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1  | INTRODUC TION

Lung cancer is one of the leading causes of cancer-related deaths 
worldwide, accounting for about 787,000 deaths each year in 
China.1,2 Many patients are identified in the advanced stages of 
lung cancer during initial diagnosis. The age-standardized 5-year 
relative survival of lung cancer was only 19.7% in China, but if 

diagnosed at an early stage, then surgical resection offers a favor-
able prognosis.3-5

There are several methods for diagnosing lung cancer. The most 
commonly recommended method for screening lung cancer is com-
puted tomography (CT), especially the low-dose CT (LDCT). Early 
screening of lung cancer through LDCT decreases the mortality 
rate by 20%.6 Fluorodeoxyglucose positron emission tomography 
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Abstract
Background: Accurate	prediction	of	malignancy	risk	for	pulmonary	lesions	with	pleu-
ral effusion improves early diagnosis of lung cancer. This study aimed to develop and 
validate a model to predict lung cancer.
Methods: Clinical data of 536 patients with pulmonary diseases were collected. The 
risk factors were identified by regression analysis. Three prediction models were 
developed. The predictive performances of the models were measured by the area 
under	the	curves	(AUCs)	and	calibrated	with	1000	bootstrap	samples	to	minimize	the	
over-fitting bias. The net benefits of the models were evaluated by decision curve 
analysis.	Finally,	a	separate	cohort	of	134	patients	was	used	to	validate	the	models	
externally.
Results: Seven independent risk factors were identified from 18 clinical variables, 
which	 included	 the	pleural	 fluid	carcinoembryonic	antigen	 (CEA),	 serum	cytokera-
tin-19	fragment	(CYFRA	21-1),	the	ratio	of	CEA	in	the	pleural	fluid	to	serum,	extratho-
racic cancer history (>5 years), tumor size, vessel convergence, and lobulation. The 
AUCs	of	the	three	models	were	0.976,	0.927,	and	0.944	in	the	training	set	and	0.930,	
0.845,	and	0.944	in	the	external	set,	respectively.	The	accuracies	of	the	three	models	
were	89.6%,	81.4%,	and	88.8%.	Model	1	showed	the	best	 iteration	 fit	 (R2 =	0.84,	
0.68, and 0.73) and a higher net benefit on decision curve analysis when compared 
to the other two models.
Conclusion: The advantageous model could assess the risk of lung cancer in patients 
with pleural effusion and act as a useful tool for early identification of lung cancer.
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(FDG-PET)	 is	 another	 screening	method	 recommended.	However,	
the metabolically active infection or inflammatory lesions unfortu-
nately led to false-positive results and controversies.7 Besides, other 
approaches, such as needle biopsy, bronchoalveolar lavage, or sur-
gery are also available.8 These methods are considered expensive, 
time-consuming, and invasive when compared to serological testing 
or CT. More importantly, many patients might have no surgical indi-
cations for these methods.9-11

The diagnostic performance of pleural effusion mostly depends on 
hydrothorax	cytology.	Nevertheless,	the	sensitivity	of	this	method	is	
only around 60%.12 Several recent studies have reported the use of 
tumor markers in pleural effusion, achieving satisfactory results in lung 
cancer	diagnosis,	especially	the	carcinoembryonic	antigen	 (CEA)	and	
cytokeratin-19	fragment	(CYFRA	21-1).13-15	Notably,	more	significant	
performance improvement can be yielded by combining the biomark-
ers and radiological signs.16 Meanwhile, a prediction model is currently 
regarded as the most useful method.17 The prediction models for lung 
cancer diagnosis include the Mayo model, Peking University People's 
Hospital	model	(PKUPH),	VA	model,	and	Brock	University	model.18-21 
These models vary in performance, and none of the models involved 
clinical	biomarkers	and	required	further	optimization.17,22,23

Therefore, our study intended to build new prediction models for 
lung	cancer	diagnosis	based	on	real-world	clinical	data.	Also,	the	exter-
nal validation and net clinical benefits of these models were evaluated.

