coverage [GenBank: FI222451]. The virus has been
tentatively named Astrovirus MLB1 (AstV-MLB1). Analy-
sis of the genome showed that AstV-MLB1 has the same
genomic organization as other astroviruses. Like other
astroviruses, the AstV-MLB1 genome was predicted to
encode three open reading frames (ORFla, ORF1b, and
ORF2) and contained both 5' and 3' non-translated
regions (NTR), as well as a poly-A tail. The complete
genome length of AstV-MLB1 was 6,171 bp, excluding the

Table I: Genome Comparison of AstV-MLBI to other astroviruses
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poly-A tail, slightly shorter when compared to other astro-
virus genomes which range in size between ~6,400 and
7,300 bp [1]. A comparison of AstV-MLB1 genomic ele-
ments with those of fully sequenced astroviruses is shown
in Table 1.

The ORF 1a of astroviruses encodes a non-structural poly-
protein which contains a serine-like protease motif. Pfam
analysis revealed a region of ORF1a that has homology to
a peptidase domain. In addition, alignment of AstV-MLB1
with other astroviruses revealed that AstV-MLB1 contains
the amino acids of the catalytic triad (His, Asp, Ser) which
are conserved in the 3C-like protease motif found in other
viruses (data not shown) [21]. The residues RTQ which
have been suggested to be involved in substrate binding
are conserved among the human astroviruses, but vary in
other viruses which have the 3C-like motif [21]. In AstV-
MLB]1, the predicted substrate binding residues (ATR) are
identical to those found in Ovine astrovirus and not those
of the human astroviruses (data not shown).

A second feature of astrovirus ORF1a is the presence of a
bipartite nuclear localization signal (NLS) found in
human, chicken, and ovine astroviruses, but not turkey
astroviruses [22]. A bipartite NLS is characterized as hav-
ing two regions of basic amino acids separated by a 10 aa
spacer. The protein alignment of ORFla revealed that
AstV-MLB1 has a sequence motif similar to the putative
NLS of human astroviruses. This region of the genome has
also been predicted to potentially encode for a viral
genome-linked protein (VPg) [23]. The high sequence
similarity observed between AstV-MLB1 and other astrovi-
ruses in the motifs identified as essential for a putative
VPg suggests that AstV-MLB1 may also encode a VPg (data
not shown). While no experimental data exists supporting
the prediction of the presence of a Vpg being encoded in
any of the astrovirus genomes, we should note that we did
encounter difficulty in obtaining the 5' end of the MLB1
genome until treatment of the RNA with proteinase K

Virus Genome (bp) 5' UTR (bp) ORFla ORFIb ORF2 3'UTR
Chicken AstV-1 6,927 15 3,017 1,533 2,052 305
Turkey AstV-1 7,003 I 3,300 1,539 2,016 130
Turkey AstV-2 7,325 21 3,378 1,584 2,175 196
Mink AstV 6,610 26 2,648 1,620 2,328 108
Ovine AstV 6,440 45 2,580 1,572 2,289 59
Human AstV-1 6,813 85 2,763 1,560 2,361 80
Human AstV-2 6,828 82 2,763 1,560 2,392 82
Human AstV-4 6,723 84 2,763 1,548 2,316 8l
Human AstV-5 6,762 83 2,763 1,548 2,352 86
Human AstV-8 6,759 80 2,766 1,557 2,349 85
AstV-MLBI 6,171 14 2,364 1,536 2,271 58
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prior to RNA extraction was added to the experimental
protocol.

Finally, the 2,364 nt sequence of AstV-MLB1 ORFla is
shorter than ORFla sequences of other astroviruses,
which range between ~2,500-3,300 nt (Table 1). The
shorter length of AstV-MLB1 ORF1a relative to the human
astroviruses is largely attributable to two deletions total-
ing 57 amino acids located within a highly conserved
motif near the carboxyl terminus of human astroviruses
1-8. This deletion falls within a 144 aa region that has
been mapped as being an immunoreactive epitope in
human astroviruses [24] and is located in the non-struc-
tural protein p38 [21]. Recently, p38 has been reported to
lead to apoptosis of the host cell which results in efficient
virus replication [25] and particle release [26]. However,
it is unclear how the genome deletion identified in AstV-
MLB1 might influence these activities.

