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Abstract

Knowledge of regulation of genes associated with metal resistance in higher plants is
very limited. Many plant species have developed different genetic mechanisms and
metabolic pathways to cope with metal toxicity. The main objectives of this study
were to 1) assess gene expression dynamics of A. rubrum in response to nickel (Ni)
stress and 2) describe gene function based on ontology. Certified A. rubrum geno-
types were treated with 1,600 mg of Ni per 1 Kg of soil corresponding to a soil total
nickel content in a metal-contaminated region in Ontario, Canada. Nickel resistant
and susceptible genotypes were selected and used for transcriptome analysis.
Overall, 223,610,443 bases were generated. Trinity reads were assembled to trinity
transcripts. The transcripts were mapped to protein sequences and after quality con-
trols and appropriate trimmings, 66,783 annotated transcripts were selected as ex-
pressed among the libraries. The study reveals that nickel treatment at a high dose of
1,600 mg/kg triggers regulation of several genes. When nickel-resistant genotypes
were compared to water controls, 6,263 genes were upregulated and 3,142 were
downregulated. These values were 3,308 and 2,176, respectively, when susceptible
genotypes were compared to water control. The coping mechanism of A. rubrum to
Ni toxicity was elucidated. Upregulation of genes associated with transport in cyto-
sol was prevalent in resistant genotypes compared to controls while upregulation of
genes associated with translation in the ribosome was higher in susceptible geno-
types when compared to water. The analysis revealed no major gene associated with
Ni resistance in A. rubrum. Overall, the results of this study suggest that the genetic
mechanism controlling the resistance of this species to nickel is controlled by genes
with limited expression. The subtle differences between resistant and susceptible
genotypes in gene regulation were detected using water-treated genotypes as

references.

KEYWORDS

Acer rubrum, candidate genes, differential expression, nickel resistance, transcriptome

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

4876 | www.ecolevol.org

Ecology and Evolution. 2018;8:4876-4890.


www.ecolevol.org
http://creativecommons.org/licenses/by/4.0/
mailto:knkongolo@laurentian.ca

NKONGOLO ET AL.

1 | INTRODUCTION

Plants deal with toxic levels of metals such as nickel (Ni) using dif-
ferent mechanisms. Ni is a transition metal that is found in natural
soils at low concentrations. An excess of Niions in the soil results in
the disorder of cell membrane functions, inhibition of cell division in
the root system, and a decrease of nontolerant plant growth (Yadav,
2010). It can also increase the concentration of hydroxyl radicals,
superoxide anions, nitric oxide, and hydrogen peroxide (Bhalerao,
Sharma, & Poojari, 2015; Boominathan & Doran, 2002; Rao & Sresty,
2000; Stohs et al., 2001). Metal ions that accumulate in plant sys-
tems usually disturb cellular ion homeostasis and can generate (di-
rectly or indirectly) reactive oxygen species (ROS) which may cause
oxidative stress. The toxicity of ROS can lead to the destruction of
DNA structure and enhance the oxidation of lipids and proteins.

Nickel has a complex chemistry which complicates the decryp-
tion of its toxicity mechanisms in plants (Bhalerao et al., 2015). It
does not directly induce the production of ROS as it is not a redox-
active metal. Its role in ROS production is an indirect one by inhib-
iting the function of several antioxidant enzymes which include
ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase
(GSH-Px), glutathione reductase (GR), guaiacol peroxidase (GOPX),
peroxidase (POD), and superoxide dismutase (SOD) (Bhalerao et al.,
2015; Freeman et al., 2004; Gomes-Junior et al., 2006; Pandey &
Sharma, 2002).