2  | MATERIAL S AND METHODS

2.1 | Study population

Patients	 with	 lung	 cancer	 were	 enrolled	 from	 the	 First	 Affiliated	
Hospital	 of	 Chongqing	 Medical	 University	 from	 January	 2017	 to	
May 2020. Lung cancer in these patients was confirmed by pathol-
ogy (surgical resection or biopsy). The staging of non–small-cell lung 
cancer	 (NSCLC)	 and	 small-cell	 lung	cancer	 (SCLC)	was	determined	
according	to	the	criteria	of	the	American	Joint	Committee	on	Cancer	
(AJCC)	Cancer	Staging	Manual,	8th	Edition.	Only	the	first	admission	
results were used for analysis in this study. The Clinical Research 
Ethics	 Committee	 of	 the	 First	 Affiliated	 Hospital	 of	 Chongqing	
Medical University has evaluated and approved the study protocol.

Lung cancer patients were selected based on the inclusion and 
exclusion criteria. The inclusion criteria were as follows: patients 
with (I) pleural effusion; (II) complete clinical data including age, gen-
der, smoking status, history of extrathoracic malignant neoplasm 
(>5 years), and family cancer history; (III) complete imaging data in-
cluding the maximum diameter (cm) of pulmonary mass, tumor site, 
speculation, lobulation, vascular convergence, and air bronchogram; 
and (Ⅳ)complete	 tumor	markers	 results	of	CEA,	CYFRA	21-1,	car-
bohydrate	antigen	19-9	(CA	19-9),	alpha-fetoprotein	(AFP),	and	fer-
ritin	 (FER)	 in	pleural	effusion	 (fCEA,	fCYFRA	21-1,	 fCA	19-9,	 fAFP,	
fFER),	and	CEA	and	CYFRA	21-1	 in	 serum	 (sCEA	and	sCYFRA	21-
1). The exclusion criteria were as follows: patients (I) without any 
lumpy shadows on CT; (II) with chronic renal insufficiency, diabetes, 

liver cirrhosis, and other diseases that can cause false-positive re-
sults of tumor markers; (III) with history of malignancy within the 
past 5 years (persistent or recurrent malignant neoplasm); (Ⅳ) who 
are	near	to	death;	(V)	who	are	pregnant	or	breast-feeding;	(VI)	who	
underwent	organ	transplantation;	(VII)	with	chronic	viral	infections;	
and	(VIII)	taking	immunosuppressive	medications.

According	to	these	criteria,	402	patients	were	selected	as	train-
ing set from January 2017 to July 2019 for the prediction models 
(Figure	1).	Another	134	patients	were	selected	from	August	2019	to	
May 2020 as external validation set using the same procedure.

2.2 | Tumor markers assay

The serum and pleural effusion samples were collected and detected 
on	the	same	day.	The	tumor	markers,	 including	CEA,	CYFRA	21-1,	
CA	19-9,	AFP,	and	FER,	were	determined	by	using	the	electrochemi-
luminescence method (Cobas e602 immunoassay system; Roche 
Diagnostics,	Switzerland).	The	quality	control	measures	were	strictly	
controlled when conducting the tests.

2.3 | Radiological imaging acquisition and analysis

Plain or enhanced CT data were collected by scanning the pa-
tient's	chest	using	Philips	Brilliance	CT	64-channel	scanner	(Philips	
Healthcare,	Netherlands).	At	least	two	experienced	radiologists	in-
terpreted all the CT images together, and radiological signs were re-
corded by reaching a consensus.

2.4 | Prediction model development

Firstly, the potential risk factors were identified through univariate 
analysis based on the clinical data, radiological signs, and biomark-
ers. The variables with p < 0.10 in univariate analysis and clinically 
significant variables were used as candidate parameters for model 
development. The best-fit model 1 (M1) with chosen variables was 
then found by multivariate analyses through stepwise regression se-
lection procedure (backward, p < 0.05). Considering that some of the 
data might not be available in the real world, two other models (M2 
and M3) have also been developed based on two different datasets. 
Compared with M1, the two datasets lacked tumor markers and ra-
diological signs, respectively.

