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CRISPR/Cas system, originally developed as genetic editing
tool, also shows great potentials for nucleotide detection. A
recent study published in Molecular Cell (Freije et al., 2019)
developed a Cas13a-based CARVER (Cas13-assisted
restriction of viral expression and readout) to detect RNA
viruses such as lymphocytic choriomeningitis, influenza A
and vesicular stomatitis, which provided a potential expan-
ded application for the detection of a broad range of viral
nucleotides in disease diagnosis.

CRISPR/Cas (clustered regularly interspaced short
palindromic repeats/CRISPR-associated) systems are uti-
lized by bacteria and archaea as adaptive immune system to
defend against phage infection. Cas effectors are guided by
a CRISPR RNAs (crRNAs) to bind and cut DNA or RNA
targets to defend against invading nucleotides (Horvath and
Barrangou, 2010; Sorek et al., 2013; Barrangou and Mar-
raffini, 2014). The discovery of CRISPR/Cas system dated
back to 1987, the regularly spaced direct repeats were first
found in the iap gene of Escherichia coli (Ishino et al., 1987).
Until 2002, the spaced direct repeats were named as
CRISPR (Jansen et al., 2002). In 2012, Jinek et al. reported
that CRISPR/Cas9 could specifically cleave the target DNA
with a single RNA chimera (Jinek et al., 2012), which opened
the prelude of CRISPR/Cas9 system for genomic editing.

Since CRISPR/Cas9 was discovered, CRISPR/Cas sys-
tems attracted much attention and CRISPR toolbox had
been continuously expanded. As a potent complement to
DNA targeting CRISPR toolbox, CRISPR/Cas12a (previ-
ously known as CpfI), a Class 2 type V CRISPR/Cas effec-
tor, was characterized (Zetsche et al., 2015) with the

capability to efficiently cleave target double-stranded DNA
(dsDNA) guided by a crRNA. Moreover, differing from Cas9,
Cas12a possessed a target-dependent nonspecific single-
stranded DNA (ssDNA) cutting activity (Chen et al., 2018).
Beyond dsDNA, ssRNA molecules could also be edited by
another Cas protein, CRISPR/Cas13a (previously known as
C2c2) (Abudayyeh et al., 2016). Cas13a, as a class 2 type VI
CRISPR effector, was programmed to cleave the target RNA
guided by crRNA. In addition, as an expanded RNA-target-
ing CRISPR toolbox, Cas13a owned the property for target-
activated degradation of non-target RNA molecules (East-
Seletsky et al., 2016). In 2018, a serial of smaller size of
CRISPR/Cas14 effectors (Cas14a, Cas14b and Cas14c)
were reported (Harrington et al., 2018), with the highly
selective cleavage preference for ssDNA. Moreover, Cas14
possessed a target-dependent indiscriminate ssDNA cutting
activity. Subsequently, CRISPR toolbox was further expan-
ded with newly developed CRISPR/Cas systems, including
Cas12b (Shmakov et al., 2015; Teng et al., 2018; Strecker
et al., 2019; Teng et al., 2019), Cas12c, Cas12g, Cas12h,
Cas12i (Yan et al., 2019) and Cas13d (Konermann et al.,
2018; Yan et al., 2018). Recently, the emerging CRISPR
tools had been developed abundantly for the application of
nucleotide detection.

A class of CRISPR/Cas tools for nucleotide detection is
based on the specific binding and cutting activity of CRISPR/
Cas9 (Fig. 1A). Pardee et al. reported a method for detection
of Zika virus (Pardee et al., 2016). This study showed that
the detecting capability and specificity dramatically
enhanced in combination with CRISPR/Cas9. In the
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presence of CRISPR/Cas9, this platform could discriminate
single-nucleotide resolution between various genotypes of
Zika virus. In 2018, a Cas9-based nucleotide detection tool
termed CAS-EXPAR (Cas9 triggered exponential amplifica-
tion reaction) was developed. Combined with exponential
amplification reaction, CAS-EXPAR could detect the target
at concentration as low as 0.82 amol (0.82 × 10−18 mol/L)
(Huang et al., 2018). Subsequently, this technology was
optimized to monitor methylation status of DNA fragment.
The changes of DNA methylation showed strong correlation
with disease such as cancer (Field et al., 2018). CAS-
EXPAR provided a versatile option for detection of primitive
or methylated DNA molecules, an ideal method for early
diagnosis of tumors. Recently, many other Cas9-based
detection tools were constantly developed (Zhang et al.,

