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Abstract
We discuss and extend a powerful, geometric framework to represent the set of port-
folios, which identifies the space of asset allocations with the points lying in a con-
vex polytope. Based on this viewpoint, we survey certain state-of-the-art tools from 
geometric and statistical computing to handle important and difficult problems in 
digital finance. Although our tools are quite general, in this paper, we focus on two 
specific questions. The first concerns crisis detection, which is of prime interest for 
the public in general and for policy makers in particular because of the significant 
impact that crises have on the economy. Certain features in stock markets lead to 
this type of anomaly detection: Given the assets’ returns, we describe the relation-
ship between portfolios’ return and volatility by means of a copula, without mak-
ing any assumption on investors’ strategies. We examine a recent method relying on 
copulae to construct an appropriate indicator that allows us to automate crisis detec-
tion. On real data the indicator detects all past crashes in the cryptocurrency market 
and from the DJ600-Europe index, from 1990 to 2008, the indicator identifies cor-
rectly 4 crises and issues one false positive for which we offer an explanation. Our 
second contribution is to introduce an original computational framework to model 
asset allocation strategies, which is of independent interest for digital finance and 
its applications. Our approach addresses the crucial question of evaluating portfolio 
management, and is relevant the individual managers as well as financial institu-
tions. To evaluate portfolio performance, we provide a new portfolio score, based 
on the aforementioned framework and concepts. In particular, it relies on statistical 
properties of portfolios, and we show how they can be computed efficiently.
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1  Introduction

Modern finance has been pioneered by Markowitz who set a framework to study 
choice in portfolio allocation under uncertainty (Markowitz 1952), and for which 
he earned the Nobel Prize in economics, 1990. Within this framework, Markowitz 
characterized portfolios by their return and their risk; the latter is formally defined 
as the variance of the portfolios’ returns.1 An investor builds a portfolio that would 
maximize its expected return for a chosen level of risk; it has since become common 
for asset managers to optimize their portfolio within this framework. This approach 
has led a large part of the empirical finance research to focus on the so-called effi-
cient frontier which is defined as the set of portfolios presenting the lowest risk for 
a given expected return. The efficient frontier is associated with a well-known fam-
ily of convex functions, studied by Markowitz (1956). Moreover, the distributional 
properties of the optimal portfolio weights have been used for efficient portfolio 
selection (Bodnar et al. 2017, 2016; Bodnar and Schmid 2009; Kan and Smith 2008; 
Jobson and Korkie 1980).

 It is known, from the relevant literature, that financial markets exhibit three types 
of behavior. In normal times, stocks are characterized by slightly positive returns 
and moderate volatility, in up-market times (typically bubbles) by high returns and 
low volatility, and during financial crises by strongly negative returns and high vol-
atility, see Billio et  al. (2012) for details. Sore, following Markowitz’ framework, 
in normal and up-market times, the stocks and portfolios with the lowest volatility 
should present the lowest returns, whereas during crises those with the lowest vola-
tility should present the highest returns. The detection of normal and crises periods 
is also crucial for computing an efficient asset allocation (Ivanyuk 2021; Harzallah 
and Abbes 2020; Pinho and Melo 2017).

However, these tools, when used to build a portfolio, do not always guarantee a 
good performance in practice (Maillard et al. 2010). Thus, the analysis of investment 
performance is of special interest in modern finance, especially given the growth of 
the asset management industry grows in the last decades. Research in this area is 
axed on Sharpe-like ratios proposed in the 1960’s (Jensen 1967; Sharpe 1966; Trey-
nor 2015). In practice, the performance of a portfolio manager, over a given period, 
is usually measured as the ratio of his “excess” return with respect to a benchmark 
portfolio over a risk measure (Grinblatt and Titman 1994). Managers are then ranked 
according to these ratios, and the one achieving the highest and steadiest returns 
receives the best score. The major drawback of these techniques is the identification 
of benchmark portfolios, while the formation of such portfolios remains controver-
sial. Moreover, they suffer from non-negligible estimation errors (Lo 2002), which 
prevent any performance comparison to be significant. In Pouchkarev (2005)—and 
independently in Guegan et  al. (2011) and Banerjee and Hung (2011)—they use 
a geometric representation of a stock market to define a cross-sectional score of a 
portfolio given a vector of assets’ returns. The score of a portfolio is defined as the 