Nickel translocation and toxicity in hardwood species has been
recently a focus of a few reports. It has been demonstrated that
white birch (Betula papyrifera), trembling aspen (Populus tremuloides),
and red oak (Quercus rubra) accumulate nickel in leaves. Therefore,
they are classified as nickel accumulators (Mehes-Smith & Nkongolo,
2015; Theriault, Michael, & Nkongolo, 2016a; Theriault, Nkongolo,
& Michael, 2014; Theriault et al., 2013; Tran et al., 2014). Red maple
(Acer rubrum) on the other hand does not accumulate nickel in its
tissues (the amount of bioavailable nickel in the soil is higher than
the total nickel in roots). The translocation of nickel from roots to
aerial parts is also very small. This species can be therefore classified
as a nickel avoider (Kalubi, Mehes-Smith, & Omri, 2016; Kalubi et al.,
2015). A. sacharinium, a close relative of A. rubrum, stores Ni in its
roots with limited translocation to other plant parts. It is classified
as a Ni excluder (Nkongolo, Narendrula-Kotha, Kalubi, Rainville, &
Michael, 2017). We anticipated that genetic mechanisms and meta-
bolic pathways involved in coping with nickel toxicity in these hard-
wood species, with distinct strategies in dealing with this element in
their system, would be different.

Most resistant plants that accumulate metals in their tissues have
developed a detoxification mechanism that involves phytochelatin
(PC). These tri-peptides are synthesized from reduced glatathione
(GSH). GSH conjugates with heavy metal molecules through gluta-
thione S-transferase during detoxification processes. Many studies
have demonstrated that genes controlling glyoxalases, phytochela-
tin synthase, glutathione reductase, serine acetyltransferase, ATP
sulfuylase, cystathionine synthase, glutathione synthetase, and y-
glutamycylcysteine synthetase are candidates for providing metal
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tolerance by regulating GSH and PCs levels in accumulator plants
(Yadav, 2010). Our understanding of genetic mechanisms involved in
metal avoidance in plant species such as A. rubrum is vague.

The main objectives of this study were to (1) assess gene ex-
pression dynamics of A. rubrum in response to nickel stress and (2)
describe gene function based on ontology. The study provides the
first description of molecular and biological processes involved in Ni

resistance in A. rubrum.

2 | MATERIALS AND METHODS

2.1 | Nickel treatment

Acer rubrum seeds were provided by the National Tree Seed Centre,
Canadian Forest Services (New Brunswick, Canada). These certified
seeds (accession # 2001 1031.0) were collected from Larry Brook,
New Brunswick (Canada). Assessment of nickel toxicity is described
in Theriault and Nkongolo (2016) and Theriault et al. (2016a). The
experimental layout was a completely randomized design with one
Ni treatment and two types of control. To assess the genetic resist-
ance of A.rubrum genotypes to Ni, 45 six-month seedlings were
treated with 1,600 g of Ni per 1 kg of dry soil using nickel nitrate
[Ni(NO,),] salts and grown in a growth chamber. This concentra-
tion that was used in previous studies corresponds to the level of
total nickel in contaminated sites in the mining region of the City of
Greater Sudbury. Details of seed germination and seedlings treat-
ment with nickel nitrate are presented in Theriault and Nkongolo
(2016) and Theriault et al. (2016a). Genotypes treated with water
only were used as the main control. Potassium nitrate (KNO,) treat-
ment was used to control for the nitrate effects. The treatment and
the controls were replicated 15 times. Damage rating was recorded
every two days based on a scale of 1 to 9, 1 = no visible toxicity
symptoms and 9 = dead plants. Individual plants with a score of 1
to 3 were considered nickel resistant, 4 to 6, moderately resistant,
and 7 to 9 susceptible (Theriault & Nkongolo, 2016). Genotypes re-
sistant and susceptible to a soil nickel concentration of 1,600 mg/kg
are analyzed in detail. For transcriptome analysis, three Ni resistant
and three Ni susceptible genotypes were selected along with three

genotypes from each of the controls (water and nitrate controls).

2.2 | De novo transcriptome assembly

Methods for extraction, RNA-seq libraries, next-generation sequenc-
ing, and de Novo transcriptome assembly are detailed in Theriault,
Michael, and Nkongolo (2016b). The libraries were quantified using
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) and
the sequencing was performed on the lllumina HiSeq 2000 sequenc-
ing system (lllumina Inc.) at Seq Matic (Fremont California, USA).
The RNA-seq data from all the samples including six nickel-treated
(three resistant and three susceptible), three water-treated (control),
and three nitrate-treated were used as input for the Trinity program
(http:trinityrnaseq.githb.io) to assemble the transcripts. The raw
reads were mapped to Trinity assembled transcripts using bowtie
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(http://bowtie-bio.sourceforge.net/index.shtml), and RSEM (http://
deweylab.biostat.wisc.edu/rsem) was used to quantify transcript and
expression levels. Additional QC at transcript level was performed,
including number of unique transcripts detected, percentage of
reads belonging to the top transcripts expressed, normalization for
RNA composition, and grouping, and correlation between samples.

