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Abstract: With help of the DFT calculations and imposing of
periodic boundary conditions the geometrical and electronic
structures were investigated of two- and three-dimensional
boron systems designed on the basis of graphane and diamond
lattices in which carbons were replaced with boron tetrahe-
drons. The consequent studies of two- and three-layer systems
resulted in the construction of a three-dimensional super-
tetrahedral borane crystal structure. The two-dimensional
supertetrahedral borane structures with less than seven layers
are dynamically unstable. At the same time the three-dimen-
sional superborane systems were found to be dynamically
stable. Lack of the forbidden electronic zone for the studied
boron systems testifies that these structures can behave as good
conductors. The low density of the supertetrahedral borane
crystal structures (0.9 gcm@3) is close to that of water, which
offers the perspective for their application as aerospace and
cosmic materials.

The rapid development of science and technology constantly
increases the needs in creating new one- (1D), two- (2D) and
three-dimensional (3D) materials with properly adjustable
features predictable on the basis of the properties of the
individual molecules (0D) or structural units of the material
components. The concept of transformation of the molecular
(0D) electronic structure into the electronic band structure of
one- (1D), two- (2D), and three-dimensional (3D) infinite
systems was developed by R. Hoffmann and his collabora-
tors,[1] convincingly demonstrated that the principal proper-
ties of solids can be reliably predicted based on the properties
of the constituent molecules. Among the most important
properties to be found in new advanced materials are the light

weight (low density) at the sufficiently high strength and
hardness. For this reason, special attention is currently drawn
to various boron compounds[2] and boron two-dimensional
systems: fullerenes,[3] tubulenes,[4] and boron layers.[5] The
existence of boron fullerenes was predicted in 2007,[3a] and in
2014 the first representative of this class of compounds,
a cluster B40

@ , was obtained[3b] to become the first example of
the non-carbon spherical structure formed by light elements.
The stable boron-containing nanotubular species were theo-
retically predicted in 1997,[4a] and in 2004, a pure boron single-
layer nanotube representing a new type of the boron
topological structure with unique physical, chemical, and
electronic characteristics and opening up tremendous pros-
pects for the use in nano- and microelectronics was synthe-
sized.[4b] In recent years, much attention has also been paid to
the search for new allotropic modifications of boron 2D
structures, such as borophen,[5a] alpha boron,[5b] and other
boron forms.[5c–i] An expedient approach to design new stable
closo boranes has been developed.[5j–l] Based on the concept
of an electronic confined space analogy method that clarifies
equivalence of the (4n++2) Wade–Mingos and Hgckel rules for
three- and two-dimensional molecular systems. As shown by
theoretical calculations,[5m] properties of thin boron films are
determined by the nature of the substrate on which they are
grown that can be adjusted by forming specific boron–metal
interactions. In contrast to graphene forming a hexagonal
grid, regardless of the substrate, boron is the first 2D material,
the structure of which is regulated by the interaction with the
substrate. One of the unsolved problems of 2D boron is the
difficulty of separating a boron film from the substrate, but
this fact has also a positive effect. As shown by calculations,[5j]

boron films on nickel or gold substrates can compete with
platinum as catalysts in hydrogen fuel cells. Other pre-
dicted[2,6, 7] technically useful properties of two-dimensional
boron films include their superconductivity[6a, 7a,b] and high
firmness.[7b–e]

The design of new three-dimensional boron compounds is
another area of structural boron chemistry which shows high
activity. Earlier Burdett and Li[8] noted that
a tetrahedral carbon atom in a diamond
crystal lattice can be replaced with a C4

tetrahedron, which leads to the formation
of a new allotropic form of carbon—super-
tetrahedral carbon. Another new allotropic
form of carbon—supercubane can be
obtained by replacement of carbon atoms
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in a diamond lattice by cubane C8.
[9] Similarly, supertetrahe-

dral boron forms can be derived by substitution of carbon
atoms in the diamond lattice by tetrahedrane B4 fragments.
The possibility of such replacement is justified by the fact that
in agreement with experimental[10] and theoretical data[11–13]

the electron-deficient tetrahedral B4H4 structure 1 of
Td symmetry is kinetically stable, even though it does not
conform to the global minimum on the corresponding
potential energy surface (PES).[13]

The goal of the present work is to computationally (by
density functional theory (DFT) calculations)[14–24] study the
geometrical and electronic structures of two- and three-
dimensional boron-containing systems constructed on the
basis of graphane and diamond lattices in which carbon atoms
are replaced with boron tetrahedrons 1. In the first step, we
studied one layer 3 of the supertetrahedral borane. Then in
the same way, we consequently studied two and three layers
and accomplished the study with a three-dimensional super-
tetrahedral borane crystal structure (Figure 1).