1  Throughout this paper we refer to the variance of a portfolio’s return as portfolio volatility.
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proportion of all possible asset allocations that the portfolio outperforms in terms 
of return. The aim is to measure the relative performance with respect to all possi-
ble alternative allocations offered to the manager. The term cross-section is used to 
underline that the score takes into account portfolios that are diversified over all sec-
tions of assets, without studying -separately- the performance on specific sections 
of stocks. In Banerjee and Hung (2011), they follow the same approach by defining 
what they call naive investor’s strategy. A naive investor’s strategy selects uniformly 
a portfolio from the set of portfolios, as it is agnostic of the assets’ returns generat-
ing process, and hence does not use any such information.

1.1 � Contributions

First, we briefly survey the computational framework in Calès et al. (2018) which 
uses the geometric representation of long-only portfolios in Pouchkarev (2005) and 
the copula representation for the dependency between portfolios’ return and volatil-
ity. A copula is a multivariate joint distribution where the marginal distributions are 
uniform; for more details on copulae, we refer to Nelsen (2006). We enhance this 
framework significantly by employing clustering methods on copulae, and we use it 
to detect all the past crash events in the cryptocurrency market and all the past crises 
from 1990 to 2008 using real data from DJ600.

We extend the geometric framework in Pouchkarev (2005) to model additional 
asset allocations to long-only portfolios, e.g. the “150/50” or the “130/30” strategies, 
which recently have gained popularity Lo and Patel (2007). In particular, we work 
with the set of fully-invested portfolios, i.e., portfolios whose weights sum up to 1, 
which is the default choice for the bulk of the asset management industry. However, 
we let the weights be negative and we use the norm-constraint in Zhao et al. (2020) 
to set a lower bound on the weights’ values. Then, we introduce a transformation to 
represent the set of all possible fully-invested portfolios by a convex polytope; i.e., 
each point in the interior of the polytope corresponds to a single asset allocation.

We use this geometric representation to introduce a new mathematical model 
of portfolio allocation strategies in a stock market. We consider the concept where 
portfolio managers compute and propose portfolio allocations, which we call for-
mal allocation proposals. Then, an investor decides which asset allocation pro-
posal to select. Second, she decides how much to modify this proposal to build 
her final portfolio. Thus, we expect the portfolios of the investors who have chosen 
the proposal of a manager to be “concentrated around” that proposal. To model 
this procedure we employ multivariate log-concave distributions. The support of 
the Probability Density Function (i.e. the subset of ℝn which is  not mapped to 
zero) of each distribution is the set of all possible portfolios, i.e. a convex poly-
tope. In particular, we say that a portfolio allocation strategy F� is induced from a 
log-concave distribution � as follows: to build a portfolio with strategy F� sample 
a point/portfolio from � . Then, we call the mode of � a formal allocation proposal 
of the allocation strategy F�.

We use Markowitz’s framework to parameterize the allocation strategies by the 
level of risk that a certain group of investors selects. Similarly, for a given level of 
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risk, we use the variance to parameterize to what extend around the formal alloca-
tion proposal a subgroup of investors may decide to stick. Finally, as in any stock 
market plenty of strategies may appear which are chosen by groups of investors. 
Thus, we define the mixed strategy induced by a convex combination of log-concave 
distributions, i.e. a mixture distribution.

We use this model of portfolio allocation strategies to define a new portfolio 
score to evaluate the performance of an investment. Our new score considers the 
set of truly invested portfolios in a stock market in a given time period. We evaluate 
the performance of a portfolio, for a given time period, by comparing the portfolio 
against a mixed strategy F� . Thus, we define the score of a portfolio as the expected 
number of truly invested portfolios that the first outperforms—in terms of return—
when the portfolios have been invested according to the mixed strategy F� . To esti-
mate the new cross-sectional score within an arbitrarily small error, we provide an 
efficient algorithm, based on Markov Chain Monte Carlo integration. In extreme 
cases, our new score becomes equal to that of Pouchkarev (2005), Guegan et  al. 
(2011) and Banerjee and Hung (2011). Thus, it can also be seen as a generalization 
of the latter cross-sectional score. Moreover, as one may have limited knowledge 
about how the investors behave in a stock market, or her/his knowledge may vary 
from a time period to another, we extend our framework to handle these issues. We 
also provide different versions of our score. Each version provides a piece of differ-
ent information about the portfolio allocation we would like to evaluate.