If a transcript had a count per million (CPM) value 21 in at least
two of the samples, we considered it expressed in the experiment
and included it for downstream QC analysis. Gene expression was
calculated and expressed as Reads Per Kilobase per Million reads
mapped (RPKM) (Mortazavi etal., 2008). The count per million
(CPM) cutoff was 0.63 based on the average read count of all sam-
ples (15.9 million). This CPM cutoff roughly equaled to 10 raw reads
in this experiment. A gene with a CPM value >0.63 in at least two
samples from the experiment was included for downstream analysis.
The raw counts were normalized using the voom method from the
R Limma package (http://www.bioconductor.org/packages/release/
bioc/html/limma.html) (Law et al., 2014). After normalization, most
samples looked similar.

Multidimensional plots were created to view sample relation-
ships. This was performed using R Limma package. We also used the
made4 (multivariate analysis of microarrays data using ADE4) pro-
gram to cluster samples and drew heatmaps based on genes that had
variable expression across samples. These variable genes were cho-
sen based on a standard deviation (SD) of expression values larger
than 30% of the mean expression value. Genes with a mean logCPM
<1 were removed.

For differentially expressed genes, the normalized data were
transformed to log2CPM values using the voom method from the R
Limma package. A linear model was built for each comparison using
the R Limma package, and statistics for differential expression anal-
ysis were calculated. The statistical values included log fold change
(logFC), p-value, and false discovery rate (FDR). An FDR of 0.05 was
used as the standard cutoff (two-fold change) to determine differen-

tially expressed genes between treatments.

W Other (6.65%)

m Cell Cycle (3.79%)
D GPME (3.02) *

O Response to abiotic stimulus (2.44%)
O Anatomical morphogenesis (2.04%)
O Cellular homeostasis (1.63%)

@ Cell differentiation (1.39%)

O Response to endogenous stimulus (1.20%)

All transcripts were mapped to protein sequences in the
UniProt database (http:// www.uniprot.org/) and the best match
was used to annotate genes and assign gene ontology informa-
tion. The annotated sequences were run through the GO-Slim
function of the BLAST2GO program to provide a summary known
gene functions (Conesa & Go6tz, 2008). The ontology categories
included biological process, cellular components, and molecular

function.

3 | RESULTS

3.1 | Acerrubrum resistance to nickel

The genotypes screened in this study expressed a high level of re-
sistance to Ni. In fact, most seedlings treated with nickel nitrate
showed no damage (rating of 1 on the 1 to 9 scale) after two weeks
of treatment with the exception of three genotypes that were sus-
ceptible (rating of 7). No plant damage from the nitrate control treat-

ment was observed.

3.2 | Transcription assembly and gene ontology

Several cDNA libraries representing resistant and susceptible
A. rubrum genotypes along with controls were sequenced using
the Illumina HiSeq 2000 high-throughput platform. Overall,
223,610,443 bases were generated. The average read length
was 546.50. The number of transcripts was similar among the
different groups (control, resistant, and susceptible). This tran-
scriptome shotgun assembly project has been deposited in the
DDBJ/EMBL/GenBank database under the SRA project number
SRP098922.

Transcripts were assigned ontology and grouped by biological
process, molecular functions, and cellular components. For bi-
ological processes, 58% of the 15,078 transcripts that were as-

signed ontology were identified under the following categories:

@ Cellular component organization (12.26%)
@ Transport (11.20%)

@ Carbohydrate metabolic process (9.67%)
O Translation (9.12%)

M Catabolic process (8.50%)

@ Response to stress (7.27%)

W Signal transduction (5.27%)
B Lipid metabolic process (5.09%)
@ DNA metabolic process (4.95%)

B Cellular protein modification process (4.51%)

FIGURE 1 Gene ontology of
transcripts from red maple (Acer rubrum)
control plants (water only). A total of
15,078 transcripts were grouped under
biological function using the BLAST2GO
software. * GPME stands for Generation
of precursor metabolites and energy
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FIGURE 2 Gene ontology of
transcripts from red maple (Acer rubrum)
control plants (water only). A total of
13,676 transcripts were grouped under
molecular function using the BLAST2GO
software. * TFA stands for Transcription
factor activity