2.5 | Statistical analysis

R	x64	4.0.1	(The	University	of	Auckland,	New	Zealand)	and	SPSS	25.0	
(IBM,	 USA)	 softwares	were	 used	 for	 statistical	 analysis.	 Normally	
distributed continuous variables are presented as means ± standard 
deviation, non-normally distributed continuous variables are pre-
sented	as	median	(interquartile	range),	and	categorical	variables	are	
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presented	as	frequencies	(percentages).	Categorical	variables	were	
expressed	as	frequency	and	percentage.	The	levels	of	tumor	mark-
ers were log10-transformed. The difference between the groups 
was evaluated by the Mann-Whitney U test or unpaired Student's 
t test, while categorical variables were compared by using the chi-
square	test.	The	nomograms	were	elaborated	based	on	model	coef-
ficients by using RMS package, and predictive performances of the 
models	were	measured	by	the	AUCs	of	pROC	package	and	validated	
using the external sample. The models were calibrated using boot-
strap	resampling	with	1000	samples	and	confirmed	by	the	Hosmer-
Lemeshow goodness-of-fit test. The diagnostic accuracies of the 
models were compared with external validation data. Finally, deci-
sion	curve	analysis	(DCA)	was	used	to	assess	whether	the	improved	
models	could	predict	the	net	benefit.	All	tests	were	two-sided,	and	
p < 0.05 was considered to be statistically significant.

3  | RESULTS

3.1 | Patient characteristics

There were 216 lung cancer cases, including adenocarcinoma (159, 
73.6%),	squamous	cell	carcinoma	(30,	13.9%),	and	SCLC	(27,	12.5%).	
The remaining 186 cases included were with benign diseases, such as 
tuberculosis (123, 66.1%), pneumonia (30, 16.1%), and other diseases 
(33, 17.7%). Table 1 shows that the patients in the cancer group were 
considerably	older,	had	higher	levels	of	fCEA,	fCYFRA	21-1,	fCA	19-9,	
fAFP,	sCYFRA	21-1,	sCEA,	and	fCEA/sCEA,	and	the	diameter	of	the	
tumor was larger than those with benign diseases (p < 0.05). Males 
were found to be more susceptible to lung diseases when compared 
to females (p < 0.05). Table 2 shows the diagnostic performance of 

different	 tumor	 markers	 in	 serum	 and	 pleural	 effusion.	 Although	
family tumor history showed no significant difference between the 
two groups (p > 0.10), it was still considered as a candidate factor 
based on clinical and previous research experience. What's more, the 
external validation set included 67 lung cancer cases and 67 patients 
with benign diseases. The clinical characteristics, including the his-
tory of malignancy, tumor size, imaging signs, and tumor markers, 
were comparable to those of the training set (Table 1).

3.2 | Development of the prediction models

Eighteen clinical variables were analyzed for model establishment, 
and 10 candidate variables, including age, gender, smoking history, 
family history of cancer, spiculation, air bronchogram, tumor site, 
fCYFRA	21-1,	 fAFP,	and	fCA	19-9	were	abandoned	 in	multivariate	
analysis. Therefore, the parameters of M1 consisted of extratho-
racic cancer history (>5	years),	sCYFRA	21-1,	fCEA/sCEA,	diameter,	
and vessel convergence. M2 contained the history of malignancy 
(>5 years), diameter, vessel convergence, and lobulation, and M3 
included the history of malignancy (>5	years),	fCEA,	sCEA,	and	sCY-
FRA21-1	(Table	3).	The	diagnostic	nomograms	show	the	weights	of	
each parameter in our models (Figure 2).