We also provide an open-source implementation2 to simulate (mixed) alloca-
tion strategies and to estimate our new score given a portfolio. Our implementation 
scales up to a few hundred assets and allocation strategies. We provide a pseudo-real 
time example in the cryptocurrency market, using the 12 cryptocurrencies with the 
longest history. We provide extended arithmetic results to show that the informative-
ness of our new score can be higher than that of existing and well-known perfor-
mance measures (e.g. Sharpe, Sortino ratios, and Jensen’s alpha). Moreover, we use 
our computations of the distribution of a portfolio’s score—assuming a distribution 
on the assets’ returns—to discuss how it could lead to useful insights about its per-
formance. We also compute copulae of portfolios’ return and volatility under the 
assumption that the portfolios have been built according to a mixed strategy. We 
show that a copula of a certain time period can be very different from that in Calès 
et al. (2018). We believe that the last two simulations pave the way for future work, 
in the problems of crises detection and portfolio allocation.

Finally, since the simulation of allocation strategies and the computation of the 
score and copulae rely only on sampling from high dimensional log-concave distri-
butions supported on the set of portfolios, our framework works also for a singular 
covariance matrix. That is, we can incorporate in our framework the results in Gul-
liksson and Mazur (2020), Bodnar et al. (2018), Mazur et al. (2017), Bodnar et al. 
(2016) and Pappas and Kaimakamis (2010). However, to keep the presentation sim-
ple, in Sect. 4, we assume that the covariance matrix of the assets’ returns is positive 

2  https://​github.​com/​Tolis​Chal/​portf​olio_​scori​ng.​git.

https://github.com/TolisChal/portfolio_scoring.git


337

1 3

Digital Finance (2021) 3:333–371	

definite. More details about our computational methods and its efficiency are found 
in “Appendix A”.

Paper structure. The next section presents our geometric representation of portfo-
lios we use. Section 3 surveys our work on copulae and the ensuing crisis indicator; 
our approach is corroborated by  two applications on real data. Some elements  in 
this section are presented in Calès et al. (2018), but here we present a broader class 
of methods (i.e. clustering copulae) and a new result on the cryptocurrency market. 
Section 4 introduces a new framework for modeling allocation strategies and evalu-
ating portfolio performance by defining a new score of a portfolio. Section 6 pre-
sents our pseudo-real time example on real data to illustrate our new framework and 
the usefulness of our new score. Finally, in Sect. 7, we briefly discuss conclusions 
and future work.

2 � Geometric representation of the set of portfolios

In this section, we formalize the geometric representation of sets of portfolios with 
an arbitrary large number of assets n. First, we handle the case of long-only strat-
egies and then, we extend this representation to fully-invested portfolios. In both 
cases, the set of portfolios is a convex polytope in ℝn.

2.1 � Long‑only portfolios

In this case, no short sales are allowed. Let a portfolio x investing in n assets, whose 
weights are x = (x1,… , xn) ∈ ℝ

n . The portfolios in which a long-only asset manager 
can invest are subject to 

∑n

i=1
xi = 1 and xi ≥ 0,∀i . Thus, the set of portfolios availa-

ble to this asset manager is the unit (n − 1)−dimensional canonical simplex, denoted 
by �n−1 and defined as

The simplex �n−1 is the smallest convex polytope with nonzero volume in a given 
dimension. For instance, in the plane any triangle is a simplex, while a triangular 
pyramid, or tetrahedron, is the simplex in 3D space. The vertices of �n−1 represent 
portfolios composed entirely of a single asset.

2.2 � Fully invested portfolios

When short sales are allowed, we write the set of all possible portfolios as,

(1)𝛥n−1 ∶=

{
x ∈ ℝ

n
|||||

n∑
i=1

xi = 1, and xi ≥ 0, i ∈ [n]

}
⊂ ℝ

n.