2018; Zhou et al., 2018). The nuclease-deactivated mutant
Cas9 (dCas9) was able to bind target DNA without cutting
activity. Wang et al. developed a microRNA (miRNA) sensor
consisting of dCas9, miRNA-mediated sgRNA and red flu-
orescent protein (Wang et al., 2019). This sensor provided
an exquisite example to measure miRNA activity and track
cell-state transition, so that the activity of miRNA in stem cell
differentiation and cancer progression could be timely mon-
itored (Wang et al., 2019).

Another class of CRISPR/Cas tools for nucleic acid
detection is based on a target-dependent nonspecific
cleaving activity (termed as collateral cleavage) of CRISPR/
Cas effectors (Fig. 1B). In combination of the target-depen-
dent indiscriminate RNA cutting activity of Cas13a with
recombinase polymerase amplification, Cas13a-based
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Figure 1. The mechanism of CRISPR-based nucleotide detection. (A) A class of CRISPR/Cas tools for nucleotide detection is

based on specific binding and cutting activity of CRISPR/Cas9. First, guided by a guide RNA (gRNA), Cas9 proteins bind and cut

DNA targets. Second, large amounts of nucleotides are synthesized by isothermal amplification. Third, the detection platforms report

the presence of target nucleotides with fluorescent tracking. (B) Another class of CRISPR/Cas nucleotide detection is based on

collateral cleavage of CRISPR/Cas effectors. First, a large number of nucleotides are synthesized by isothermal amplification.

Second, guided by a crRNA/sgRNA, Cas effectors (Cas12, Cas13 and Cas14) recognize and cleave target nucleotides. When

combined with HUDSON, the detection platforms could directly detect target nucleotides from body fluid of human patients. Third,

Cas effectors are activated and cut the reporters to release visual fluorescent signal.
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SHERLOCK (specific high sensitivity enzymatic reporter
UnLOCKing) was developed (Gootenberg et al., 2017) with
attomolar (10−18 mol/L) sensitivity for detecting Zika or
Dengue viruses. Strikingly, SHERLOCK, as a CRISPR
based platform, had shown single-molecule sensitivity for
nucleotide detection. The emergence of high sensitivity,
convenience and low cost of SHERLOCK shed light on the
way for nucleotide detection based on collateral effect of
CRISPR/Cas system. However, a drawback of SHERLOCK
made it unsuitable for quantitative detection (Gootenberg
et al., 2017). Shortly afterwards, it was upgraded to SHER-
LOCK version 2 (SHERLOCKv2) (Gootenberg et al., 2018)
with four channels to detect multiple targets in single reac-
tion. The 3.5 times more sensitivity, as well as the quanti-
tative, potable and visual readout made SHERLOCKv2 a
powerful tool for nucleic acid detection. When paired with
HUDSON (heating unextracted diagnostic samples to oblit-
erate nucleases), SHERLOCK could directly detect Zika and
Dengue viruses from bodily fluids of patients (Myhrvold et al.,
2018).