FIGURE 3 Gene ontology of
transcripts from red maple (Acer
rubrum) control plants (water only). A
total of 6,951 transcripts were grouped
under cellular compartment using the
BLAST2GO software

cellular component organization (12.26%), transport (11.20%),
carbohydrate metabolic process (9.67%), translation (9.12%), cat-
abolic process (8.50%), and response to stress (7.27%) (Figure 1).
For molecular functions, 35% of transcripts code for proteins in-
volved in nucleotide binding activities, 12.05% kinase activities,
11% DNA binding, and 10.2% transport activities (Figure 2). For
cellular component, 21.4% of the 13,676 transcripts that were
assigned ontology were localized in the cytosol, 19.39% in the
ribosome, 8.34% in the endoplasmic reticulum, 7.44% in the cy-
toskeleton, 7% in the plasma membrane, and 5.5% in the Golgi
apparatus (Figure 3).

Among the three principal ontologies, most of the expressed

transcripts were classified into cellular component organization,
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@ Nucleotide binding (35.08%)

@ Kinase activity (12.05%)

[ DNA binding (10.98%)

O Transporter activity (10.77%)

@ Structural molecule activity (9.89%)
ETFA, sequence-specific DNA binding (4.25%) *
 Translation factor, RNA binding (3.17%)
B Carbohydrate binding (3.10%)

B Enzyme regulator activity (1.99%)

[l Nuclease activity (1.98%)

W Signal transducer activity (1.95%)

M Lipid binding (1.37%)

@ Chromatin binding (1.26%)

O Receptor activity (1.09%)

O Other (1.05%)

@ Cytosol (21.42%)

@ Ribosome (19.39%)

O Mitochondrion (13.32%)
O Endoplasmic reticulum (8.34%)
@ Cytoskeleton (7.44%)

@ Plasma membrane (7.01%)
B Golgi apparatus (5.48%)

M Plastid (4.22%)

@ Nucleolus (2.27%)

@ Nucleoplasm (2.27%)

B Endosome (1.80%)

B Nuclear envelope (1.77%)
@ Cell wall (1.60%)

O Peroxisome (1.50%)

O Thylakoid (1.41%)

O Other (0.76%)

transport, carbohydrate metabolic process, translation, catabolic
process, and response to stress suggesting that these functional
processes play a major role in A. rubrum gene activities.

3.3 | Differential gene expression

Hierarchical clustering can provide good indications of sample and
gene relationships. The overall heatmap shows that clustering was
good with all the controls (water and nitrate controls were similar to
each other). Any differential gene expression was attributed to nickel
treatments. Hence, water and nitrate control data were pooled. After
normalization, a total of 66,783 transcripts were selected as differ-

entially expressed. Surprisingly, there were no significant differences
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between resistant and susceptible genotypes at high stringency
(FDR <0.05). This means that no major genes driving the resistance
to Ni were identified in the A. rubrum genotypes analyzed. However,
significant differences were observed when resistant genotypes (RG)
or susceptible genotypes (SG) were compared to water. When RG
were compared to water controls, 6,263 transcripts were upregu-
lated and 3,142 were downregulated. These values were 3,308 and

2,176, respectively, when SG was compared to the same controls.

FIGURE 4 Percentage of differentially
expressed upregulated and downregulated
transcripts when nickel resistant

red maple (Acer rubrum) genotypes

were compared to water controls.

For upregulated and downregulated
transcripts, 2,951 and 1,549 transcripts
were identified and classified by biological
function based on their gene ontology
term using the BLAST2GO software

M Upregulated

O Downregulated

3.4 | Pairwise comparison of resistant and
susceptible genotypes to water controls

The top upregulated and downregulated transcripts from the differ-
ential expression analysis were ranked based on logFC (Tables 1-4
and Tables S1-54). The study reveals that the nickel treatment at a
high dose of 1,600 mg/kg triggers regulation of several genes. We
found that when RG and SG are compared to water, 11% of the top
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FIGURE 5 Percentage of
differentially expressed upregulated
and downregulated transcripts when
nickel resistant red maple (Acer
rubrum) genotypes were compared to
water controls. For upregulated and
downregulated transcripts, 2,228 and
1,198 were identified and classified by
molecular function based on their gene
ontology term using the BLAST2GO
software. *TFA stands for Transcription
factor activity
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the BLAST2GO software