(2)P ∶=

�
x ∈ ℝ

n
�����

n�
i=1

xi = 1, and ‖x‖1 ≤ 𝛾 , i ∈ [n], 𝛾 ≥ 1

�
⊂ ℝ

n,
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where the L1-norm ‖x‖1 = ∑n

i=1
�xi� . When � = 1 no short sales are allowed and 

P = �n . When � = 1.6 then P corresponds to fully invested portfolios of the 130/30 
type and � = 2 to 150/50. To show that P is a convex polytope for any � ≥ 1 , we 
replace the norm-constraint ‖x‖1 ≤ � with a set of linear inequalities. Since 
|xi| = max{−xi, xi} , for each xi , we add an auxiliary variable yi such that,

Then, the set of all possible portfolios is given by,

which is a convex polytope as the feasible space is defined only by a set of linear 
inequalities (half-spaces).

3 � Crises detection

In this section, we present our computational methods to address the problem of cri-
ses detection in stock markets. We focus on long-only portfolios, which means that 
the set of portfolios in the following computations is the canonical simplex �n−1 . It 
is difficult to capture the dependency between portfolios’ return and volatility from 
the usual mean-variance representation. So we rely on the copula representation. A 
copula is a joint probability distribution for which all the marginal probability distri-
butions are uniform. Figure 1 illustrates such a copula and shows a positive depend-
ency between portfolios’ return and volatility. Given a vector of assets’ returns 
R ∈ ℝ

n and the covariance matrix Σ ∈ ℝ
n×n of the assets’ returns distribution, we 

say that any portfolio x ∈ �n−1 has return fret(x,R) = RTx and variance (or volatility) 
fvol(x,Σ) = xTΣx.

(3)yi ≥ −xi, yi ≥ xi, yi ≥ 0.

(4)

P̃ ∶=

{
(x, y) ∈ ℝ

2n
||||

n∑
i=1

xi = 1, −yi ≤ xi ≤ yi,

n∑
i=1

yi ≤ 𝛾 , i ∈ [n], 𝛾 ≥ 1

}
⊂ ℝ

2n,

Fig. 1   Copula representation of 
the portfolios distribution, by 
return and variance. The market 
considered is made of the 19 
sectoral indices of DJSTOXX 
600 Europe. The data is from 
Oct. 16, 2017 to Jan. 10, 2018. 
Each line and column sum to 1% 
of the portfolios
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To estimate the copula between portfolios’ return and volatility, we consider 
the following discretization on the values of each quantity. We fix two sequences 
s0 < ⋯ < sm and u0 < ⋯ < um such that

where Si ∶= {x ∈ ℝ
n | si ≤ fret(x,R) ≤ si+1} and Ui ∶= {x ∈ ℝ

n | ui ≤ fvol(x,Σ) ≤ ui+1} 
and p < 1 a small constant (e.g. p = 0.01 ). Equation (5) implies that a constant per-
centage p of the portfolios have return less than si+1 and higher than si . The same 
occurs for all the sets Ui , which contain portfolios with bounded volatility.

Furthermore, the sets Si, Ui define a grid of convex bodies, obtained by a family 
of parallel hyperplanes and a family of concentric ellipsoids—centered at the ori-
gin—intersecting �n−1 . Precisely, for given integers i, j ≤ m − 1 the body

contains the portfolios with return less than si+1 and higher than si and volatility less 
than uj+1 and higher than uj . Now, to obtain the aforementioned copula one has to 
estimate the ratios vol(Qij)

vol(�n−1)
 for i, j = 0,… ,m − 1.

We use Monte Carlo to estimate each volume ratio. We leverage direct, efficient 
uniform sampling from �n−1 following (Rubinstein and Melamed 1998) and then 
count the number of points per body in the grid. In Sect. 3.2, this leads to an indica-
tor to decide the state of the stock market that the estimated copula corresponds to.

Considering the computational efficiency of this method, it can be applied 
to stock markets with a few thousand assets, since the cost per uniformly distributed 
sample in �n−1 using the exact sampler in Rubinstein and Melamed (1998) is O(n). 
For run-times see “Appendix A”.