A scheme of a supertetrahedral monolayer structure and
the corresponding unit cell are depicted in Figure 2 and
Figure S1 in the Supporting Information. The unit cell for
such structure is hexagonal and contains eight boron and two
hydrogen atoms (Figure S1). Three neighboring elementary
cells form a cycle in which the boron tetrahedranes have
a chair conformation. In this case the hydrogen atoms bonded
to the adjacent tetrahedranes directed to opposite side from
the plane of the entire system. The calculated geometric
parameters have the following values R1 = 1.626 c, R2 =

1.682 c, R3 = 1.708 c, which do not differ much from the
values calculated in the supermolecular approximation (R1 =

1.637 c, R2 = 1.678 c, R3 = 1.704 c).[25] Calculations of elec-
tronic band structure indicate that this system is a direct-gap
semiconductor with a band gap of 0.49 eV (Figure S2). The
calculated phonon dispersion (Figure S2c) shows that the
structure is dynamically unstable.

A scheme of a two-layer supertetrahedral structure and
the unit cell are presented in Figures S3 and S4. The
calculations of the electronic band structure indicate that as
well as the monolayer structure the bilayer system represents
a direct-gap conductor with a band gap of 0.07 eV (Fig-
ure S5a). The calculated phonon dispersion (Figure S5b)
shows that the system, as well as the previous one, is
dynamically unstable.

The unit cell for the three-layer supertetrahedral structure
is given in Figure S6. The electronic band structure calcu-
lations indicate that this structure has the property of a direct-
gap conductor with a band gap of 0.00 eV (Figure S7). The
calculation of the phonon dispersion (Figure S7c) shows that
the system is also dynamically unstable. Approximation of
change (see Figure S8) of the length of the piece which is
cutting off on an abscissa axis, when the phonon acoustic
curves going to the negative area, from number of layers says
that the multilayer system becomes dynamically stable at
number of layers not less than seven.

The geometrical characteristics of the solid found by the
calculations with imposition of periodic boundary conditions
and comparison to previous results of the corresponding
supermolecular calculations[26] are given in Table 1. These
data well coincide with each other (Figure 3).

The calculation of the electronic band structure of the
supertetrahedral borane (Figure 4) points to the absence of
the forbidden electronic gap, which indicates metallic proper-
ties of this system.

The calculation of the phonon dispersion (see Figure S9)
showed the absence of branches in the negative area that

Figure 1. Transformation from a 1D one- to two-, and three-layer
structures and finally to the 3D crystal structure.

Figure 2. Scheme of the two-dimensional structure of graphane 2 and
the corresponding 2D supertetrahedral borane structure 3.

Table 1: Geometrical and physical parameters of the 2D and 3D
crystalline supertetrahedral structures obtained by the DFT calcula-
tions.[a]

n Method a
[b]

R1

[b]
R2

[b]
R3

[b]
Eg

[eV]
1

[gcm@3]
Hv

[GPa]

1 PBEsol 6.057 1.626 1.682 1.708 0.49 0.57
2 PBEsol 6.050 1.623 1.682 1.709 0.07 0.70
3 PBEsol 6.047 1.622 1.682 1.709 0.00 0.76
3D PBEsol 8.548 1.618 1.701 1.701 @0.53 0.92 15.2

PBE 8.584 1.623 1.710 1.710 @0.14 0.91
HSE06 8.581 1.636 1.698 1.698 0.25 0.90
B3LYP – 1.638 1.705 1.705 2.02 –

[a] n =number of layers; R1–R4 =bond lengths, Eg = electronic gap;
1 =density of material; Hv =hardness of the materials. [b] Refs. [26a].

Figure 3. Scheme of the supertetrahedral crystal structure.
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testifies to dynamic stability of this crystalline structure. The
predicted intertetrahedral BB bonds are shorter than the
intratetrahedral BB bonds. This fact can be explained by the
former ones that are formed as ordinary two-center two-
electron (2c-2e) covalent bonds while the latter BB bonds are
electron-deficient three-center two-electron (3c-2e) bonds
similar to the nature of BB bonds in supertetrahedral borane
systems.[26b] At present no experimental data are available on
boron solid-state supertetrahedral structures. So the results of
the calculations are possible to compare only with the known
polyhedral structures,[27–30] in which BB bonds are in the limits
(1.65–1.98 c),[30, 31] that not much differs from data obtained
in the present work.

The Vickers hardness (15.2 GPa) calculated by
the empiric formula of Šimůnek and Vack#ř[32] for
covalent and ionic solid states (see Table 1) is
substantially lower than that of diamond
(96.0 GPa) and is comparable with the hardness of
silicon (Si 11.3 GPa) and germanium (Ge 8.8 GPa).

The density of the studied supertetrahedron
borane structure equal to 0.93 gcm@3 is surprisingly
close to and even lower than the density of water.
This fact is explained by the presence of large
cavities between the nearby tetrahedrane units of
the crystalline structure.

