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Cinnamon essential oil (CEO) is themain ingredient in the renewable biomass of

cinnamon, which contains natural cinnamaldehyde. To valorize the value of

cinnamaldehyde, two simple and useful compounds (1 and 2) from CEO were

synthesized using a Schiff-base reaction and characterized by infrared spectra

(IR), nuclear magnetic resonance (NMR), and high-resolution mass

spectrometry (HRMS). Compound 1 was used to confirm the presence of

Fe3+ and ClO− in solution, as well as compound 2. Using fluorescence

enhancement phenomena, it offered practicable linear relationship of 1’s

fluorescence intensity and Fe3+ concentrations: (0–8.0 × 10−5 mol/L), y =

36.232x + 45.054, R2 = 0.9947, with a limit of detection (LOD) of 0.323 μM,

as well as compound 2. With increasing fluorescence, F404/F426 of 1 and the

ClO− concentration (0–1.0 × 10−4 mol/L) also had a linear relationship: y =

0.0392x + 0.5545, R2 = 0.9931, LOD = 0.165 μM. However, the fluorescence

intensity of 2 (596 nm) was quenched by a reduced concentration of ClO−,

resulting in a linear. In addition, compounds 1 and 2were used to image human

astrocytoma MG (U-251), brain neuroblastoma (LN-229) cells, and bamboo

tissue by adding Fe3+ or ClO−, with clear intracellular fluorescence. Thus, the

two compounds based on CEO could be used to dye cells and bamboo tissues

by fluorescence technology.
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Introduction

The main aromatic compound in cinnamon essential oil (CEO)

is cinnamaldehyde, with a content of 80%–94.8%, and which can be

directly extracted from cinnamon (Liu et al., 2021). This renewable

biomass of cinnamaldehyde hasmany useful functions, such as anti-

Leishmania activity (Brustolin et al., 2022), antifungal activity (Niu

et al., 2022), antibacterial activity (Wang et al., 2021), antimicrobial

activity (Thirapanmethee et al., 2021), and improvement of wood

decay resistance (Fang et al., 2021). Furthermore, it is easy to

synthesize derivatives with biological activity using

cinnamaldehyde, such as cinnamaldehyde-based aspirin

derivatives (Lu et al., 2018) and chitosan-cinnamaldehyde cross-

linked nanoparticles (Gadkari et al., 2019). The Schiff-base

fluorescence compounds derived from natural cinnamaldehyde

have already been used to sense ClO− and Cu2+, and to image

U-251 andHu-7 cells (Yang et al., 2021a). In order to further add the

value of natural cinnamaldehyde in the field of fluorescence, the

continued synthesis of useful fluorescent compounds from

cinnamaldehyde is highly desirable.

As an important microelement in the human body, ferric ion

(Fe3+) is a vital part of ferrithionein and heme, playing a crucial

role in the physiological activities of oxygen delivery,

transcription regulation, enzyme catalysis, and metabolism

(Huang et al., 2019a; Li S. et al., 2020; Lin et al., 2022). In the

human body, levels of endogenous Fe3+ that are too high or low

can result in heart failure, anemia, and Parkinson’s disease

(Wang et al., 2019; Li Y. et al., 2020). In recent years, many

novel organic fluorescents used to detect Fe3+ have been reported

(Song et al., 2019; Rani and John, 2020; Perumal et al., 2021). A

fluorescence sensor (AH2) was developed to sense Fe3+ in

aqueous media (Petdum et al., 2021), and a fluorescence

chemosensor with a microscale multi-functional metal-organic

framework was also used to sense Fe3+, as well as Al3+ and 2-

hydroxy-1-naphthaldehyde (Kang et al., 2016). Interestingly,

porous tetraphenylethylene-based organic polymer (PTOP)

could response Fe3+ (turn-off) with high selectivity and

sensitivity (Zheng et al., 2020), and a “turn-on” fluorescence

sensor (polymer) based on imidazole-functionalized

polydiacetylene has also been used to sense Fe3+ (Shin et al.,

2022). Thus, the synthesis of new, simple, and efficient

fluorescence compounds for the determination of Fe3+ is of

great significance.