3.1 � Computing copulae

In our computations, to define the family of parallel hyperplanes, we con-
sider compound returns over periods of k observations. Let the asset returns 
ri = (ri,1,… , ri,n) ∈ ℝ

n , i ∈ [k] , then the component j of the compound return equals,

This defines vector R ∈ ℝ
n normal to a family of parallel hyperplanes, whose equa-

tions are fully defined by selecting appropriate constants.
The covariance matrix � of the assets’ returns is computed using the shrinkage 

estimator of Ledoit and Wolf (2004),3 as it provides a robust estimate even when the 
sample size is short with respect to the number of assets.

To compute the copulae, we determine constants defining hyperplanes and ellip-
soids so that the volume between two consecutive such objects is p = 1% of the 

(5)
vol(Si)

vol(�n−1)
≈ p and

vol(Ui)

vol(�n−1)
≈ p, i = 0,… ,m − 1,

(6)Qij ∶= {x ∈ �n−1 | si ≤ fret(x,R) ≤ si+1 and uj ≤ fvol(x,Σ) ≤ uj+1},

(7)Rj = (1 + ri,j)(1 + ri+1,j)… (1 + ri+k−1,j) − 1, j = 1,… , n.

3  Matlab code at http://​www.​econ.​uzh.​ch/​en/​people/​facul​ty/​wolf/​publi​catio​ns.​html.

http://www.econ.uzh.ch/en/people/faculty/wolf/publications.html
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simplex volume. Let us refer to the method outlined at Eq. (5) using notation intro-
duced just before this equation. The sequence of s0 < ⋯ < sm are determined by 
bisection using Varsi’s algorithm. For ellipsoids, we sample from the simplex and 
look for u0 < ⋯ < um such that there is an equal number of uniformly distributed 
points in each intersection.

We set m = 100 , to estimate each copulae. We thus get 100 × 100 copulae rep-
resenting the distribution of the portfolios with respect to the portfolio returns and 
volatilities. Figure  2 illustrates such copulae, and shows the different relationship 
between returns and volatility in good (left) and bad (right, Covid-19 shock event) 
times.

We analyze real data consisting of regular interval (e.g. daily) returns from two 
different asset sections: stocks from the Dow Jones Stoxx 600 Europe™(DJ600) 
and cryptocurrencies. We apply the methodology to a subset of assets drawn from 
the DJ  600 constituents using daily data covering the period from 01/01/1990 to 
31/11/20174. Since not all stocks are tracked for the full period of time, we select 
the 100 assets with the longest history in the index, and juxtapose stock returns and 
stock returns covariance matrix over the same period to detect crises. For the cryp-
tocurrency assets, we use the daily returns of 12 out of the top 100 cryptocurrencies, 
ranked by CoinMarketCap’s5 market cap (cmc_rank) on 22/11/2020, having the 
longest available history (Table 6). We compute the daily return for each coin using 
the daily close price obtained by CoinMarketCap, for several notable coins such as 
Bitcoin, Litecoin and Ethereum.

3.2 � Indicator and crisis detection

When we work with real data in order to build the indicator, we wish to compare 
the densities of portfolios along the two diagonals. In normal and up-market times, 
the portfolios with the lowest volatility present the lowest returns and the mass 
of portfolios should be on the up-diagonal. During crises, the portfolios with the 

Fig. 2   Copulae that correspond to cryptocurrencies’ states. Left, a normal period (16/12/2017) and right, 
a shock event due to Covid-19 (15/03/2020). The middle plot shows the mass of interest to characterize 
the market state

4  Our data is from Bloomberg™.
5  https://​coinm​arket​cap.​com/.

https://coinmarketcap.com/
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lowest volatility present the highest returns and the mass of portfolios should be on 
the down-diagonal, see Fig. 2 as illustration. Thus, setting up- and down-diagonal 
bands, we define the indicator as the ratio of the down-diagonal band over the up-
diagonal band, discarding the intersection of the two. The construction of the indi-
cator is illustrated in Fig. 2 (middle) where the indicator is the ratio of the mass of 
portfolios in the blue area over the mass of portfolios in the red one.

