
biomolecules

Article

Polymorphisms of Pro-Inflammatory IL-6 and IL-1β Cytokines
in Ascending Aortic Aneurysms as Genetic Modifiers and
Predictive and Prognostic Biomarkers

Letizia Scola 1, Rosa Maria Giarratana 1, Vincenzo Marinello 2, Valeria Cancila 3, Calogera Pisano 4,
Giovanni Ruvolo 4, Giacomo Frati 5,6, Domenico Lio 1,* and Carmela Rita Balistreri 1

����������
�������

Citation: Scola, L.; Giarratana, R.M.;

Marinello, V.; Cancila, V.; Pisano, C.;

Ruvolo, G.; Frati, G.; Lio, D.;

Balistreri, C.R. Polymorphisms of

Pro-Inflammatory IL-6 and IL-1β

Cytokines in Ascending Aortic

Aneurysms as Genetic Modifiers and

Predictive and Prognostic Biomarkers.

Biomolecules 2021, 11, 943. https://

doi.org/10.3390/biom11070943

Academic Editor: Chris T. Amemiya

Received: 11 May 2021

Accepted: 22 June 2021

Published: 25 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of
Palermo, 90100 Palermo, Italy; letizia.scola@unipa.it (L.S.); rosamaria.giarratana@unipa.it (R.M.G.);
carmelarita.balistreri@unipa.it (C.R.B.)

2 Department of Legal and Economic Sciences, University of Enna “Kore”, 94100 Enna, Italy;
vincenzo.marinello@unikore.it

3 Tumor Immunology Unit, Department PROMISE, University of Palermo, 90100 Palermo, Italy;
valeria.cancila@unipa.it

4 Department of Cardiac Surgery, University of Rome ‘Tor Vergata’, 00100 Rome, Italy;
calogera.pisano@uniroma2.it (C.P.); giovanni.ruvolo@uniroma2.it (G.R.)

5 Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome,
04100 Latina, Italy; giacomo.frati@uniroma1.it

6 IRCCS NEUROMED, 86077 Pozzilli, Italy
* Correspondence: domenico.lio@unipa.it

Abstract: Background: Previous studies have demonstrated that polymorphisms involved in immune
genes can affect the risk, pathogenesis, and outcome of thoracic ascending aortic aneurysms (TAAA).
Here, we explored the potential associations of five functional promoter polymorphisms in interleukin-
6 (IL-6), IL-1B, IL-1A, IL-18, and Tumor necrosis factor (TNF)A genes with TAAA. Methods: 144 TAAA
patients and 150 age/gender matched controls were typed using KASPar assays. Effects on telomere
length and levels of TAAA related histopathological and serological markers were analyzed. Results:
Significant associations with TAAA risk were obtained for IL-6 rs1800795G>C and IL-1B rs16944C>T
SNPs. In addition, the combined rs1800795C/rs16944T genotype showed a synergic effect on
TAAA pathogenesis and outcome. The combined rs1800795C/rs16944T genotype was significantly
associated with: (a) higher serum levels of both cytokines and MMP-9 and -2; (b) a significant
CD3+CD4+CD8+ CD68+CD20+ cell infiltration in aorta aneurysm tissues; (c) a significant shorter
telomere length and alterations in telomerase activity. Finally, it significantly correlated with TAAA
aorta tissue alterations, including elastic fragmentation, medial cell apoptosis, cystic medial changes,
and MMP-9 levels. Conclusions: the combined rs1800795C/rs16944T genotype appears to modulate
TAAA risk, pathogenesis, and outcome, and consequently can represent a potential predictive and
prognostic TAAA biomarker for individual management, implementation of innovative treatments,
and selection of the more proper surgical timing and approaches.

Keywords: thoracic ascending aortic aneurysms; proinflammatory cytokines; rs1800795; rs16944;
telomere length; MMP9; elastic fragmentation; medial cell apoptosis; cystic medial changes