As a reactive oxygen species (ROS), hypochlorite anion (ClO−)

can be obtained by the oxidative reaction of H2O2 and Cl− (Dong

et al., 2020; Pei et al., 2020; Elmas, 2022; Pei et al., 2022), which is

widely used in the field of sterilization agents, bleaching agents, and

deodorants (Wang et al., 2015; Huang et al., 2016; Dong et al., 2017;

Sitanurak et al., 2018;Mahdizadeh et al., 2020). Nevertheless, there is

much evidence that excessive generation of ClO− can cause diseases,

such as cancer, atherosclerosis, neuron degeneration, cardiovascular

disease, lung injuries, and kidney disease (Huang et al., 2016; Zhang

et al., 2017; Feng et al., 2018; Song et al., 2018; Ma et al., 2020; Zhang

et al., 2020). To date, many good organic fluorescence probes for

ClO− have been synthesized, including benzothiazole-based

fluorescence and colorimetric chemosensors (Suh et al., 2022),

phenanthroimidazole-based fluorescence (Yang et al., 2022), and

thiophene-cyanostilbene Schiff-base sensor (Guo et al., 2021).

Therefore, it is imperative to design simple sensors for

monitoring ClO−.

We report two simple Schiff-base derivatives (1 and 2) based

on cinnamaldehyde, with both compounds 1 and 2 sensitive to

the presence of Fe3+ and ClO−. The optical properties and

application potential in bio-imaging of 1 and 2 are

systematically investigated for a further study.

Materials and methods

Materials and instruments

All reagents (without further purification) were purchased from

commercial suppliers. All experiments involving all compounds (1

and 2) were conducted in a PBS buffer solution (pH = 7.4, 10 mM,

50% (v/v) C2H5OH). Fluorescence spectra were obtained using a

PerkinElmer LS 55 fluorescence spectrophotometer. UV-vis

absorption spectra were measured on a UV-2550

spectrophotometer (SHIMADZU). 1H and 13C-NMR spectra

were determined using a Bruker FT-NMR spectrometer

(600 MHz). Infrared spectra were recorded on an FT-IR infrared

spectrometer (Nicolet 380). Fluorescence bio-imaging were finished

using confocal laser scanning microscopy.

SCHEME 1
Synthesis of cinnamaldehyde Schiff-base derivatives.
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Synthesis

Synthesis of 2-amino-3-(3-phenyl-allylideneamino)-but-2-

enedinitrile (1). Cinnamaldehyde (10 mmol), diaminomaleonitrile

(10mmol), and ethanol (50ml) were added to a 250ml dried

flask with three necks. The contents were then stirred with

refluxing for 3.5 h to offer reactant. Using ethanol to recrystallize,

a deep-yellow flaked material was produced (57.5%, yield). FT-IR

(KBr) ν (cm−1): 3,447, 3,287, 3,133, 2,231, 2,205, 1,615, 1,602, 1,584,

1,450, 1,372, 1,308, 1,146, 992, 951, 751; 1H NMR (DMSO-d6,

600MHz): 7.00-7.04 (m, 1H), 7.35-7.38 (t, 4H), 7.40-7.59 (m, 2H),

7.75 (s, 2H), 8.08-8.09 (d, 1H); 13C NMR (DMSO-d6, 150MHz), δ
(ppm): 104.15, 114.18, 114.95, 126.72, 127.66, 128.07, 129.47, 130.21,

135.94, 144.46, 157.54; HRMS (m/z): [M + Na]+ calcd for

C13H10N4+Na
+, 245.0798; found, 245.0717.

Synthesis of 2-amino-3-[3-(4-dimethylamino-phenyl)-

allylideneamino]-but-2-enedinitrile (2). 4-(Dimethylamino)

cinnamaldehyde (10 mmol), diaminomaleonitrile (10 mmol),

and ethanol (80 ml) were separately added to a 250 ml dried

flask (three necks). Then, the contents were stirred with refluxing

for 6.5 h to gain reactant. The solution was recrystallized using

ethanol, producing a crimson crystal (61.3%, yield). FT-IR (KBr)