The indicator is estimated on copulae by drawing 500,000 uniformly distributed 
points. We compute the indicator per copula over a rolling window of k = 60 days 
and with a band of ±10% with respect to the diagonal. We experimentally deter-
mined both values. The latter corresponds to roughly 3 months when observations 
are daily. When the indicator exceeds 1 for more than 60 days but less than 100 days, 
we report the time interval as a “warning” (yellow color), while when exceeds 1 for 
more than 100 days, we report the interval as a “crisis” (red); see Figs. 3, and  4. The 

Fig. 3   Representation of the periods over which the indicator is greater than one for 61–100 days (yel-
low) and over 100 days (red) (color figure online)

Fig. 4   Warning (yellow) and Crises (red) periods detected by the indicator for cryptocurrencies (2014-
2020) (color figure online)
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periods are at least 60 days long to avoid detection of isolated events whose persis-
tence is only due to the auto-correlation implied by the rolling window.

We compare DJ  600 results with the database of  financial crises in European 
countries in Lo Duca et  al. (2017). The first crisis (May 1990 to Dec. 1990) cor-
responds to the early 90’s recession, the second one (May 2000 to May 2001) to the 
dot-com bubble burst, the third one (Oct.  2001 to Apr. 2002) to the stock market 
downturn of 2002, the fourth one (Nov. 2005 to Apr. 2006) is not listed in the Euro-
pean database and is either a false positive of our method or may be due to a bias 
in the companies selected in the sample, and the fifth one (Dec. 2007 to Aug. 2008) 
can be associated with the sub-prime crisis.

Our cryptocurrencies indicator detects successfully the 2018 (great) cryptocur-
rency crash; see Fig. 4. The first shock event detected in 2018 (mid-January to late 
March) corresponds to the crash of nearly all cryptocurrencies, following Bitcoin’s, 
whose price fell by about 65% from 6 January to 6 February 2018, after an unprec-
edented boom in 2017. Intermediate warnings (mid-May to early August) should 
correspond to cryptocurrencies collapses (80% from their peak in January) until 
September. The detected crash at the end of 2018 (November 2018 until early Janu-
ary 2019) corresponds to the fall of Bitcoin’s market capitalization (below $100 bil-
lion) and price by over 80% from its peak, almost one-third of its previous week 
value. Finally, the detected event in early 2020 corresponds to the shock event due to 
COVID-19.

3.2.1 � Clustering of copulae agrees with indicator

To cluster the probability distributions distances of the copulae, we computed a dis-
tance matrix (D) between all copulae using the earth mover’s distance (EMD) (Rub-
ner et  al. 2000). The EMD between two distributions is the minimum amount of 
work required to turn one distribution into the other. We use a fast and robust EMD 
algorithm, which appears to improve both accuracy and speed (Pele and Werman 
2009). Then, we apply spectral clustering (Ng et al. 2001), a method to cluster points 
using the eigenvectors of the affinity matrix (A) which we derive from the distance 
matrix, computed by the radial basis function kernel, replacing the Euclidean dis-
tance with EMD, where Aij = exp(−D2

ij
∕2�2) , and for � we chose the standard devi-

ation of distances. Using the k largest eigenvectors of the laplacian matrix, we con-
struct a new matrix and apply k-medoids clustering by treating each row as a point, 
so as to obtain k clusters. The results with k = 6 and k = 8 are shown on the indica-
tors’ values in Figs. 13, 14, and 15. Clusters appear to contain copulae with similar 
indicator values. Crisis and normal periods are assigned to clusters with high and 
low indicator values respectively. Therefore, the clustering of the copulae is propor-
tional to discretising the values of the indicator. We do not use any data-driven tech-
niques to select an optimal cluster size, since we apply clustering only to demon-
strate that the resulting clusters validate the indicator and distinguish different 
market states according to the indicator. Additional results on clustering copulae can 
be found in “Appendix C” (Fig. 5).
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4 � Modeling allocation strategies and a new portfolio score

We provide an original framework for modeling allocation strategies and a new 
cross-sectional portfolio score. We define the score of a given asset allocation as the 
expected value of the proportion of truly invested portfolios in a stock market, that 
the first outperforms when the portfolios have been built according to, what we call, 
a mixed strategy.