1. Introduction

In recent decades, inflammation has been demonstrated to have a crucial role in
cardiovascular diseases (CVD) [1,2], characterized by high worldwide morbidity and mor-
tality. Accordingly, inflammation evocates endothelial dysfunction, the primum movens
of many CVD, from the atherosclerosis [3,4] and its complications (i.e., myocardial in-
farction, coronary artery disease, ischemic stroke, peripheral arterial occlusive disease,
and heart failure [2,4–6]), to other cardiovascular pathological conditions [7]. In addi-
tion, individuals affected by chronic inflammatory disorders (i.e., autoimmune disorders)
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show a significant increase in the cardiovascular susceptibility. [6] Many inflammatory
pathways have been documented to contribute to CVD onset and progression, including
TLR-4/NF-kβ pathway [8,9], TLR-2 [10], TGF-β1 [11], CCR5 [12], CRP [13]. Recently,
pro- and anti-inflammatory cytokines, such as interleukin-(IL)-10 [14] and IL-6 [15], have
been associated with CVD onset and progression, and current meta-analyses [16–19] have
also confirmed the relationship of some functional polymorphisms in pro-inflammatory
cytokine genes with the significant increase in the susceptibility to several CVD, abdominal
aortic aneurysms included. Consistent with this, a prospective multicenter observational
open-label cohort study of patients, the MA3RS study [20], has demonstrated the impor-
tance of monitoring aortic wall inflammation via ultrasmall superparamagnetic particles of
iron oxide-enhanced magnetic resonance imaging for significantly predicting both the rate
of aneurysm growth, and the risk of severe complications, such as aneurysm rupture [20].

These interesting data have prompted evaluation of the contribution of inflammatory
pathways and cytokines to risk and pathogenesis of sporadic thoracic ascending aortic
aneurysms (TAAA). Our group has recently demonstrated the crucial role of TLR-4/NF-kβ
and TGF-β in the risk and progression of TAAA and type A dissection and evidenced genetic
variants in their genes as important risk determinants of these diseases [8,9,21–23]. The
group of researchers involved in Genetically Triggered Thoracic Aortic Conditions (GenTAC)
registry study, has also found a significant association between the high systemic levels of
IL-6 and aortic dimensions in patients with aortopathies [24]. Another group has assessed
an overexpression of IL-1β in patients with TAAA [25]. In this view, the identification of
genetic, epigenetic and circulating biomarkers might be of help for update the current TAAA
guidelines on the surgical timing, which is the key for positively influencing the survival
of affected patients and is based exclusively on aorta diameter [22]. A growing body of
evidence indicates that a biological and morphological network of risk factors might be
considered and aortic ruptures and dissections might also take place in ascending aortas
having smaller sizes than those recommended by the current guidelines [22] (Figure 1).
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Figure 1. Management of patients with TAAA (Flow Chart). This algorithm was proposed to include
biological and morphological network of genetic, epigenetic and circulating markers useful for
updating current guidelines on the TAAA management behind the aortic diameter [22].

In line with these recent data, and for validating the associations previously ob-
served [22], here, we aimed to investigate the potential association of functional polymor-
phisms in IL-6, IL-1A, IL-1B, IL-18, and Tumor necrosis factor (TNF)A genes with TAAA
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susceptibility, pathogenesis, and outcome, in 144 patients affected by sporadic TAAA and
150 age/gender matched controls. Five functional promoter polymorphisms in the genes
encoding for IL-6, IL-1α, IL-1β, IL-18 and TNF-α pro-inflammatory cytokines, known to be
functionally important, because they influence both the transcription rate of the related
genes and cytokine plasma concentrations, have been selected [26–30]. In addition, we
evaluated the eventual genotypes of these gene variants able to influence in a significant
manner the systemic levels of the analyzed cytokines and other inflammatory markers
(i.e., proteases), as well as the amounts of tissue infiltrated CD3+CD4+CD8+CD68+CD20+
immune/inflammatory cells. Correlations of the polymorphisms (i.e., their genotypes)
with molecular and cellular aorta wall impairment, leukocyte telomere length attrition and
telomerase activity alterations, able to suggest the rate of tissue biological aging, tissue
chronic inflammation, related damage, and the resulting aorta remodeling/degeneration,
reflecting the aneurysm growth and/or rupture, were also estimated.

2. Materials and Methods
2.1. Patients and Controls

Our study included a population of 144 subjects with TAAA (101 men and 43 women;
mean age: 70.3 ± 2.6 years) and 150 age/gender matched healthy subjects (100 men and
50 women; mean age: 69.5 ± 1.6 years), as shown in Table 1. Patients were recruited
from February 2017 to December 2017, in the Units of Cardiac Surgery and Cardiology
(Department of Cardiac Surgery, University of Rome ‘Tor Vergata’, Rome, Italy). Exclusion
criteria [31–34]: (a) cardiovascular diseases; (b) genetic, familial and sporadic connective
tissue disorders; (c) congenital aorta valve diseases, such as bicuspid valve syndrome; (d)
infectious and inflammatory diseases. A total of 150 healthy age and gender matched
controls were recruited after clinical and laboratory evaluation.

Table 1. Demographic and clinical characteristics of population enrolled.

Variables TAAA Cases Controls p1

n = 144 n = 150

Demographic characteristics
Age, mean (SD) 70.3 (2.6) 69.5 (1.6) n.s.