Astrovirus ORF1b is classically generated by a -1 ribos-
omal frameshift induced by the presence of a heptameric
'slippery sequence' (AAAAAAAC). [2]. A conserved slip-
pery sequence was identified near the end of ORFla of
Ast-MLB1 and FSFinder was used to determine if the
downstream sequence was capable of forming a stem-
loop structure, as found in other astoviruses [27]. The pre-
dicted start position of ORF1b was then determined by
selecting the first amino acid in frame with the slippery
sequence. The 1b open reading frame of astroviruses
encodes an RNA-dependent RNA polymerase (RNAP).
Pfam analysis revealed that AstV-MLB1 ORF1b contains
the RNA-dependent RNA polymerase domain found in
other positive strand RNA viruses, suggesting this ORF
does in fact encode for an RNAP.

Astrovirus ORF2 encodes a large structural polyprotein
that is cleaved by cellular proteases to generate the viral
capsid proteins. Following the convention of human
astroviruses [28,29] by choosing a start codon for ORF2
located two nucleotides upstream of the ORF 1b stop
codon resulted in a predicted protein length of 756aa.
Pfam analysis of the predicted protein encoded by ORF2
identifies an astrovirus capsid motif, thereby congruent
with the paradigm of astrovirus genome organization in
which ORF2 encodes the structural capsid proteins.

The AstV-MLB1 ORF2 protein sequence was divided into
four subregions for more detailed analysis as described
[30]. Pair-wise comparisons of each region were con-
ducted between the AstV-MLB1 sequence and the
sequences of all astroviruses for which sequences were
available. Consistent with previous reports, region I
appeared to be the most conserved of the four regions and
in each of the regions, AstV-MLB1 shared the most simi-
larity to known human astroviruses. However, even in
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region I, AstV-MLB1 only exhibited 33-35% identity to
known human astroviruses. In the less conserved regions
I1-1V, AstV-MLB1 shared only 5-27% amino acid identity
to the known human astroviruses. By contrast, the range
of identities between human astrovirus serotypes 1-8
were, 43-75%, 16-66% and 28-77% for regions II, III
and 1V, respectively. Overall, ASTV-MLB1 maintained
higher conservation in region I of ORF2 than in other
regions, consistent with paradigms established by analysis
of other astroviruses.

Non-coding features

Multiple independent 5' RACE experiments were per-
formed to determine the precise 5' end of the genome.
Based on these experiments, the AstV-MLB1 5' NTR was
determined to be 14 nt long. This is similar in length to
the ~10-20 nt 5'NTRs of avian astroviruses [1], but much
shorter than the 80-85 nt long 5'NTRs of the 8 human
astrovirus serotypes (Table 1). Notably, the human astro-
viruses share a 20 nt consensus sequence at the terminal
5' nucleotides of the genome which is not conserved in
other astroviruses (data not shown). AstV-MLB1 con-
tained 13 out of the 20 consensus nucleotides, including
the most 5'CCAA motif within the this region [31] (Fig.
1A). These data support the notion that the sequence we
generated does contain the very 5' terminus of the
genome.

A

Human astrovirus 1 C TGGTGETT
Human astrovirus 5 (GGGGGGTGGTGATT
Human astrovirus 4 C TGGTGATT
Human astrovirus 2 C (GEGECETGETCATT
Human astrovirus & C 'TGGTGATT
MLB1 astrovirus o GETGETATGGECT

nler 1....... 10........ 20

B Highly conserved 52nt region upstream of the ORF16/ORF2 junction
Mink astrovirus GTCEC GECTGCTTGET TTTGGEG( TGEG - CT)
Qvine astrovirus GTCRC TR TGCT GG TTTGH GGGG_WG TTTGETT]
Human astrovirus 2 CTCHCH TCCATCGCETTT & TETE
Human astrovirus 5 CTCAC CCATCGCATTT B TGT
Human astrovirus 8 CTCHC CCATCGCRTTTGE R TGTC
Human astrovirus 4 CTCAC CABCTCCATCGCRTTT 2 TETG)
Human astrovirus 1 CTCAC] TCCATCGCATTT X TETG
MLB1 astrovirus TTCHACTC GEAG' TIT CGGI T
Turkey astrovirus 2 COBECCCORCTTC! CC TATGOTE
Turkey astrovirus 1 CGGECCCGETTTTTACG TTTGGT TEGTGG!