Here, we assume that in a stock market the portfolio managers make allocation 
proposals. Then, the investors choose which proposal to select and how much to 
modify it before they build their final portfolio. Thus, we model a portfolio allo-
cation strategy by a log-concave distribution supported on the portfolio domain P, 
with its mode being at a benchmark portfolio. Then, an investor builds a portfolio 
according to that strategy, by generating a point/portfolio from the corresponding 
distribution.

Definition 1  Let � be a log-concave distribution supported on the portfolio domain 
P ⊂ ℝ

n with Probability Density Function (PDF) �(x) . Then, a portfolio allocation 
strategy F ∶ � → P is said to be induced by the distribution � , and we write F� . 
More precisely, F� is induced by the following state:

“To build a portfolio with strategy F� sample a point/portfolio from �”.

The mode of � can be seen as the allocation proposal that a portfolio manager 
has made. Then, we expect the portfolios of the investors, who have chosen that pro-
posal, to be concentrated around that proposal/mode.

Definition 2  Let strategy F� induced by the log-concave distribution � . We call the 
mode of � formal allocation proposal or formal proposal of the portfolio allocation 
strategy F�.

Fig. 5   Spectral clustering of copulae, with k = 6 clusters, on the earth mover’s distances (EMD) of the 
copulae. Results are shown on the values of the indicator for every copula. There are six different plots, 
one for every cluster. Red points indicate the copulae assigned to the specific cluster, while the blue 
points are the copulae assigned to other clusters. Yellow and red time intervals are the identified by the 
indicator warning and crises periods respectively
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In the sequel, we assume that in a stock market the set of truly invested port-
folios, are being built by a combination of different strategies used by the inves-
tors (mixed strategy). First, we consider a sequence of log-concave distributions 
�1,… ,�M restricted to P. Each distribution induces a portfolio allocation strategy, 
i.e. F�1

,… ,F�M
 . Then, the mixed strategy is induced by a convex combination of �i , 

i.e. by a mixture distribution, as the following definition states.

Definition 3  Let �1,… ,�M be a sequence of log-concave distributions supported 
on the set of portfolios P ⊂ ℝ

n , and let the mixture density be �(x) =
∑M

i=1
wi�i(x) , 

where wi ≥ 0,
∑M

i=1
wi = 1 . We call F� the mixed strategy induced by the mixture 

density �.

In Definition 3, each weight wi corresponds to the proportion of the investors that 
build their portfolios according to the allocation strategy F�i

 . Thus, the vector of 
weights w ∈ ℝ

M implies how the investors in a certain stock market and time period, 
tend to behave. Now, we are ready to define the new cross-sectional score of an asset 
allocation versus a mixed strategy.

Definition 4  Let a stock market with n assets and F� a mixed strategy induced by the 
mixture density � . For given asset returns R ∈ ℝ

n over a single period of time, the 
score of a portfolio, providing a value of return R∗ , is

Clearly, the value of the integral in Eq. (8) corresponds to the expected propor-
tion of portfolios that an allocation outperforms—in terms of return—when the 
portfolios are invested according to the mixed strategy F�.

4.1 � Log‑concave distributions in Markowitz’ framework

In this section, we model allocation strategies in Markowitz’s framework using spe-
cial multivariate log-concave distributions supported on the set of portfolios P. A 
proper choice of log-concave distributions allows us to parameterize a strategy by 
the level of risk and the level of dispersion around the formal allocation proposal of 
the strategy.

In general, using Markowitz’ framework, one can define, under certain assump-
tions, the optimal portfolio x̄ as the maximum of a concave function h(x), x ∈ P . 
Then, the mode of the log-concave distribution with PDF �(x) ∝ e�h(x) is x̄ , while 
the parameter 𝛼 > 0 controls the variance of the distribution. Large/small values of � 
corresponds to small/large variance.