ν (cm−1): 3,450, 3,296, 3,175, 2,909, 2,224, 2,205, 1,661, 1,650,

1,604, 1,583, 1,550, 1,440, 1,367, 1,226, 1,186, 1,145, 992, 812; 1H

NMR (DMSO-d6, 600 MHz): 2.98 (s, 6H), 6.73-6.75 (t, 2H), 7.28-

7.31 (d, 1H), 7.43-7.49 (m, 4H), 7.55-7.57 (m, 1H), 8.02-8.04 (d,

1H); 13C NMR (DMSO-d6, 150 MHz), δ (ppm): 104.91, 112.19,

112.44, 122.43, 123.50, 123.74, 125.05, 129.81, 131.11, 145.98,

158.56; HRMS (m/z): [M + H]+ calcd for C15H15N5+H
+,

266.1400; found, 266.1392.

FIGURE 1
Fluorescence spectra of compound 1 (A) and compound 2 (B)with equal positive ions or anions or ROS in a PBS buffer solution: 1: λex = 375 nm,
Em. Slit = 5.0 nm, Ex. Slit = 7.0 nm; 2: λex = 430 nm, Em. Slit = 5.0 nm, Ex. Slit = 11.0 nm.

FIGURE 2
(A) Fluorescence intensity (424 nm) of compound 1, 1+ Fe3+, and 1+ Fe3+when adding another ion to the PBS buffer solution: λex = 375 nm, Em.
Slit = 5.0 nm, Ex. Slit = 6.0 nm; (B) Fluorescence intensity (487 nm) of compound 2, 2 + Fe3+, and 2 + Fe3+ when adding another ion to the PBS buffer
solution: λex = 430 nm, Em. Slit = 5.0 nm, Ex. Slit = 9.0 nm.
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Cellular imaging

Compounds 1 and 2 were used to image human astrocytoma

MG cells (U-251 cells) and human brain neuroblastoma cells

(LN-229 cells) using the method of Yang J. et al., 2020.

Bamboo imaging

The leafless part of fresh bamboo poles with leaves was

immersed in a solution (1 or 2: 1 × 10−3 mol/L) for 1.5 h.

After that, it was cut into slices to observe their

microstructure with or without adding a drop of Fe3+ (or

ClO−) solution (1 × 10−3 mol/L) using an LSM710 confocal

fluorescent microscope.

Results and discussion

Synthesis

The two derivatives, 1 and 2, were synthesized using

cinnamaldehyde (Scheme 1) (Robertson and Vaughan, 1958)

and characterized using IR, NMR, and HRMS. Compounds 1 and

2 were confirmed to be 2-amino-3-(3-phenyl-allylideneamino)-

but-2-enedinitrile and 2-amino-3-[3-(4-dimethylamino-

phenyl)-allylideneamino]-but-2-enedinitrile.

Fluorescence spectral response

To examine the response of 1 and 2 to the cations Fe3+, Ca2+,

Cd2+, Co2+, Cr3+, Fe2+, K+, Mn2+, Na+, Hg2+, Pb2+, Cu2+, Zn2+,

Mg2+, Al3+, B3+, Li+, and Ni2+, and to the anions Ac−, Br−, Cl−, F−,

H2PO4
−, HSO4

−, OH−, I−, ROS of ClO−, H2O2, NO, ONOO
−,

•O2
−, and ROO•, the fluorescence selectivity of compounds 1

and 2 in PBS buffer solution (pH = 7.4, 10 mM, 50% (v/v)

C2H5OH) was studied using fluorescence spectra

(concentrations: 1 × 10−5 mol/L) (Figure 1).

Figure 1A shows peak fluorescence intensities (400–450 nm,

compound 1) with adding equal Fe3+ or ClO− had a significant

enhance, after adding other substance in compound 1’s system,

the intensity changed little except •O2
− (weak fluorescence

enhancement). Therefore Fe3+ and ClO− could response with

compound 1, with a fluorescence enhancement in solution. In

contrast with compound 1’s chemical structure, that of

FIGURE 3
Fluorescence spectra of probe 1 in a PBS buffer solutionwith various concentrations of Fe3+ (A) and ClO− (C). (B) Linear relationship between the
fluorescence intensity of probe 1 and Fe3+ concentration. (D) Linear relationship between the F404/F426 of probe 1 and ClO− concentration (λex =
375 nm): Fe3+: Em. Slit = 5.0 nm, Ex. Slit = 2.5 nm; ClO−: Em. Slit = 5.0 nm, Ex. Slit = 5.0 nm.
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compound 2 has a p-N(CH3)2 in benzene ring; the remainder of