Subsequently, DETECTR (DNA endonuclease-targeted
CRISPR trans-reporter) with prominent property for DNA
detection joined the team of nucleotide detection. DETECTR
combined the target-dependent indiscriminate DNA cutting
activity of Cas12a with recombinase polymerase amplifica-
tion for DNA detection with attomolar sensitivity (Chen et al.,
2018). It became the first tool to detect human papillo-
mavirus (HPV) from clinically collected patient specimen.
With the emergence of Cas14, the Cas14a based Cas14-
DETECTR was presented (Harrington et al., 2018) and fur-
ther elevated the vitality for ssDNA detection. In comparison
to SHERLOCK, DETECTR became more convenient for
DNA detection because SHERLOCK was originally devel-
oped for detecting target RNA and transcription from DNA to
RNA must be performed beforehand.

In addition to the detection methods above, other tools
had been gradually developed, such as HOLMES (one-hour
low-cost multipurpose highly efficient system) (Li et al.,
2018). Cas12a-based HOMLS was also capable to detect
nucleic acid with attomolar sensitivity. In comparison with
Cas12a, Cas12b exhibited higher activity with dsDNA. An
updated version HOMLSv2, combined of Cas12b and
isothermal amplification, was developed subsequently to
detect nucleotide, discriminate SNP, quantify DNA and DNA
methylation degree (Li et al., 2019). Unlike DETECTR, which
was designed for qualitative measurement only, HOLMES
could be utilized for quantitative detection. Since then, other
Cas12-based detection methods had been developed and
optimized (Liang et al., 2019).

Currently, RNA viruses such as Zika, Dengue, Japanese
encephalitis, lymphocytic choriomeningitis, influenza A and
vesicular stomatitis, and DNA viruses such as human
papillomavirus and pseudorabies could be detected by
SHERLOCK (Gootenberg et al., 2017), DTECTRE (Chen
et al., 2018), HOLMES (Li et al., 2018) and CARVER (Freije
et al., 2019). The recent emergence of Corona Virus Disease

2019 (COVID-19), caused by a novel ssRNA virus, has led
to serious harm to human health worldwide. Nucleic acid
detection played an important role in the diagnosis of
COVID-19. Currently, molecular diagnosis of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) had
been mainly based on Real-time polymerase chain reaction
(qPCR), which required expensive equipment and was time-
consuming. Moreover, frequent false-negative results from
qPCR seriously had delayed the treatment of patients and
the prevention and control of COVID-19. In contrast,
CRISPR-based tools showed better superiority for nucleo-
tide detection because they were faster, cheaper, more
sensitive and accurate within similar workload. Luckily,
CRISPR-based detection methods for SARS-CoV-2 had
been developed recently (Metsky et al., 2020), making it
suitable for molecular diagnosis of this epidemic outbreak.
Meanwhile, a rapid SHERLOCK based detection platform of
SARS-CoV-2 had also been developed by Feng Zhang’s
laboratory that could be completed in one hour.

In addition to detect RNA and DNA viruses from conta-
gious diseases, CRISPR- based tools also show potentials
for detection of tumor derived nucleotides such as circulating
tumor DNA (ctDNA) (Jenkins et al., 2017). As a component
of primary tumors into the circulatory system or other body
fluids, ctDNA plays an important role in the evaluation of
tumor progression and metastasis. At present, the detection
of ctDNA is mainly based on PCR or NGS (next-generation
sequencing). However, it is usually quite difficult to monitor
subtle DNA mutations by PCR, and NGS often generates
numerous false-positive results. In contrast, CRISPR-based
system shows higher fidelity, sensitivity and capability to
discriminate single-base mismatch, which offers a great
alternative for ctDNA detection (Jia et al., 2018).