miler’ ISR OEESEE 2 MR FO LR RS BOGE] ...
.
Figure |

Multiple sequence alignments of putative astrovirus
regulatory regions. A.) Alignment of the 20 nucleotides at
the very 5' end of the Astrovirus MLB| genome with those of
fully sequenced astroviruses. MLBI only shares |13 of the 20
conserved nucleotides present in human strains 1-8. B.)
Alignment of the 52 nt highly conserved nucleotide motif
(shown in box) present immediately upstream of the ORFIb/
ORF2 junction of Astrovirus MLBI and other astroviruses.
(Note: there is no overlap in the Turkey Astroviruses). MLBI
lacks the high degree of sequence identity seen between the
human astroviruses. The start codon of ORF2 is shown
underlined and the stop codon of ORFIb is shown italicized
in bold for each virus.
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Human astroviruses contain a 120 nt region at the junc-
tion between ORF1b and ORF2 that is ~95-97% con-
served between serotypes [32]. The most highly conserved
core 52 nt region of this sequence is 99-100% identical
among the human astrovirus serotypes. The exact role of
this sequence is not known, but it is hypothesized to be a
regulatory element of the sub-genomic RNA that encodes
for ORF2. Alignment between AstV-MLB1 and other
human astroviruses of the highly conserved 52 nt at the
ORF1b/ORF2 junction revealed that AstV-MLB1 pos-
sessed only 61.5% identity in this region (Fig. 1B). By con-
trast, the known animal astroviruses share only 44-59.6%
identity in this 52 nt region with human astroviruses as
determined by pair-wise comparisons. Interestingly, AstV-
MLB1 shares 71.2% identity in this region to Ovine Astro-
virus.

All of the previously described astroviruses, with the
exception of turkey astrovirus 2, have a conserved RNA
secondary structure referred to as the stem-loop Il-like
motif (s2m) found at the 3' end of the genome in the 3'
NTR [33]. This motif is also present in some coronaviruses
and equine rhinovirus serotype 2. Mutations within this
motif are generally accompanied by compensatory muta-
tions that restore base pairing [33]. The conservation of
such a sequence motif across multiple viral families sug-
gests that it may play a broad role in the biology of posi-
tive stranded RNA viruses [33]. The exact function of this
stem loop is not known, but it is hypothesized to interact
with viral and cellular proteins needed for RNA replica-
tion. Nucleotide alignment of the 150 nucleotides at the
3' terminus of the AstV-MLB1 genome and other viruses
known to contain the stem-loop motif suggested that
AstV-MLB1 does not have this conserved nucleotide motif
(data not shown). Furthermore, it also has the shortest
3'NTR reported to date for an astrovirus. (Table 1) [1].

Phylogenetic analysis

Multiple sequence alignments of the three astrovirus open
reading frames were performed and bootstrapped maxi-
mum parsimony trees were generated (Fig. 2). The trees
confirmed initial assessments that AstV-MLB1 is a novel
astrovirus[20]. The trees for ORFs 1a and 1b (Fig. 2a, b)
both indicated that AstV-MLB1 is most closely related to
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the human astroviruses, although it is highly divergent
from them. AstV-MLB1 ORFla only has 9-28% amino
acid identity to other astrovirus ORF1a proteins and the
pairwise sequence alignments of ORF1b revealed 35-54%
amino acid identity between ORF1b proteins of AstV-
MLB1 and other astroviruses (Table 2). The maximum
parsimony tree for ORF2 (Fig. 2c) shows that there is
greater divergence among all of the sequences for ORF2,
as is to be expected of the capsid region. However it is still
evident that AstV-MLB1 is quite divergent from any of the
known human astroviruses. Based on the predicted 756aa
protein of ORF2, AstV-MLB1 has only 11-24% amino
acid identity to other astrovirus capsid precursor proteins
(Table 2).