the structure is exactly the same as that of compound 1. Thus, the

32 positive ions, anions, and ROS were separately used in

response with compound 2 [Figure 1B]. The addition of Fe3+

or ClO− (450–550 nm) also enhanced the fluorescence of

compound 2 in the PBS buffer solution. That is, compound 2

also responded to Fe3+ and ClO−, which is consistent with the

results for compound 1. However, the intensity (550–650 nm)

was quenched after adding ClO− in 2’s solution. The reason for

this might be connected with the functional group of p-N(CH3)2.

Finally, both compounds 1 and 2 had the potential to detect Fe3+

and ClO− in solution.

FIGURE 4
Fluorescence spectra of probe 2 in a PBS buffer solution with various concentrations of Fe3+ (A) and ClO− (C). Linear relationship between
fluorescence intensity of probe 2 and concentration of Fe3+ (B) and ClO− (D) (λex = 430 nm): Fe3+: Em. Slit = 5.0 nm, Ex. Slit = 5.0 nm; ClO−: Em. Slit =
5.0 nm, Ex. Slit = 18.0 nm.

FIGURE 5
UV-vis absorption spectra of 1, 1 + Fe3+, 1+ClO− (A) and 2, 2 + Fe3+, 2+ClO− (B) in PBS buffer solution.
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The anti-interference performance of compounds 1 and 2

(1 × 10−5 mol/L) to Fe3+ (1 × 10−5 mol/L) in the same PBS buffer

solution was also investigated [Figure 2A (compound 1) and

Figure 2B (compound 2)]. Figure 2A shows that, compared with

those of compound 1, the other fluorescence intensities increase

significantly. Compared with the intensity of 1+Fe3+, after adding

another substance to the 1+Fe3+ system, only the solution of

1+Fe3++ClO− enhanced fluorescence weakly; this might be

related to the fluorescence enhancement of ClO− for

compound 1. The 1 + Fe3+ combination resulted in good

interference capacities with other substances. As shown in

Figure 2B, compared with the results of Figure 2A, the 2 +

Fe3+ also had an anti-interference performance for other ions. In

contrast, the addition of ClO− in 2+Fe3+ did not enhance the

fluorescence, possibly because of the p-N(CH3)2 group in

compound 2. Both compounds 1 and 2, therefore, have the

potential to be used as fluorescence probes for Fe3+.

The anti-interference tests of 1+ClO− (or 2+ClO−) with the

oxidizing agents H2O2, NO, •O2
−, ONOO−, and ROO• are

detailed in Supplementary Figures S1A–C. The light-emitting

systems of 1+ClO− and 2+ClO− differed in terms of the anti-

interference performance of other ROS. The addition of another

ROS in the solution of 1+ClO− could not significantly change the

fluorescence intensity (424 nm), as well as the 2+ClO− at 487 nm.

However, to add other ROS in the 2+ClO− system could quench

fluorescence at 596 nm.

Linearity

Linearity is very important for fluorescence probes, so the

linear relationships between probe 1 or probe 2 and Fe3+ and

ClO− concentration were investigated in a PBS buffer solution

[pH = 7.4, 10 mM, 50% (v/v) C2H5OH]; the concentration of

probe 1 and probe 2 was 1 × 10−5 mol/L, and the results are

shown in Figure 3 (compound 1) and Figure 4 (compound 2).