Male sex, No. (%) 101 (70.1) 100 (66.6) n.s.
Female sex, No. (%) 43 (29.9) 50 (33.4) n.s.

Body mass index, mean (SD) 25 (4.3) 24.8 (3.1) n.s.

Size and location of TAAA
Size (mm), mean (DS) 52.6 (7.1) - -

Localization N. (%): Tubular
ascending aorta 144 (100) - -

Comorbidity conditions, No (%)
CVD Family History 18 (12.5) 10 (6.7) n.s.

Smoking 50 (34.7) 50 (33.4) n.s.
Hypertension 75 (52) 60 (40) 0.03
Dyslipidemia 22 (15.3) 12 (8) 0.05

Diabetes mellitus 13 (9) 8 (5.3) n.s.
Renal failure 0 (0) 0 (0) n.s.

Dissection 0 (0) 0 (0) n.s.

Coronary syndrome No (%) 2 (0) 0 (0) n.s.
1 p was determined by t test for quantitative variables, or Pearson χ2 test for qualitative variables.

Table 1 reports clinical and demographic data (including comorbidities) obtained from
patients’ medical records.
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2.2. DNA Samples and Genotyping

DNA samples from patients and controls, extracted from peripheral blood and purified
by using QIAamp Blood DNA Maxi kit (Qiagen, Dusseldorf, Germany), were typed for
five polymorphisms located in the promoter region of the five selected candidate genes
codifying pro-inflammatory cytokine reported in Table 2.

Table 2. Genes and SNPs (accession number from https://www.ncbi.nlm.nih.gov/snp/?term,
accessed on 21 April 2021) investigated in the study [24–28].

Genes SNPs Chr
Localization Position Alleles Biological

Effects

IL-1A rs1800587 2:112785383 −889 C>T Increased levels of
gene transcription

IL-1B rs16944 2:112837290 −511 C>T Increased levels of
gene transcription

IL-6 rs1800795 7:22727026 −174 G>C Variable levels of
gene transcription

IL-18 rs187238 11:112164265 −137 G>C Increased levels of
gene transcription

TNFA rs1800629 22:23894205 −308 G>A Increased levels of
gene transcription

The allelic and genotypic frequencies of these gene variants were detected using
Kaspar assay on demand developed by KBioscience Ltd. (KBioscience, Middlesex, UK)
and based on a homogeneous Fluorescence Resonance Energy Transfer (FRET) detection
and allele specific PCR routinely used in our laboratory [21].

2.3. Quantifications of Systemic Levels of IL-1β, IL-6, MMP-9 and MMP-2

Plasma levels of inflammatory cytokines (IL-1β, and -6), and MMP-9 and -2 were mea-
sured by ELISA and commercial kits (R&D Systems, Minneapolis, MN, USA), according to
the manufacturer’s instructions. Detection limits were 0.7 pg/mL, 0.5 pg/mL, 0.154 ng/mL,
0.156 ng/mL for IL-1β, IL-6, MMP-9 and -2, respectively. All assays were run in duplicate.

2.4. Aortic Specimens and Histopathological Assays and Apoptosis Evaluation

Full aortic segments with resected normal as well as aneurysmatic aortic wall from
tubular-ascending aorta were collected from all patients with TAAA. They were microscop-
ically examined, after staining (hematoxylin-eosin, Weigert, van Gieson and Alcian-PAS
staining, see Figures S1 and S2 in Supplementary Materials) according to the 2016 consensus
criteria for aorta histology [35].

We also assessed apoptosis by perform TdT (Terminal deoxynucleotidyl Transferase)-
mediated X-dUTP (deoxyuridine triphosphate nucleotides) nick end-labeling (TUNEL)
reaction (Roche Diagnostics S.p.A, Milano, Italy) on deparaffined sections of full-thickness
aortic wall (5 µm), as previously described [31–34,36].

2.5. Immunohistochemical Assays

Immunohistochemical analyses were performed on 5 µm-thick paraffin-embedded
sections incubated for 1 h with appropriate dilutions of specific monoclonal antibodies
(Ab)s against CD3 (Clone LN10, NCL-L-CD3, clone PS1, Novocastra Laboratories Ltd.,
Newcastle upon Tyne, UK, 1:100), CD45 (Santa Cruz, Biotechnology, Inc, Santa Cruz, CA,
USA, 1:100), CD4 Ab-2 (Clone 1 F6, NeoMarkers, Inc, Fremont, CA, USA, 1:10), CD8 Ab-1
(Clone C8/144B, NCL-L-CD8 295 mouse Novocastra Laboratories Ldt, Newcastle upon
Tyne, UK, 1:50), CD20 (clone L 26, Dako Italia Spa, Milan, Italy, 1:50)), CD68 (clone PG-M1,
Dako Italia SpA, Milan, Italy, 1:50), MMP-9 (Clone 15W2, NCL-MMP9 439, Novocastra
Laboratories Ltd., Newcastle upon Tyne, UK, 1:50), or isotype-matched controls. After
washing in TBS 1X (Tris-buffered solution), staining was performed by biotinylated an-