100 differentially expressed transcripts that were upregulated are
shared (Table S5). This value was 25% when the top 100 differen-
tially expressed transcripts that were downregulated in RG and SG
were compared to water control (Table S6). Detailed description of
the top 25 most upregulated and downregulated transcripts is pre-

sented in Tables 1 and 2. There were no particular activities that could

Percentage

be associated with nickel resistance and the highly expressed (or re-
pressed) genes in resistant or susceptible genotypes. But, genes as-
sociated with alkaline proteinase were the most upregulated in both
RG and SG when compared to water, with logFC values of 11.99 and
10.43, respectively. This means that this transcript (gene) was upregu-
lated 4,068 and 1,380 fold in RG and SG, respectively, when compared

FIGURE 7 Percentage of

differentially expressed upregulated

and downregulated transcripts when
nickel susceptible red maple (Acer

rubrum) genotypes were compared to
water controls. For upregulated and
downregulated transcripts, 1,344 and 938
were identified and classified by biological
function based on their gene ontology
(GO) term using the BLAST2GO software
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to water. Heat maps of comparative gene regulation are illustrated in
Figures S1, S2, and S3.

Pairwise comparisons for biological process, molecular func-
tions, and cellular compartments between RG and water and SG and
water are described in Figures 4-6. For biological process, the most
differentially expressed transcripts coded for proteins associated
with transport, cellular component organization, catabolic process,
carbohydrate metabolic process, response to stress, translation,
lipid metabolic process, and cellular modification process when RG
were compared to water (Figure 4). There was twice the number
of upregulated compared to downregulated transcripts that coded
for transporters and proteins involved in translation activities in RG
compared to water control. A small proportion of differentially ex-
pressed transcripts translated proteins associated with flower de-
velopment, response to biotic stimuli, secondary metabolic process,
cell growth, embryo development, and regulation of gene expression
and epigenetics. For molecular function, over 30% of the transcripts
that were upregulated or downregulated coded for proteins that
were associated with nucleotide binding (Figure 5). There was more
downregulated (17%) than upregulated (9.5%) transcripts coding for
proteins associated with kinase activity when RG were compared to
controls. For cellular component, most differentially expressed tran-
scripts coded for proteins found in the cytosol. The majority of these
transcripts were upregulated as there were three times more upreg-
ulated than downregulated transcripts in that category. A different
trend was observed in the cytoskeleton, plasma membrane, plastid,
with more downregulated than upregulated. The transcripts coding
for proteins found in the cell wall, vacuole, and thylakoid were all

downregulated in RG when compared to water (Figure 6). Hence,

|

FIGURE 8 Percentage of

differentially expressed upregulated

and downregulated transcripts when
nickel susceptible red maple (Acer

rubrum) genotypes were compared to
water controls. For upregulated and
downregulated transcripts, 1,303 and 739
were identified and classified by molecular
function based on their gene ontology
term using the BLAST2GO software. *TFA
stands for transcription factor activity

B Upregulated

ODownregulated

25 30 35

upregulation of genes associated with transport in cytosol is the
main mechanism involved in RG in the presence of Ni.

When SG were compared to water, the top biological processes
were translation, cellular component organization, transport,
carbohydrate metabolic process, response to stress, catabolic
process, and signal transduction (Figure 7). There were more up-
regulated transcripts than downregulated for translation and
signal transduction while no difference between upregulation
and downregulation was observed for genes associated with the
other main biological processes. A downregulation was observed
for transcripts coding for proteins associated with lipid metabolic
processes and anatomical structure morphogenesis. As with RG,
few downregulated transcripts coded for proteins associated
with flower development, secondary metabolic process, embryo
development, and regulation of gene expression and epigenetics.
For molecular function, the pattern of gene regulation was simi-
lar to that observed when RG were compared to water (Figure 8).
Transcripts coding for proteins associated with nucleotide bind-
ing were the most prevalent with equal amount of upregulation
and downregulation. For cellular component, most differentially
expressed transcripts coded for proteins in the ribosome. These
transcripts were more upregulated than downregulated. The same
trend was observed for the transcripts in the cytosol. On the other
hand, there was a higher downregulation than upregulation in the
plastid and cell wall. The few differentially expressed transcripts
that coded for proteins found in the endoplasmic reticulum, vacu-
ole, and thylakoid were downregulated (Figure 9). Overall, upregu-
lation of genes in ribosome is the dominant mechanism involved in

SGin the presence of Ni.
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transcripts when nickel susceptible
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were compared to water controls.