Moreover, with the global cultivation of genetically modi-
fied agricultural products and the establishment of geneti-
cally modified organism (GMO) labeling management
system, the detection of genetically modified components is
becoming more and more important in the agricultural field
(Kebed, 2015). The advantages of CRISPR tools including
high sensitivity, convenience and low cost show great
potentials to replace existing outdated techniques for GMO
detection. In combination of Cas9 with rolling circle amplifi-
cation and gold nanoparticles, CRISPR-based method for
plant pathogens could visually detect target DNA at con-
centration as low as 2 pmol/L (10−12 mol/L), which could
provide a convenient platform for crops inspection (Chang
et al., 2019). Furthermore, a modified version of SHER-
LOCK, designed to detect multiple soybean genes in one
single reaction has been recently developed to monitor the
traits of crops during breeding (Abudayyeh et al., 2019).
African swine fever (ASF), caused by infection of African
swine fever virus (ASFV), becomes an infectious disease
with high fatality rate in most pig farms. The point-of-care
detection by farmers is of great significance for the preven-
tion and diagnosis of ASF. At present, the detection of ASFV
is mainly based on qPCR, which is time-consuming and
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requires equipping expensive instruments. To improve this
situation, Cas12 and Cas14-based detection method for
ASFV has been developed to target three key genes of
ASFV (VP72, K205 R, CP530R). It could visually detect
ASFV from pig secretions such as blood, urine and nasal
swab within 15 min (unpublished data). We can envision the
prospects of broad applications of CRISPR-based detecting
systems in the agriculture, especially the on-site evaluation
of transgenosis of genetically modified foods and more
infectious animal diseases in the near future.

CRISPR-based tools are now in a state of full bloom. In
comparison with Cas9, other Cas effectors possessing col-
lateral activity are becoming most popular due to the innate
technical advantages. Cas12 effectors exhibit more exper-
tise in detecting tumor associated viral markers, such as
HPV (Chen et al., 2018). Cas13 effectors show the talent on
RNA viral detection, such as Zika and Dengue (Gootenberg
et al., 2017). Cas14 effectors show superiority in ssDNA
detection (Harrington et al., 2018). Different Cas platforms
could be selected and utilized for distinct areas based on
their individual talents (Table 1).

The various CRISPR-based platforms provide inspira-
tions on how to detect nucleotide efficiently, sensitively and
conveniently. For example, by combining with multiple
members of Cas effectors, the detection tools possessed
multiple channels to detect several targets in a single reac-
tion. This feature makes it expandable for high-throughput
screening system. By combining with Csm6, a CRISPR type
III protein, the sensitivity of signal detection could be further
elevated (Gootenberg et al., 2018). The detection platforms
with additional lateral flow for visual readout show significant
improvement for the control of the spread of infectious dis-
eases, especially in certain areas without essential instru-
ments for molecular diagnostics. By adding amplified
enzymes to the detection system, the nucleotide amplifica-
tion and detection steps have been integrated into a reaction
system. This procedural improvement during sample
preparation could effectively avoid cross-contamination.

Several constraints for CRISPR-based detection tools still
remain to be resolved. First, the off-target effects of CRISPR
may affect the accuracy for nucleotide detection. Recently,
the method of prime editing has been developed by com-
bining impaired Cas9 protein with reverse transcriptase,by
which specific DNA targets could be synthesized (Anzalone
et al., 2019). Prime editing technique not only shows signif-
icance for genetic editing, but also provides an ingenious
path to enhance the efficiency of CRISPR-based detection
methods. Second, CRISPR/Cas effectors exhibit varying
degrees of tolerance to mismatches between the guide RNA
and the target nucleotides, which may also affect the accu-
racy of detection. Therefore, optimized technique needs to
be invented to solve these issues. In short, higher accuracy,
sensitivity, convenience and lower cost should be the future
focus and breakthrough for CRISPR detecting systems.

As a summary, these emerging CRISPR/Cas detection
tools show great potentials in the detection of viral and tumor Ta
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derived nucleotides, DNA methylation, and single-nucleotide
polymorphism. Because of its advantages, CRISPR-based
methods would be more suitable for molecular diagnosis of
major epidemic outbreaks than conventional techniques.
Moreover, CRISPR-based tools could also be expanded for
detection in many other fields such as agriculture and
aquaculture. With the continuous expansion of CRISPR
toolbox, and the rapid development of CRISPR-based plat-
forms, more and more fields will definitely benefit from
CRISPR/Cas utilization in the future.
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