https://www.ncbi.nlm.nih.gov/snp/?term
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tibodies and streptavidin labeled with peroxidase (Dako, North America, Inc, Via Real
Carpinteria, CA, USA) and was detected using 3-amino-9-ethylcarbazole substrate (AEC).
Counterstaining of cells and tissue sections was performed using aqueous hematoxylin
(Novocastra Laboratories Ldt, Newcastle upon Tyne, UK). Inflammatory and immune
cells were counted in 10 contiguous high-power fields (magnification 400×) under an
Olympus fluorescent microscope (Olympus America Inc, Center Valley, PA, USA) by two
independent observers.

2.6. Semi-Quantitative Evaluation of MMP-9 by Immunohistochemical Assays

A semi-quantitative evaluation of MMP-9 amount in aortic specimens was performed.
Staining was classified as low, moderate, or high amount (see Figure S2).

2.7. Telomere Length Assay and Telomerase Activity Evaluation

The mean terminal restriction fragment (TRF) length, was detected by chemilumines-
cence technique and using the TeloTAGGG telomere length assay kit (Roche Diagnostics,
Indianapolis, IN, USA), according to the manufacturer’s instructions. The mean termi-
nal restriction fragment (TRF) was calculated applying the following formula: TRF =
(∑(iOD))/(∑(iOD/Li)), based on measurement of is the optical density at a given position
on the gel (ODi) and the position corresponding molecular weight (Li). As previously
described [36], the mean TRF of electrophoresis runs from cases and controls were adjusted
to the standardized internal control.

For quantitative analysis of telomerase activity, a Telomeric Repeat Amplification
Protocol (TRAP) [36] and a photometric enzyme immunoassay were performed using
TeloTAGGG Telomerase PCR Elisa Plus kit (Roche Diagnostics, Indianapolis, IN, USA),
according to the manufacture’s protocol [36].

2.8. Statistical Analysis

Significant differences in frequencies between the two groups were calculated using
the χ2 test and appropriate tables (2 × 2, 3 × 2). Unpaired t-test (Welch corrected) was
utilized to analyze the quantitative data between two groups whereas one-way ANOVA
or Kruskal–Wallis test followed by Bonferroni correction was applied to compare more
than two groups. The correlations between two continuous variables were assessed with
Pearson’s test, or non-parametrical Spearman correlation test. Multiple logistic regression
analyses of dominant and recessive models were applied to patient group compared with
control group. Odds ratios (OR), 95% confidence intervals (95% C.I.), and p values were
determined. SPSS software version 20 (SPSS Inc., Chicago, IL, USA) was used. Differences
were considered significant when a p value < 0.05 was obtained by comparison between
the different groups.

3. Results
3.1. Frequencies and Associations of Cytokine Functional Promoter Polymorphisms with TAAA
Risk in Enrolled Groups

Genotype frequencies of all studied population fit to Hardy–Weinberg equilibrium.
The comparison of genotype distributions and allele frequencies between cases and controls
allows to detected only significant differences both in genotype distributions and allele
frequencies of the rs.16944 IL-1B and rs.1800795 IL-6 gene variants, between the cases and
the matched controls (Table 3).

In particular, we observed that the TAAA cases showed a significant frequency (0.153
vs. 0.02 and p < 0.00009; 0.152 vs. 0.034 and p < 0.0015, by Chi-square test) of TT and CC
genotypes, respectively of the rs.16944 IL-1β and rs.1800795 IL-6 gene variants than the
controls. Analogously, the frequency of T and C alleles, respectively of the rs.16944 IL-1β
and rs.1800795 IL-6 gene variants, was significantly higher in cases than controls (0.236 vs.
0.087 and p < 0.000001; 0.222 vs. 0.100, and p < 0.00008 by Chi-square test).
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Table 3. Genotype distributions and allele frequencies of gene variants (SNPs) typed in case and control groups. All genotypes were in Hardy–Weinberg equilibrium.