For upregulated and downregulated
transcripts, 595 and 327 were identified
and classified by cellular compartment

Peroxisome

Endosome

based on their gene ontology term using Y

the BLAST2GO software

4 | DISCUSSION

4.1 | Genetic resistance to nickel

Because of their lack of mobility, plants are continuously exposed
to abiotic stresses. They have developed an array of morphological,
physiological, and biochemical responses that allow them to tolerate
or avoid these stressors. In the present study, A. rubrum, a Ni avoider,
showed a high level of resistance to nickel toxicity as no damage
was observed when treated with a high dose of nickel at 1,600 mg/
kg dry soil. Only three plants showed delayed expression of nickel
susceptibility and were used for gene regulation analysis. A recent
study revealed that silver maple (A. saccharinum), a closely related
species to A. rubrum, is also highly resistant to Ni suggesting that this
resistance might be a common characteristic of the Acer genus. But,
the two species use different physiological mechanisms to deal with
Ni contamination, A. sacharinum being a Ni excluder and A. rubrum, a
Ni avoider. (Nkongolo et al., 2017).

4.2 | Gene expression and ontology analyses

We found no difference in gene expression at high stringency (FDR
>0.05) between Niresistant and susceptible genotypes. The heatmap
clustering also showed that the two types of genotype (RG and SG)
form a distinct cluster that was separated from the control groups.
RG and SG samples intermingled within the same cluster. Some dif-
ferences in gene expression were observed at low stringency based
on a p-value analysis. But, p-value is more susceptible to including
false-positive results than the False Discovery Rate. Hence, the
results based on the p-values analysis were not considered in the

analysis of gene expression. Significant differences between RG and

Cytosol
Mitochondrion
Cytoskeleton
Plasma membrane

Thylakoid —

B Upregulated

O Downregulated

Endoplasmic reticulum ——

Vacuole ——

Percentage

SG were found when they were compared to water. The validation of
DEG results by gPCR was not necessary because a series of quality
controls during assembly and sequencing, and data processing was
performed. In addition, data were analyzed using stringent statis-
tical tests. Moreover, we used two types of references (water and
nitrate controls) to filter the effect of nitrate on gene expression.
Furthermore, the amount of RNA recovered specially in susceptible
genotypes was not enough to run other types of validation analysis
such as qPCR.

In general, gene ontology (GO) revealed relevant information on
possible mechanisms involved in Ni resistance in A. rubrum. GO de-
fines gene functions and how these functions are related to each
other. It describes molecular function (molecular-level activities per-
formed by gene products), biological process (the larger processes,
or ‘biological programs), and cellular components (the locations rela-
tive to cellular structures in which a gene product performs a func-
tion) (Gene Ontology Consortium, 2017). In the present study, there
was an upregulation of genes associated with transport in cytosol
in RG compared to water control while upregulation of genes as-
sociated with translation in the ribosome was prevalent in suscep-
tible genotypes when compared to the same control. In contrast,
Theriault et al. (2016b) reported that the main mechanism involved
in nickel resistance in B. papyrifera, a Ni accumulator, is a downregu-
lation of genes associated with translation (in ribosome), binding, and
transporter activities.

Moreover, in B. papyrifera, six candidate genes associated with
nickel resistance were identified (Theriault et al., 2016b). They in-
clude Glutathione S-transferase, thioredoxin family protein, puta-
tive transmembrane protein, Nramp transporter, TonB receptor,

and TonB-dependant protein. Detailed analysis of the A.rubrum
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transcriptome revealed no specific gene that could be associated
with nickel resistance. Unlike B. papyrifera, the results of the present
study suggest that there are no major genes that could be associated
with Niresistance in A. rubrum. The majority of the DEG between re-
sistant and control are the same as between susceptible and control.
The small differences between RG and SG were not detected at the
high level of stringency (False Discovery Rate) used in the statistical
analysis. They were unrevealed when comparing both types of gen-
otypes (RG and SG) to water. Alkaline proteinase (AP) was highly up-
regulated in both RG and SG compared to water. This extreme level
of upregulation of AP triggered by nickel treatment has not been
reported in any other organisms.