3.3 | Evaluation and validation of the models

In	 the	 training	 set,	 compared	 with	M2	 (AUC	= 0.927, 95% CI: 
0.901–0.953)	and	M3	 (AUC	=	0.944,	95%	CI:	0.922–0.966),	M1	
(AUC	 = 0.976, 95% CI: 0.963–0.989) demonstrated the high-
est predictive performance (Figure 3). In the external set, the 

F I G U R E  1   Flow diagram. Basic 
diseases, chronic renal insufficiency, 
diabetes, liver cirrhosis, and other 
diseases which can cause false-positive 
of tumor markers; CT negative, no lump 
shadow	on	CT;	History	of	cancer,	history	
of the extrathoracic tumor in the past 
5 years; Incomplete data, cases with 
incomplete clinical data; Other cancers, 
cancers except for lung cancer



4 of 9  |     TU eT al.

AUC	 of	 M1	 was	 0.930	 (95%	 CI:	 0.884–0.975),	 while	 that	 of	
M2	 and	M3	was	 0.845	 (95%	 CI:	 0.774–0.916)	 and	 0.944	 (95%	
CI: 0.905–0.983), respectively. M1 showed the best consist-
ency between the predicted probability and the observed fre-
quency	(Figure	4),	and	the	p values of all the three models in the 
Hosmer-Lemeshow	goodness-of-fit	 test	were	>0.05 (p = 0.727, 
0.230, and 0.750, respectively), indicating the proper fit model. 

Meanwhile, M1 gave the best results of iteration fitting of the 
three models (R2 =	0.84,	0.68,	and	0.73,	respectively).	In	the	ex-
ternal validation set, the accuracy of M1 was 89.6%, and M2 and 
M3	were	81.4%	and	88.8%,	respectively	(Table	4).	Moreover,	the	
three models were superior over the baseline model, and M1 was 
considered as the optimal model with net benefits as shown via 
DCA	(Figure	5).