Candidate
Gene

SNP Reference
Number Alleles p Value *

(2 × 2 Table) Genotypes p Value *
(3 × 2 Table)

IL-1A

rs1800587
(-889C/T)

C T CC CT TT
N F N F N F N F N F

Cases 193 0.670 95 0.330 n.s. 61 0.424 70 0.486 13 0.090 n.s.
Controls 209 0.697 91 0.303 72 0.480 65 0.433 13 0.087

IL-1B

rs16944
(-511C>T)

C T CC CT TT
N F N F N F N F N F

Cases 220 0.764 68 0.236
0.000001

98 0.680 24 0.167 22 0.153
0.00009Controls 274 0.913 26 0.087 127 0.847 20 0.133 3 0.02

IL-6

rs1800795
(-174G>C)

G C GG GC CC
N F N F N F N F N F

Cases 224 0.778 64 0.222
0.00008

102 0.708 20 0.140 22 0.152
0.0015Controls 270 0.900 30 0.100 125 0.833 20 0.133 5 0.034

IL-18

rs187238
(-137G/C)

G C GG GC CC
N F N F N F N F N F

Cases 205 0.712 85 0.288 n.s. 67 0.465 70 0.486 7 0.049 n.s.
Controls 219 0.730 81 0.270 82 0.547 55 0.367 13 0.087

TNFA

rs1800629
(-308G/A)

G A GG GA AA
N F N F N F N F N F

Cases 251 0.872 37 0.128 n.s. 112 0.777 27 0.188 5 0.035 n.s.
Controls 270 0.900 30 0.100 124 0.827 22 0.147 4 0.026

N = number; F = frequency (genotype distribution and allele frequencies). * p value was calculated by using χ2 test and appropriate 3 × 2 and 2 × 2 tables.
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Furthermore, the logistic regression analyses of dominant and recessive models per-
formed between TAAA cases and controls showed a significant enrichment of the recessive
genotypes of two polymorphisms in cases respect to controls, associated with significant
risk TAAA values (Table 4).

Table 4. Multiple logistic regression analyses of dominant and recessive models applied to patient
group compared with control group.

SNP Model Numbers OR (95% C.I.) p Values *

rs16944
(-511C>T)

Dominant
CC + CT/TT

Cases: 122/22
Controls: 147/3 0.11 (0.03–0.38) <0.00001

Recessive
CT + TT/CC

Cases: 46/98
Controls: 23/127 2.59 (1.47–4.56) 0.0006

rs1800795
(-174G>C)

Dominant
GG + GC/CC

Cases: 122/22
Controls: 145/5 0.21 (0.07–0.57) 0.0008

Recessive
CC + GC/GG

Controls: 25/125
Cases: 42/102 2.05 (1.17–3.06) 0.0077

* p value was calculated by using χ2 test and appropriate 3 × 2 and 2 × 2 tables; OR was calculated with Fisher’s
exact test.

3.2. Higher Systemic Plasma Levels of Inflammatory Systemic Molecules and Aorta Tissue
Immune/Inflammatory Cells in Cases with the Combined -511T IL-1B/-174C IL-6 Genotype than
Controls Bearing the Same Genotype

The significant enrichment in the frequencies of rs.16944 IL-1B and rs.1800795 IL-6
gene variants in TAAA cases than controls and the high OR values of recessive genotypes
in the cases led us to suppose that these polymorphisms might have the role of genetic
modifiers, promoting TAAA pathogenesis and outcome. Consequently, we examined the
biological effects mediated by the rs.16944 IL-1B and rs. 1800795 IL-6 gene variants in cases
and controls bearer or not of -511T IL-1B/-174C IL-6 combined genotypes, by quantifying
both the amount of aorta tissue cellular infiltration of CD3+CD4+CD8+CD68+CD20+
inflammatory immune cells (Figure 2) and the plasma levels of the two IL-1β and IL-6
cytokines and metalloproteinases (MMP)-2 and -9 (Table 5).
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CD3, CD4, CD8, CD20, and CD68 positive cells in media and adventitia and in 10 contiguous high-power fields (magnifica-
tion 400×) were counted by two independent observers. Significant increased amounts of CD3+CD4+CD8+CD68+CD20+
cells were observed by comparing their values (medium values± SD) among the four groups and the two groups (by
ANOVA and t test). Surprisingly, cases with the combined genotype had higher numbers of these cells than cases with other
genotypes, in both aneurysmatic and normal aorta tissue areas.
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Table 5. Plasmatic levels (average ± standard deviation) of IL-6 and IL-1β cytokines and metalloproteases in the 144 TAAA patients and 150 age/gender matched controls, stratified
according the presence of combined recessive (-511T IL-1B/-174C IL-6) genotype.

Plasmatic Protein

-511T IL-1B/-174C
IL-6 Positive

Patients
(n = 56)

-511T IL-1B/-174C
IL-6 Negative

Patients
(n = 88)

-511T IL-1B/-174C
IL-6 Positive

Controls
(n = 23)

-511T IL-1B/-174C
IL-6 Negative

Controls
(n = 127)

p Values *
-511T IL-1B/-174C

IL-6 Positive
Patients vs. Positive

Controls

-511T IL-1B/-174C
IL-6 Positive vs.