Figure 3 shows compound 1’s fluorescence spectra for

different concentrations of Fe3+ and ClO−. Figure 3A shows

that the fluorescence intensity (400–450 nm) gradually

increases with increasing Fe3+ concentration. The peak

fluorescence intensity of probe 1 vs. Fe3+ concentration is

shown in Supplementary Figure S2A. The linear relationship

between 1’s peak intensity and the Fe3+ concentration is shown in

Figure 3B: y = 36.232x+45.054, R2 = 0.9947 (Fe3+: 0–8.0 ×

10−5 mol/L). Using the IUPAC definition of the limit of

detection (LOD), an LOD of 0.323 μM was calculated using

Eq. 3 σbi/m, which was lower than the 9 μM of a PDA-Im

sensor (Shin et al., 2022). Fluorescence enhancement might be

ascribed to a complexation of 1’s N atom with Fe3+ (Zhou et al.,

2017). With the same trend of fluorescence enhancement (1 +

Fe3+), the fluorescence intensity was enhanced with increasing

ClO− concentration (Figure 3C; Supplementary Figure S2B), with

a linear relationship between F404/F426 and ClO− concentration

(Figure 3D). It also showed a good result: y = 0.0392x+0.5545,

R2 = 0.9931 (ClO−: 0–1.0 × 10−4 mol/L), with an LOD of

0.165 μM. This LOD value is lower than the 0.238 μM of a

coumarin-based fluorescence chemosensor (Elmas, 2022). The

reason for 1monitoring ClO− might be connected with the C=N

unit, which reacts with ClO− (Yang Q. et al., 2020).

With a fluorescence enhancement result, compound 2 can be

used to sense Fe3+. The fluorescence spectra of the 2 + Fe3+

solutions are shown in Figure 4A. With the addition of Fe3+ from

0 mol/L to 2.8 × 10−4 mol/L, the peak fluorescence intensity

continuously added (Supplementary Figure S3A). That is,

FIGURE 6
Fluorescence bio-images of the U-251 cells of probe 1, 1 + Fe3+, and 1+ClO− and probe 2, 2 + Fe3+, and 2+ClO−.
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probe 2might have the same function as probe 1when helping to

determine Fe3+ concentration. At the same time, two good linear

relationships were obtained, as shown in Figure 4B: 487 nm: y =

47.72x+107.27, R2 = 0.9947, LOD = 0.373μM; 529 nm: y =

19.813x+62.209, R2 = 0.9906, LOD = 0.451 μM.

Figure 4C shows that the peak intensity at 550–650 nm

decreases gradually when ClO− concentration increases from

0 to 6.0 × 10−5 mol/L. At higher ClO− concentration, the

intensity almost remains constant (Supplementary Figure

S3B). The results of adding ClO− to probe 2’s solution were

different from those of adding it to probe 1’s solution. It might be

affected by the p-N(CH3)2 group in probe 2. Finally, the linear

relationship was determined, as shown in Figure 4D. With the

concentration range of 0–4.0 × 10−5 mol/L (ClO−), the peak

intensity of 2’s light-emitting system had a good linear

relationship with ClO− concentration: y = -141.47x+746.66,

R2 = 0.9954, LOD = 0.434 μM.

UV-vis absorption spectra

To further verify the reaction of 1 (or 2) and Fe3+ or ClO−

in PBS buffer solution (pH = 7.4, 10 mM, 50% (v/v) C2H5OH),

UV-vis absorption spectra were recorded. The concentration

was 5.0 × 10−5 mol/L, as shown in Figure 5. Figure 5A shows a

maximum absorption peak (compound 1) at 376 nm, with A =

1.958. After adding equal amounts of Fe3+ ions, the value of A

increased to 2.119. Meanwhile, the A value of 1+ClO−

decreased to A = 1.649. This reveals that a chemical

reaction had taken place among compound 1 and Fe3+ or

ClO− in the solution, agreeing with the results shown

Figure 1A. In compared with compound 1, as shown in

Figure 5B, the maximum absorption peak of compound 2

red-shifts from 376 to 428 nm, with a decrease in A of 1.126. It

might be affected by the p-N(CH3)2 group of 2. The addition

of Fe3+ (or ClO−) also changed the peak of probe 2, which had

the same trend as probe 1. The peak of 2 + Fe3+ had a weak

blue-shift (428–425 nm), and A decreased slightly

(1.126–1.098). The reason might also be related to the

p-N(CH3)2 group. The results showed that Fe3+ and ClO−

could response with compounds 1 and 2, which led to a

change in fluorescence intensity in the solution.