TA B L E  1   Clinical characteristics of study subjects

Cancer Control P χ2/t

Training set

No.	of	patients	(%) 216	(54) 186	(46) – –

Age,	years 65.1 ±	10.4 59.4	± 19.3 0.017 3.742

Male, no. (%) 134	(62.0) 136 (73.1) 0.018 5.565

Smoking, no. (%) 127 (58.8) 93 (50.0) 0.077 3.121

History	(>5 years), no. (%) 12 (5.6) 1	(0.54) 0.005 8.042

Family, no. (%) 12 (5.6) 7 (3.8) 0.399 0.713

Diameter, cm 4.3	±	2.4 1.1 ± 1.1 <0.001 16.563

Lobulation, no. (%) 167 (77.3) 37 (19.9) <0.001 131.84

Spiculation, no. (%) 88	(40.7) 20 (10.8) <0.001 45.742

Vessel	convergence,	no.	(%) 21 (9.7) 2 (1.1) <0.001 13.853

Air	bronchogram,	no.	(%) 60 (27.8) 14	(7.5) <0.001 27.288

Location-upper lobe, no. (%) 108 (50.0) 112 (60.2) 0.040 4.209

fCYFRA	21-1	(ng/ml) 51.5 (19.6–189.2) 13.7 (5.1–31.5) <0.001 –

fCEA	(ng/ml) 48.7	(4.8–420.7) 1.4	(0.7–1.9) <0.001 –

fFER (ng/ml) 1404	(737–2972) 1300 (675–2931) 0.656 –

fCA	19-9	(U/ml) 11.9 (2.8–223.7) 4.3	(2.3–7.4) <0.001 –

fAFP	(IU/ml) 1.5 (1.0–2.1) 1.3 (1.0–1.7) 0.001 –

sCYFRA	21-1	(ng/ml) 5.9 (3.2–12.2) 2.1 (1.3–3.3) 0.002 –

sCEA	(ng/ml) 6.5	(2.8–30.4) 2.1 (1.3–3.2) <0.001 –

fCEA/sCEA 3.5 (1.1–13.5) 0.6 (0.5–0.8) <0.001 –

Validation	set

No.	of	patients	(%) 67 (50) 67 (50) – –

Age,	years 66.7 ± 12.8 64.6	± 17.5 0.750 0.807

Male, no. (%) 47	(70.1) 44	(65.7) 0.580 0.308

History	(>5 years), no. (%) 9	(13.4) 2 (3.0) 0.028 4.853

Diameter, cm 3.4	± 2.2 1.5 ± 2.1 <0.001 5.306

Lobulation, no. (%) 57 (85.1) 16 (23.9) <0.001 50.585

Spiculation, no. (%) 46	(68.7) 4	(6.0) <0.001 56.280

Vessel	convergence,	no.	(%) 20 (29.9) 2 (3.0) <0.001 17.620

fCEA	(ng/ml) 24.4	(3.5–245.6) 1.2 (0.8–1.7) <0.001 –

sCYFRA	21-1	(ng/ml) 5.3 (3.1–11.6) 2.3 (1.6–2.7) <0.001 –

sCEA	(ng/ml) 5.6 (2.7–25.5) 2.2 (1.2–3.1) <0.001 –

fCEA/sCEA 2.7 (0.9–9.6) 0.7	(0.4–0.9) <0.001 –

Note: Quantitative data are expressed as means ±	SD	or	median	(interquartile	range).
Abbreviations:	“−”	not	available;	fAFP,	alpha-fetoprotein	in	pleural	fluid;	Family,	family	cancer	history;	fCA	19-9,	carbohydrate	antigen	19-9	in	pleural	
fluid;	fCEA,	carcinoembryonic	antigen	in	pleural	fluid;	fCEA/sCEA,	the	ratio	of	CEA	in	the	pleural	fluid	to	serum;	fCYFRA	21-1,	cytokeratin-19	
fragment	in	pleural	fluid;	fFER,	ferritin	in	pleural	fluid;	History	(>5 years), the history of extrathoracic malignancy (>5	years);	sCEA,	carcinoembryonic	
antigen	in	serum;	sCYFRA	21-1,	cytokeratin-19	fragment	in	serum.
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Sensitivity (95% 
CI)

Specificity 
(95% CI) AUC (95% CI) Accuracy

fCEA	(ng/ml) 78.2 (72.1–83.6) 93.5 
(89.0–96.6)

0.90 (0.87–0.93) 0.85

fCYFRA	21-1	
(ng/ml)

68.1	(61.4–74.2) 71.5	(64.4–77.9) 0.76 (0.72–0.81) 0.70

fFER (ng/ml) 51.4	(44.5–58.2) 54.8	(47.4–62.1) 0.52	(0.46–0.57) 0.53

fCA	19-9	(U/
ml)

48.6	(41.8–55.5) 91.4	
(86.4–95.0)

0.69	(0.63–0.74) 0.68

fAFP	(IU/ml) 44.2	(37.4–51.1) 73.5 (66.5–79.7) 0.59	(0.63–0.74) 0.57

sCEA	(ng/ml) 56.9 (50.1–63.6) 91.9	(87.0–95.4) 0.79	(0.75–0.84) 0.73

sCYFRA	21-1	
(ng/ml)

67.6 (60.9–73.8) 84.4	
(78.4–89.3)

0.83 (0.79–0.87) 0.75

fCEA/sCEA 75.5 (69.2–81.0) 93.5 
(89.0–96.6)

0.87	(0.84–0.91) 0.84

Abbreviations:	CI,	confidence	interval;	fAFP,	alpha-fetoprotein	in	pleural	fluid;	fCA	19-9,	
carbohydrate	antigen	19-9	in	pleural	fluid;	fCEA,	carcinoembryonic	antigen	in	pleural	fluid;	fCEA/
sCEA,	the	ratio	of	CEA	in	the	pleural	fluid	to	serum;	fCYFRA	21-1,	cytokeratin-19	fragment	in	
pleural	fluid;	fFER,	ferritin	in	pleural	fluid;	sCEA,	carcinoembryonic	antigen	in	serum;	sCYFRA	21-1,	
cytokeratin-19 fragment in serum.