Negative Patients

-511T IL-1B/-174C
IL-6 Positive vs.

Negative Controls

IL-6 (pg/mL) 22 ± 2.1 16 ± 0.9 9 ± 5.6 6.8 ± 2.1 <0.0001 0.01 0.03
IL1-β (pg/mL) 23 ± 2 15 ± 2.2 15 ± 6 9 ± 2.8 <0.01 0.01 <0.01

MMP-2 (ng/mL) 63 ± 4.5 52 ± 2.3 22 ± 5.6 14 ± 5.3 <0.0001 0.01 <0.001
MMP-9 (ng/mL) 60 ± 3.1 51 ± 3.1 23 ± 6.1 15 ± 2.6 <0.0001 0.01 <0.001

* p was determined by t test with Welch correction.
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The comparisons effectuated between the cases and controls bearer or not of -511T
IL-1B/ -174C IL-6 combined genotypes demonstrated that the cases positive for combined
genotype had significantly higher levels of systemic inflammatory cytokines and proteases
than the controls with the same genotype or carriers of other genotypes (Table 5). Be-
sides, cases carrying -511T IL-1β/-174C IL-6 genotype had significantly higher amount
of tissue CD3+CD4+CD8+CD68+CD20+ inflammatory immune cells both in normal and
aneurysmatic aorta tissues (Figure 2).

Overall, these results also led us to suppose that the rs.16944 IL-1B and rs.1800795 IL-6
gene variants might also be considered not only genetic modifiers of TAAA pathogenesis,
but also potential predictive and prognostic TAAA biomarkers because they correlated
with the raise and grade of both systemic and tissue chronic inflammation, remodeling and
degeneration when they are both present.

3.3. A Significant Impairment of the Leukocyte Telomere Length and Telomerase Activity in Cases
with Combined the -511T IL-1B/-174C IL-6 Genotype than Controls

To assess the predictive and prognostic risk effects of combined -511T IL-1B/-174C IL-6
genotype in cases than controls, we evaluated the eventual telomere/telomerase system’s
impairment, it being the gold standard biomarker for evaluation of the grade of biological
aging of all the tissues. As widely reported in our recent work [36] and documented in
the literature (see the relevant data of Wilson and colleagues, [37]), it reflects in an exact
manner both the grade of chronic inflammation and remodeling/degeneration of all the
body tissues, or, better, the biological age of all the tissues.

Therefore, we examined the mean of blood leukocyte telomere length and telomerase
activity, using terminal restriction fragment assay (TRF test,), and a relative quantitative
analysis in according to Telomeric Repeat Amplification Protocol (TRAP).

As reported in Table 6, we have detected a significant impairment of telomere/telomerase
leukocyte system in TAAA cases with combined recessive -511T IL-1B/-174C IL-6 genotype
than controls with the same genotype. In addition, controls positive for the combined geno-
type had impairment of telomere/telomerase leukocyte system than other control individuals,
carriers of another genotype. This finding might suggest that the combined recessive -511T
IL-1B/-174C IL-6 genotype is associated with a significant risk of early biological aging of car-
diovascular system, and consequently to develop an early aorta remodeling and degeneration,
that might evolve in TAAA onset.

Table 6. Mean TRF length, mean values of relative telomerase activity (RTA), in leukocytes from patients and controls
positive or negative for combined genotype 1.

Evaluations Case’s Carriers
(n = 56)

Control’s
Carriers
(n = 23)

Cases with
Other

Genotypes
(n = 88)

Controls
with Other
Genotypes

(n = 127)

p1 *
Values

p2 **
Values

p3 ***
Values

p4 ****
Values

Mean TRF length 4899 ± 0.569 bp 6588 ± 0.449
bp

5680 ±
0.176bp

7500 ±
0.656 bp <0.001 <0.0001 0.01 <0.0001

Mean RTA values 12.6 ± 3.2 60.8 ± 5.6 27 ± 3.3 75 ± 6.2 <0.0001 <0.0001 0.001 <0.0001
1. unpaired t test with Welch correction was used for statistical analyses. Data are reported as mean ± standard deviation. * p1 values
obtained comparing patients with combined genotype vs. controls with combined genotype; ** p2 values obtained comparing patients with
combined genotype vs. controls with other genotypes; *** p3 values obtained comparing patients with combined genotype vs. patients
with other genotypes; **** p4 values obtained comparing controls with combined genotype vs. controls with other genotypes.