Bio-imaging in live cells

To achieve the value of bio-imaging in live cells (Huang et al.,

2019b), probes 1 and 2 (1.0 × 10−4 mol/L) were used to dye live

U-251 and LN-229 cells (Fe3+ or ClO−: 1.0 × 10−3 mol/L). After

dying, confocal fluorescent microscopic images of the cells were

taken (ZEISS LSM510) (Figure 6; Supplementary Figure S4).

Figure 6 shows that there is almost no fluorescence for cells

dyed only with probe 1 (U-251 cells). However, the U-251 cells

produced clear blue fluorescence after adding a drop of Fe3+

solution to response with compound 1. In addition, the 1+ClO−

system had the same function as the 1 + Fe3+ system in dying U-

251 cells. Therefore, the fluorescence enhancement probe 1 for

Fe3+ or ClO− could be used in bio-imaging of live U-251 cells.

Figure 6 also shows the results for the fluorescence imaging of U-

251 cells using compound 2 with the same condition as

compound 1. Probe 2 could sense Fe3+ or ClO− in U-251

cells. In order to find the results of imaging in other cells,

FIGURE 7
Fluorescence images of bamboo structure using compound 1, 1 + Fe3+, and 1+ClO− and compound 2, 2 + Fe3+, and 2+ClO−.
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LN-229 cells were chosen to conduct an experiment—the results

are provided in Supplementary Figure S4. Probe 2 led to exactly

the same result as probe 1, in keeping with what is shown in

Figure 6. The 1 + Fe3+ and 2 + Fe3+ permeated the LN-229 cells

well and provided bright intracellular fluorescence, as well as the

1+ClO− and 2+ClO−. The addition of ClO− quenched the

intensity of 2’s fluorescence (550–650 nm) (Figure 4C);

however, the 2+ClO− could also be used to image cells, which

might have been connected with the fluorescence at 450–550 nm.

Consequently, probes 1 and 2 for Fe3+ and ClO− could be used in

the bio-imaging of U-251 and LN-229 cells.

Bio-imaging in bamboo

Various fluorescence probes can be used to dye plants when

required, and bamboo is an important renewable and abundant

biomass which can provide wood and shoots (Yang et al., 2021b;

Lin et al., 2021; Zheng et al., 2021). In order to investigate the

microstructure of bamboo, probes 1 and 2 were used in

conjunction with fresh bamboo poles with leaves, the imaging

results for 1, 1 + Fe3+, and 1+ClO− and 2, 2 + Fe3+, and 2+ClO−

are in Figure 7.

It had very weak fluorescence when the bamboo was dyed

with 1 or 2. After adding a drop of the same concentration of Fe3+

solution in the bamboo with 1 or 2, significant blue fluorescence

occurred, and the microstructure of the biological tissues was

clearly observed. It also told that these fluorescence tissues

transferred 1 or 2. Furthermore, the images of 1+ClO− and

2+ClO− were worse than those of 1 + Fe3+ and 2 + Fe3+, in

keeping with Figure 1. Finally, the 1 + Fe3+ and 1+ClO− and 2 +

Fe3+ and 2+ClO− could not only dye cells, but could also image

the bamboo microstructure.

Conclusion

Two simple and practical derivatives (1 and 2) were

synthesized using a chemical reaction of Schiff-base

originating from natural cinnamaldehyde and developed for

monitoring Fe3+ or ClO−. Compound 1 could sense Fe3+ or

ClO− selectively, leading to fluorescence enhancement in a

PBS solution, and providing the linear relationship between

the fluorescence intensity and the ion concentration.

Meanwhile, in compared with compound 1, probe 2 could

also detect Fe3+ with increased fluorescence intensity in

solution. Nevertheless, the addition of ClO− quenched the

fluorescence of 2 at 596 nm. As a result, probe 2 for Fe3+ or

ClO− also had a favorable linear relation. Finally, compounds 1

and 2 were used in a fluorescence imaging experiment with U-

251 cells, LN-229 cells, and bamboo tissues, offering clear

intracellular fluorescence with good results. Thus, these two

Schiff-base derivatives based on cinnamaldehyde could be

used in future fluorescence detection and bio-imaging, adding

to the scientific value of the natural biomass of cinnamaldehyde.
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