TA B L E  2   The diagnostic performance 
of	CEA,	CYFRA	21-1,	FER,	CA	19-9,	AFP,	
and	fCEA/sCEA	in	lung	cancer

TA B L E  3   Results of multivariate logistic regression analysis in three models

Model 1 Model 2 Model 3

Coefficient p OR Coefficient p OR Coefficient p OR

History	(>5 years) 3.7 0.004 42.2 2.8 0.014 16.8 2.7 0.022 15.1

Diameter, cm 1.1 <0.001 3.0 1.0 <0.001 2.7 – – –

Vessel	convergence 2.1 0.032 8.4 1.8 0.024 6.1 – – –

Lobulation sign – – – 1.3 <0.001 3.6 – – –

Log	fCEA	(ng/ml) – – – – – – 3.4 <0.001 28.9

Logs	CEA	(ng/ml) – – – – – – −1.5 0.011 0.24

Logs	CYFRA	21-1	
(ng/ml)

2.5 <0.001 12.5 – – – 2.7 <0.001 15.3

Log	(fCEA/sCEA) 3.1 <0.001 21.2 – – – – – –

Constant −4.5 <0.001 0.01 −3.0 <0.001 0.05 −2.7 <0.001 0.07

F I G U R E  2  Nomograms	of	the	three	models.	fCEA,	the	CEA	in	pleural	fluid;	History,	the	history	of	extrathoracic	cancer	(>5 years); 
Lobular,	lobulation	sign;	Ratio,	fCEA/sCEA,	the	ratio	of	CEA	in	the	pleural	fluid	to	serum;	sCYFRA	21-1,	the	CYFRA	21-1	in	serum;	sCEA,	the	
CEA	in	serum;	Vessel,	vessel	convergence
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4  | DISCUSSION

Although	there	are	varied	test	results	with	regard	to	diagnosis	cur-
rently, the doctors hardly make full use of these results to estimate 

whether patients are at risk of cancer or not, especially in the early 
stage of lung cancer.4	The	National	Comprehensive	Cancer	Network	
(NCCN)	guidelines	on	lung	cancer	screening	have	endorsed	the	uti-
lization of risk prediction model for the identification of high-risk in-
dividuals	to	supplement	the	National	Lung	Screening	Trial's	(NLST)	
eligibility criteria. The United States Preventive Services Task Force 
(USPSTF) is currently used for risk-based screening as it revises its 
recommendations on lung cancer screening.24,25 Therefore, in the 
last few years, numerous risk prediction models have been published 
for	lung	cancer	screening.	However,	more	research	is	needed	to	op-
timize the risk-based lung cancer screening.24 In this study, three 
prediction models were developed to predict the probability of 
malignancy of pulmonary lesions and pleural effusion. Internal and 
external validations for each model were also conducted, and M1 
was found to be the best-fit model of the three prediction models. 
More importantly, all parameters in our models were objective, read-
ily	available,	and	required	no	additional	detection.

During the data collection phase, 80 patients were not included 
due to incomplete tumor markers or imaging data. Therefore, the 
other two models (M2 and M3) with specific types of data were 

F I G U R E  3  ROC	curves	of	the	three	models	in	the	training	set	and	validation	set.	The	M1′,	M2′,	and	M3′	are	the	ROCs	of	the	three	models	
in the validation set

F I G U R E  4   Calibration curves of the models

TA B L E  4   The diagnostic classification table for external 
validation set

Model
Observed 
cancer

Predicted cancer
Percentage 
correct (%)No Yes

1 No 59 8 88.1

Yes 6 61 91.0

Overall (%) 89.6

2 No 50 17 74.6

Yes 8 59 88.1

Overall (%) 81.4

3 No 63 4 94.0

Yes 11 56 83.6

Overall (%) 88.8
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built	 by	 masking	 to	 meet	 this	 question,	 in	 which	M2	 was	 based	
on radiological signs, and M3 was based on tumor markers. These 
two models can predict lung cancer and can be used by clinicians 
according to the condition of the patients. Interestingly, the per-
formance comparisons for M1 and M3 were slightly different be-
tween internal and external validations. The main reason for this 
could be due to the diversity of data in both training and validation 
sets.	However,	our	validation	results,	except	M2,	showed	that	the	
differences	in	AUCs	between	the	validation	and	training	sets	of	the	
other two models remained small. Therefore, this does not affect 
the diagnostic ability of M1 in a single patient. It is worth noting 
that different lung cancer subtypes for analyses and the three mod-
els demonstrated high diagnostic accuracy for different types of 
cancers when grouped. In the validation set, the diagnostic accura-
cies	of	adenocarcinoma,	squamous	cell	carcinoma,	and	SCLC	were	
93.0%,	87.4%,	and	90.6%	for	M1,	and	94.3%,	90.2%,	and	87.4%	for	
M2,	 and	92.6%,	 88.0%,	 and	90.9%	 for	M3.	Nonetheless,	we	 also	
believed	 that	 our	model	 probably	 requires	 validation	 in	more	 ex-
tensive data.