3.4. Univariate Analysis of Combined -511T IL-1B/-174C IL-6 Genotype with Increase in MMP9
Amount, Elastic Fragmentation, Medial Cell Apoptosis, Cystic Medial Changes in Hystological
Speciments

To test whether the combined -511T IL-1β/-174C IL-6 genotype correlated with aorta
tissue remodeling/degeneration, elastic fragmentation, tissue aorta MMP-9 amount, me-
dial cell apoptosis, cystic medial changes in TAAA cases were detected and a univariate
regression analysis was applied. As reported in Table 7, a significant correlation was
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detected between the combined genotype and aorta alterations, including an increased
MMP-9 amount, elastic fragmentation, medial cell apoptosis and cystic medial changes.
Besides, it significantly correlated with the augment of aorta diameter (r = 0.15 and p = 0.01,
by linear Pearson correlation test; data not shown) in the cases bearer.

Table 7. Univariate correlations between elevation of MMP9 amount, elastic fragmentation, medial
cell apoptosis, cystic medial changes, and the combined recessive (-511T IL-1B/-174C IL-6) genotype
in cases.

Variables r Values p Values *

Elastic fragmentation 0.21 0.001
Elevation of MMP 9 amount 0.17 0.02

Medial cell apoptosis 0.16 0.001
Cystic medial changes 0.18 0.04

* linear Pearson correlation test, or non-parametric Spearman correlation test, when appropriate.

4. Discussion

Inflammation plays a crucial role in the CVD development and progression. Accord-
ingly, our and other groups have demonstrated significant associations between many in-
flammatory pathways, and mediators, and TAAA [8,9,21–25]. Pro-inflammatory cytokines,
and particularly IL-6, have been shown to represent significant drivers of CVD [38,39],
aneurysms included. Its crucial role in CVD has been proven by prospective studies,
demonstrating how high basal plasmatic levels of IL-6, having pro-inflammatory and
procoagulant effects, are potent CVD risk factors [40–43]. In addition, other pieces of
evidence arrive from the significant results of a recent meta-analysis of 74 studies, showing
a significant association of the -174C allele (rs1800795) of IL-6 gene polymorphism with
several CVD, including myocardial infarction, coronary artery disease, ischemic stroke,
peripheral arterial occlusive disease, and heart failure [16], in spite of functional effect of
this allele on IL-6 serum level [44]. Recent studies have also confirmed its role in abdominal
aortic aneurysms [42,43], Here, we demonstrated the role of IL-6 and IL-1B in TAAA disease.
Precisely, we evidenced that the functional -174G>C (rs1800795) and -511C>T (rs16944)
polymorphisms, respectively in IL-6 and IL-1B genes, were significantly associated with
TAAA risk. Such gene variants increased the TAAA susceptibility under allelic (C and
T, respectively), homozygous (CC and TT) and heterozygous (GC and CT) genotypes.
Higher systemic levels of the two cytokines were significantly assessed in plasma sam-
ples of cases bearing such gene variants than controls, and particularly when carriers of
combined recessive -511T IL-1B/-174C IL-6 genotype. Likewise, cases with the combined
recessive -511TIL-1B/-174C IL-6 genotype showed higher systemic plasma levels of MMP-9
and-2 respect to controls. This appears to suggest that the two polymorphisms induce a
higher systemic inflammatory pressure, that might likely result in a more marked cytokine-
induced aorta remodeling and degeneration. Accordingly, we detected in aorta tissues
from the cases with combined recessive -511T IL-1B/-174C IL-6 genotype, and particularly
in aneurisma vs. normal regions, a significant immune/inflammatory cellular infiltration.
Aneurisma tissues are characterized by the presence not only of a significant number of
CD68+ monocyte/macrophage cells, but also by a high quantity of the T CD4+ and CD8+
cells followed by a reduced number of B lymphocytes with the typical CD20+ marker.
Generally, their presence indicates a chronic inflammation response [45,46]. However, the
phenotypes of the T CD4+, CD8+, and B cell subpopulations were not analyzed in our
study, as well as gene expression and cytokine production. In fact, it has recently been
reported that the cytokines produced by CD4+ and CD8 + T-lymphocytes and their subsets,
such as CD248+ CD8+ T cells [47], play a causative role in the initiation and progression, as
well as in the suppression, of aorta remodeling associated with onset of pathological condi-
tions, such as aorta dilatation and aneurysm development [46,48]. Of note, for example, is
the role of the abovementioned CD248+ CD8 + T [47] cells subset and its cytokine profile,
that has been recently demonstrated to suppress the pathological vascular remodeling in
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human TAAA. This underlines the imperative necessity to investigate the type of T subsets
in the aneurysm aorta tissues and their cytokine profile.