Origin of virus

At this point, the origin of AstV-MLB1 is unclear. AstV-
MLB1 may be a bona fide human virus capable of infect-
ing and replicating within the human gastrointestinal
tract that had evaded detection until now. Alternately, it
may be a passenger virus present simply as a result of die-
tary ingestion, as has been described previously for plant
viruses detected in human stool [34]. Of course, viruses
derived from dietary intake that appear to cause human
disease, such as Aichi virus, have been described previ-
ously [35,36]. Another possibility is that this virus may
represent zoonotic transmission from some other animal
species that is the true host for Astrovirus MLB1. Tradi-
tionally it has been thought that astroviruses have a strict
species tropism. However, recent evidence has emerged
that suggests that interspecies transmission does occur.
For example, chicken astrovirus antibodies have been
detected in turkeys [37] and an astrovirus was isolated
from humans whose capsid sequence most closely resem-
bled that of feline astrovirus| 1]. Because of the uncertainty
as to the identity of the true host species and the host
range for this virus, we have tentatively named this novel
virus Astrovirus MLB1 (AstV-MLB1). Efforts to define
whether AstV-MLB1 is a novel human pathogen are
underway.

Conclusion
Complete sequencing and genome analysis of Astrovirus
MLB1 revealed that the virus has three open reading

Table 2: Comparison of astrovirus proteins to predicted AstV-MLBI proteins

ORF  Est. % Amino Acid ldentity to:

Size

(aa)

HAstV  HAstV HAstV HAstV HAstV HAstV HAstV HAstV TAstV TAstV TAstV ChAst OAstV MAstV
-1 -2 -3 -4 -5 -6 -7 -8 -1 -2 -3 V-1

la 787 28 28 NA 29 29 NA NA 29 9 9 NA 10 22 24
Ib 511 54 54 NA 54 54 NA NA 54 36 35 NA 36 47 44
2 756 24 24 24 23 23 24 24 24 15 16 16 I 18 19
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HASt- 8 i ast.
A HASt-1¢ ARGt

TAst-1

10 amino acid

substitutions
HAst-8
HAst-4 HAst-2
B HASt-5 + HAst-1

MAst
TAst-2
OAst
TAst-1 CAst
10 amino acid
substitutions

HAst-2 HAst-7
90
C HAst-3

MLB1

TAst-1
OAst

10 amino acid
substitutions

Figure 2

Phylogenetic analysis of AstV-MLBI open reading
frames. Phylogenetic trees are based on amino acid
sequences and were generated using the maximum parsi-
mony method with 1,000 bootstrap replicates. Significant
bootstrap values are shown. (A) ORFla; (B) ORFIb; (C)
ORF2. HAstV = Human astrovirus; CAstV = Chicken astro-
virus; MAstV = Mink astrovirus; TAstV = Turkey astrovirus;
OAstV = Ovine astrovirus.

http://www.virologyj.com/content/5/1/117

frames sharing the same organization as other astrovi-
ruses. Phylogenetic analysis of the open reading frames
clearly demonstrated that AstV-MLBI1 is highly divergent
from any of the known astroviruses. Furthermore, AstV-
MLB1 lacks the conservation seen between human astro-
viruses 1-8 in the non-translated regions of the genome
such as the 5' and 3' NTR and the ORF1b/2 junction. The
aggregate analysis of the non-coding features and ORFs as
well as the phylogentic analysis clearly indicates that AstV-
MLB1 is highly divergent from all previously described
astroviruses.