Overall, the complexity of the mechanism involved in nickel
resistance in A. rubrum could be associated with the physiologi-
cal process used by this species to cope with nickel contamina-
tion. The metal avoidance in plants such as A. rubrum is associated
with morphological changes at the root system and likely in-
volves auxins (Cai et al., 2011; Khare et al., 2017; Liu et al., 2011;
Overvoorde, Fukaki, & Beeckman, 2010; Potters et al., 2007; Vitti
et al.,, 2014). Plants also limit metal assimilation by the roots by
secreting a number of substances such as organic acids, and sub-
stances in root extracellular matrix such as sugars, phenols, amino
acids, and polysaccharides (Cai etal., 2011; Guo, Liang, & Zhu,
2009; Jutsz & Gnida, 2015). The mechanism used by A. rubrum to
avoid nickel is unclear, but considering that the nickel treatment
was conducted in a controlled environment using a sterilized sand
/ soil mix, it is likely that the avoidance mechanism is in situ. Khare
et al. (2017) demonstrated that root avoidance of toxic metals re-
quires GLABRA1 Enhancer-Binding Protein (GeBP) transcription
factor (TF; GPL4) in Arabidopsis thaliana. Such mechanism has not
yet been demonstrated in other plant species or with metals other
than cadmium.

Review of existing literature shows that reports on the
mechanisms of metal resistance have focussed on six main areas
(a) uptake kinetics, (b) metabolism, (c) complexation, (d) redox
stress, (e) subcellular localization, and (f) intracellular localiza-
tion (Meharg, 2005). Subcellular and intracellular localization
are unlikely in A. rubrum considering the absence of Ni accu-
mulation in its tissues. The lack of expression of glutathione
associated genes that play a key role in redox stress processes
suggests that this mechanism is not involved as well in A. rubrum
response to nickel contamination (Hartley-Whitaker, Ainsworth,
& Meharg, 2001; Hartley-Whitaker, Woods, & Meharg, 2002;
Meharg, 2005). Our data suggest that uptake kinetics and me-
tabolisms are the key processes involved in A. rubrum reaction
to Ni toxicity. Mechanisms for protecting plants from oxidative
stress appear to be constitutive in both resistant and sensitive
genotypes.

The results of the present study suggest that resistance genes
preexist in the genome of A. rubrum considering that the seeds used
for this investigation are from an A. rubrum population that was not
previously exposed to Ni. Other studies have reported Ni resistance

in genotypes from metal-contaminated sites (Kirkey, Matthews, &

Ryser, 2012; Watmough & Hutchinson, 1997). The fact that no major
genes associated with metal transport or processing were identified
in the analysis of the RG and SG A. rubrum transcriptome suggests
that the genetic mechanism controlling the response of this spe-
cies to nickel is controlled by several genes with limited expression.
The subtle differences between resistant and susceptible in gene
regulation, if they exist, were difficult to detect in direct pairwise

comparison.

5 | CONCLUSION

The main goal of the present study was to determine the mecha-
nism involved in A. rubrum response to nickel toxicity. Nickel treat-
ment at a high dose of 1,600 mg/kg triggers regulation of several
genes. The study revealed that unlike B. papyrifera, there were no
significant differences in genes expression when RG and SG were
compared based on the FDR test. However, distinctive differences
between the two groups were found when they were compared to
water controls. Upregulation of genes associated with transport in
cytosol is the main mechanism associated with response to Ni in
RG while upregulation of genes involved in translation in the ribo-
some was prevalent in susceptible genotypes in comparison with
control. No major genes associated with nickel resistance were
identified. Several highly expressed genes were found in the top
100 upregulated and downregulated based on heatmap profiles and
logFC analysis. This suggests that the genetic mechanism control-
ling the resistance of A. rubrum to nickel is controlled by genes with
limited effects.
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