The calculated values of the cohesive energy are
collected in Table 2. With the increase in the
number of layers and the subsequent transition to
the 3D crystalline structure the cohesive energy
decreases which points to the gradual strengthening
of the systems. The calculated cohesive energy of
the monolayer system is lower than that of various
boron hydride monolayers: @5.037 eVatom@1,[33a]

@5.016 eVatom@1,[33a] @4.901 eVatom@1,[33a] and
borophene @4.898 eVatom@1.[33a]

The calculated elastic constants c11, c12, c66, in-
plane YoungQs modulus (in-plane stiffness) Ys, and
PoissonQs ratio n are given in Table 2. Due to the
crystal symmetry, the elastic properties of all

structures are isotropic. The calculated in-plane YoungQs
modulus of a monolayer is much lower than that of boron
hydride monolayers Pbcm (108–113 N m@1),[33a] C2/m (62–
100 Nm@1),[33a] Cmmm (66–91 N m@1),[33a] borophane (120–
190 Nm@1,[33b] 111–172 Nm@1),[33c] graphane (243 N m@1),[33d]

graphene (340 N m@1),[33e] silicene (62 Nm@1),[33f] and germa-
nene (48 N m@1).[33f]

The dependence of the real and imaginary parts of the
dielectric constants on the photon energy for the four
structures is illustrated in Figure S10. The calculated values
of the static dielectric constants in direction of wavelengths of
layers (exx) and perpendicular to them (ezz) for all the
structures are given in Table 2. The energies of photons
corresponding to the absorption edge are equal to 0.39 eV for
one, 0.09 eV for two, 0.02 eV for three layers, and 0 eV for the
solid-state structure and correlate well with the calculated
width values of the forbidden region Eg for these structures.
For all structures the longest wavelength absorption is to be
found in the visible spectral region with band maxima at 460–
490 nm.

To sum up, we have presented the first computational
analysis of one-, two-, and three-layer supertetrahedral
borane systems as well as a three-dimensional supertetrahe-
dral borane crystal structure. The calculations showed that up
to six layers supertetrahedral two-dimensional borane sys-
tems are dynamically unstable. Stability of the multilayer
supertetraborane system can be achieved when the number of
the layers exceeds six and the system acquires principal
characteristics and properties of the three-dimensional super-
tetrahedral structure. Lack of the forbidden electronic zone of
the boron systems testifies to their good conductive proper-
ties. The low density of the borane crystal structures equal to

Figure 4. Calculated electronic band structure along high-symmetry
lines in the first Brillouin zone (left panel), total and orbital-projected
electronic density of states (right panel) for the solid-state structure
(cF-B8). The Fermi level is shifted to 0 eV. The first Brillouin zone (in
the center), the reciprocal lattice vectors, high-symmetry k-points and
the k-path for the face-centered cubic lattice in solid state (cF-B8).

Table 2: The calculated cohesive energy (Ec, in eVatom@1), elastic constants (cij, in
N m@1 for 2D materials and in GPa for cF-B8), in-plane (Ys, in N m@1, for 2D
materials) and isotropic (Ys, in GPa, for cF-B8) Young’s modulus, Poisson’s ratio (n),
and static dielectric constants (exx and ezz) for all structures.

n Structure Ec
[a] c11 c12 c66 Ys

[b] n exx ezz

1 h-B8H2 @5.057 36.05 15.87 10.09 29.06 0.4402 4.30 1.23
2 h-B16H2 @5.371 68.67 32.93 17.88 52.88 0.4795 133.31 1.90
3 h-B24H2 @5.492 99.48 52.04 19.14 72.26 0.5231 160.71 3.00
3D cF-B8 @5.766 78.13 63.00 26.04 44.20 0.3917 41.31 41.31

[a] The cohesive energy Ec for h-B8H2, h-B16H2, h-B24H2, and cF-B8 can be calculated
by the following equations, respectively:

Ec ¼ Estr@8EB@2EH

10

Ec ¼ Estr@16EB@2EH

18

Ec ¼ Estr@24EB@2EH

26

Ec ¼ Estr@8EB

8

where Estr (str =h-B8H2, h-B16H2, h-B24H2, cF-B8), EB, EH, are the total energy of h-
B8H2, h-B16H2, h-B24H2, cF-B8 and the energy of isolated B and H atoms, respectively.
[b] The in-plane Young’s modulus and Poison’s ratio were calculated using the
following relationships:

YS ¼ c2
11@c2

12
c11

n ¼ c12=c11.
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0.9 gcm@3 is close to the density of water. The calculated
cohesive energy, elastic constants, YoungQs modulus, and
PoissonQs ratio are very close to those of traditional con-
structive materials (aluminum, silicon, and others) and render
these systems suitable candidates for building materials of
aerospace and cosmic facilities.
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