The divergence of AstV-MLB1 from known astroviruses in
the non-translated regions of the genome is particularly
interesting because these regions are nucleotide motifs
that are thought to play regulatory roles in viral replica-
tion. This suggests that AstV-MLB1 may behave very differ-
ently from the known astroviruses and that additional
studies on the regulation of AstV-MLB1 transcription and
replication may broaden our understanding of astrovirus
paradigms.

Astroviruses are associated with diarrhea predominantly
in young children and immunocompromised individuals.
The discovery of AstV-MLB1 in a liver transplant patient
fits well with the known clinical parameters of astrovirus
infection. We previously reported that the only other virus
detected in this stool was a TT virus [20], which is thought
to be non-pathogenic [38]. It is therefore tempting to
speculate that AstV-MLB1 is the pathogenic agent that
caused this case of diarrhea. However, whether AstV-
MLB1 is a bona fide human virus capable of causing
diarrhea will have to be established by further experimen-
tation and epidemiological surveys.

Methods

Specimen

A stool sample was collected from a 3 year old boy admit-
ted to the Royal Children's Hospital with acute diarrhea in
1999. The child had previously undergone a liver trans-
plant one year prior to this episode of diarrhea, however
the immunological status was unknown.

RNA extraction
RNA was isolated from the primary stool filtrate using
RNA-Bee (Tel-Test, Inc.) according to manufacturer's
instructions. In some cases, the stool filtrate was treated
with 2.5 mg\ml proteinase K (Sigma) for 30 min prior to
RNA extraction.

Genome amplification and sequencing
The astrovirus sequence reads previously detected in the
primary stool filtrate [20] [GenBank accessions:

ET065581, ET065582] were assembled into two contigs,
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and the nucleic acid between the contigs was obtained by
RT-PCR. For reverse transcription reactions, cDNA was
generated with MonsterScript RT at 65°C and amplified
with Taq (Invitrogen). Subsequent 5' and 3' RACE reac-
tions were done to obtain the entire genome. To generate
high quality sequence coverage, 7 pairs of specific primers
that spanned the complete genome in overlapping ~1 kb
fragments were used in RT-PCR reactions and then cloned
and sequenced using standard Sanger sequencing chemis-
try. All amplicons were cloned into pCR4.0 (Invitrogen).
These 7 primer pairs were used to confirm the sequence of
the viral genome from both the primary stool sample and
the passage 2 tissue culture sample. The complete genome
sequence of AstV-MLB1 has been deposited in [GenBank:
F1222451].

ORF prediction and annotation

Open reading frames 1a and 2 were predicted for AstV-
MLB1 using the NCBI ORF Finder program. ORF1b was
predicted based on the frameshift paradigm that occurs in
other astroviruses by identifying a heptameric slippery
sequence [39]. Conserved motifs were identified using
Pfam [40].

Pair-wise alignments

Bioedit was used to determine the percent identity
between sequences as determined by pair-wise align-
ments.

Phylogenetic analysis

ClustalX (1.83) was used to carry out multiple sequence
alignments of the protein sequences associated with all
three of the open reading frames of representative astrovi-
rus types. Maximum parsimony trees were generated
using PAUP with 1,000 bootstrap replicates [41]. Availa-
ble nucleotide or protein sequences of the following astro-
viruses were obtained: Human Astrovirus 1 [GenBank:
NC 001943]; Human Astrovirus 2 [GenBank: L13745];
Human Astrovirus 3 [GenBank: AAD17224]; Human
Astrovirus 4 [GenBank: DQO070852]; Human Astrovirus 5
[GenBank: DQ028633]; Human Astrovirus 6 [EMBL:
CAA86616]; Human Astrovirus 7 [Gen Bank: AAK31913];
Human Astrovirus 8 [GenBank: AF260508]; Turkey Astro-
virus 1 [GenBank: Y15936]; Turkey Astrovirus 2 [Gen-
Bank: NC 005790]; Turkey Astrovirus 3 [GenBank:
AY769616]; Chicken Astrovirus [GenBank: NC_003790];
Ovine Astrovirus [GenBank: NC_002469]; and Mink
Astrovirus [GenBank: NC_004579].
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