The parameters of the best-fit model generally have a closer and 
safer relationship with lung cancer when compared to other clini-
cal results. For example, the extrathoracic cancer history (>5 years) 
as a parameter could assist in stably predicting the weight of our 
nomograms, which is similar to other reports, including the Mayo 
model and other models.19,26	 Another	 example,	 the	 fCEA/sCEA	 is	
shown to have a more reliable performance when compared with 
fCEA	and	sCEA	individually,	and	this	finding	is	consistent	with	that	of	
the previous research studies.23,27-29	Additionally,	radiological	signs	
were another reason for the excellent performance of our models. 
Many studies have reported that the tumor diameter size acts as an 
independent factor in judging benign and malignant pulmonary le-
sions.16 Yang found that lobulation showed an association with high 
risk of malignant tumors.26 Other studies have shown that lumps are 
more likely to be destructive if vessel convergence signs are pres-
ent.30 Furthermore, our models differed from other models in many 
ways, such as in target population and parameters.18-26,31,32 On one 
hand, our models focused on patients with lung diseases and pleural 

effusion, in which 73.6% of cases were adenocarcinomatous in the 
lung cancer group, and 66.1% of subjects had tuberculosis in the 
benign group. This composition ratio is similar to that of epidemio-
logical distribution of lung diseases with pleural effusion.5,33 On the 
other hand, all parameters in our models were easily obtained and 
have reliable repeatability, eliminating most of the errors caused by 
subjective factors.

However,	the	development	of	a	prediction	model	based	on	po-
tential	 variables	 is	 challenging.	 Some	 biomarkers,	 such	 as	 CA125,	
CA153,	HE4,	and	CA242,	metalloproteinase-9	 (MMP-9)	have	been	
used in other studies.34-36 But these factors have low specificities for 
diagnosing lung cancer and were usually used to screen female ma-
lignancies. Besides, with the development of genomics, proteomics, 
radiomics,	and	liquid	biopsy	techniques,	increasing	indicators	help	in	
predicting the risk of lung cancer in a better way.37 Unfortunately, 
most	of	these	markers	still	 require	more	clinical	confirmations	and	
cannot be widely used as a routine test in the hospitals currently. 
More importantly, the indicators obtained from new methods en-
courage us to develop better models rather than replacing them. 
Therefore, more characteristics with better specificity and sensitiv-
ity should be incorporated for predicting the model.

However,	this	study	has	several	limitations.	Firstly,	M1	does	not	
apply to patients without pleural effusion or with surgical contra-
indications, and so, M2 should be chosen as an alternative model. 
Secondly, the diagnostic performance of the same indicator from 
serum is lower than that from pleural effusion. For example, in our 
work,	the	AUC	of	the	CEA	in	serum	was	only	0.79,	but	the	AUC	of	
the	CEA	in	pleural	effusion	was	0.90.	Therefore,	indicators	in	pleural	
effusion might have potential advantages in lung cancer risk predic-
tion. Thirdly, the baseline ranges of nomograms were limited, espe-
cially the diameter, and might have low diagnostic performance in 
some patients.

In conclusion, our prediction models were developed and con-
firmed by combining serum and pleural effusion tumor markers with 
radiological signs. Our models can reasonably assess lung cancer risk 
in patients with pulmonary diseases and provide a new valuable tool 
for early diagnosis of lung cancer.

F I G U R E  5   Decision curve analysis of 
the risk of malignancy in lung lesions
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