In this view these results allow to suggest that the rs16944 IL-1B and rs.1800795 IL-6
gene variants might be considered not only genetic modifiers of TAAA pathogenesis,
but also potential predictive and prognostic TAAA biomarkers. Consistent with these
considerations, the rs16944 IL-1B and rs1800795 IL-6 gene variants correlated with the
rise and grade of both systemic and tissue chronic inflammation and biological aging of
aorta tissue. Accordingly, cases with the combined -511T IL-1B/-174C IL-6 genotype than
control carriers of the same genotype had shorter telomeres and a reduced telomerase
activity. Leukocyte telomere length and telomerase activity are strictly associated with the
grade of biological aging of body tissues, organs and systems, and reflect both the grade
of tissue chronic inflammation and remodeling/degeneration [36,49–51]. The significant
associations between the impairment of telomere length and telomerase activity and -
174G>C (rs1800795) IL-6 and -511C>T (rs16944) IL-1B gene polymorphisms, seem to confirm
the contribution of combined genotype in TAA onset and progression and, consequently, it
might represent a TAAA predictive and prognostic risk marker. An additional confirmation
arrives from the significant correlations between the combined -511T IL-1B/-174C IL-6
genotype and the TAAA tissue aorta typical alterations, including elastic fragmentation,
MMP-9 aorta tissue amount, medial cell apoptosis and cystic medial changes.

5. Conclusions

Taken together, the results obtained appear to strongly suggest that the two -174G>C
(rs1800795) IL-6 and -511C>T (rs16944) IL-1B gene polymorphisms are genetic risk factors
for TAAA, in accordance with the literature data reported on the several CVD, as mentioned
above [38–43]. However, to the best of our knowledge, this study represents the first
performed in TAAA and, consequently, confirmations on large numbers of individuals
enrolled are imperative.

The crucial genetic mechanisms related to higher susceptibility to the same diseases
may be realized by different genotypes, which can affect different mediating mechanisms, in
populations of different genetic backgrounds [52–54]. In our case, this must be considered
in relation to the biological effects mediated by the two -174G>C (rs1800795) IL-6 and
-511C>T (rs16944) IL-1B gene polymorphisms, and particularly by the combined -511T IL-
1B/-174C IL-6 genotype that might contribute to the different steps of TAAA pathogenesis
and progression (Figure 3). Afterward, we explored this issue considering the ethnicity of
our population in study. Being a Caucasian population, the literature data have reported
a significant association only under homozygous recessive model (TT and CC) of the
polymorphisms examined in our study, and particularly for -174G>C (rs1800795) IL-6
polymorphism [16].

Some limitations also characterize our study. First, we need to consider the sample size.
However, the total number of subjects enrolled was relatively small given the incidence
and prevalence of TAAA, even if the validation of our data needs to be confirmed in a
larger sample of patients and controls. Second, our study was an association analysis that
correlated genotype to TAAA risk, cytokine levels and histologic, immune-histochemical,
telomere/telomerase markers of arterial wall degeneration, molecular pathways of arterial
damages should be further investigated, as well as the tissue molecule expression. Third,
the biological effects of the two polymorphisms studied are complex and other genetic
variants of their functional pathways might be implied [55]. Consequently, further research
is needed to fully understand the contribution of two -174G>C (rs1800795) IL-6 and -511C>T
(rs16944) IL-1B gene polymorphisms in TAAA.
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Figure 3. Our model on the role of rs1800795 IL-6 and rs16944 IL-1B gene polymorphisms in TAAA
onset. Subjects carrying combined -511T IL-1B/-174C IL-6 genotype show high significant levels of
two related cytokines, known have a key role in the onset and progression of CVD. In the context of
TAAA pathogenesis, they mediate cellular and molecular alterations of intima, inducing endothelium
dysfunction and, in turn, immune/inflammatory infiltration, and media remodeling/degeneration.
Such determines aorta dilation and, consequently, aneurysm onset and its complications, dissection,
and rupture.

However, genotyping could consent to identify TAAA risk individuals and might
represent a helpful biomarker useful in drive preventive treatments for delaying or stopping
onset and progression of TAAA. Specific inhibitors of inflammation (nonsteroidal anti-
inflammatory drugs or other more sophisticated preventive approaches (i.e., agonists of
IL- receptors or anti-IL-6 or IL-1β antibodies), might be used, as well as more appropriate
surgical approaches and decisions in subjects positive for this genotype.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11070943/s1: Aortic specimens and histopathological assays and apoptosis evaluation,
Figure S1: Control aortas and histo-pathological abnormalities in aorta tissues of S-TAA patients;
Figure S2: Medial apoptosis and MMP-9 amount in tissue samples.
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