Notice that as the variance grows, � converges to the uniform distribution. Moreover, 
as the variance diminishes, the mass of � concentrates around the mode of �(x) . Con-
sequently, we use the variance to parameterize the sequence �i ∝ e�ih(x) . That is, small 
variances correspond to allocation strategies used by investors who stick around the 
formal allocation proposal. Large variances correspond to allocation strategies used by 

(8)s = �P

g(x)�(x)dx, g(x) =

{
1. if RTx ≤ R∗,

0, otherwise.
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investors who may modify the formal proposal a lot. Thus, in the first case, the invested 
portfolios would be highly concentrated around the formal allocation proposal of F� 
(or around the mode of � ) as the mass of � implies. In the second case, the invested 
portfolios would be highly dispersed around the mode of � . In the extreme case of a 
very large variance, � is close to the uniform distribution. Then, the induced alloca-
tion strategy becomes the naive strategy as defined in Banerjee and Hung (2011). We 
employ the L2 norm of a log-concave distribution � with respect to (w.r.t.) the uniform 
distribution to characterize how dispersed, around the formal proposal, the portfolios 
built according to F� are. The L2 norm of a distribution f w.r.t a distribution g, when 
both are supported on a set P ⊂ ℝ

n is,

We can now define what we call a D-dispersed allocation strategy.

Definition 5  Let � ∝ e�h(x) be any log-concave distribution supported on the set of 
portfolios P and let F� be the induced portfolio allocation strategy. We say that F� is 
D-dispersed, where D is the L2 norm of � w.r.t. the uniform distribution.

Our main approach is to leverage the expected quadratic utility function,

where � ∈ ℝ
n is the mean and Σ ∈ ℝ

n×n is the covariance matrix of the assets’ 
returns and n is the number of assets. This parametric function delivers similar 
solutions to the original Markowitz problem in Kroll et  al. (1984) and Levy and 
Markowitz (1979). It is also used by the investors to compute the efficient frontier 
and optimal portfolios. The xTΣx is called risk term, the �Tx is called return term 
and the parameter q controls the trade-off between return and risk. Typically, in 
modern finance, a portfolio manager builds an efficient asset allocation by selecting 
a value q0—which determines the level of risk of his allocation. Then, according to 
Markowitz (1956), she/he solves the following optimization problem:

We call the portfolio x̄ = min
x∈P

𝜙q0
(x) as the optimal mean-variance portfolio for the 

risk implied by q0 . Thus, the efficient frontier can be seen as a parametric curve on 
q.

Let the log-concave distribution,

supported on P. The left plot in Fig. 6 illustrates some examples of the probability 
density function ��,q where the mean � and the covariance matrix � are randomly 
sampled once. Notice that for different q, the mode (or the formal allocation pro-
posal of the strategy F��,q

 ) is shifted.

(9)‖f∕g‖ = �f

�
f (x)

g(x)

�
= ∫P

f (x)

g(x)
f (x)dx = ∫P

�
f (x)

g(x)

�2

g(x)dx.

(10)𝜙q(x) = xTΣx − q𝜇Tx, x ∈ P ⊂ ℝ
n, q ∈ [0,+∞],

min �q0
(x) = xTΣx − q0�

Tx, subject to x ∈ P.

(11)��,q ∝ e−��q(x),
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We use the parameter q to denote the level of risk of a portfolio allocation strat-
egy F��,q

 . Small values of q correspond to low risk strategies, whereas large values 
of q to high risk strategies. Thus, a sequence of such densities can be parameterized 
by both q (risk) and � (dispersion). In particular, a mixed strategy F� can be induced 
by the following mixture density:

where each qi denotes the level of risk. For each qi the parameters �ij imply the level 
of dispersion of the strategy F�ij

 . Notice that for each level of risk qi there are M2 dif-
ferent levels of dispersion that different groups of investors’ portfolios may appear 
around the same formal allocation proposal. The right plot of Fig. 6 illustrates some 
examples of this mixture density.

Since the portfolio score in Definition 4 is equal to the expectation of an indicator 
function with respect to the measure induced by a mixture of log-concave distribu-
tions, it can not be computed exactly (e.g. from a closed-form). In the sequel, we 
discuss how we can estimate the value of the new score by approximating the value 
of the corresponding multivariate integral.

4.2 � Computation of the score

This section provides a Markov Chain Monte Carlo (MCMC) integration method to 
guarantee fast and robust approximation within arbitrarily small error for the score in 
Definition 4. Let the probability density function �(x) =

∑M

i=1
wi�i(x) to be a mixture 

of log-concave densities (i.e. �i are log-concave distributions). Furthermore, let the vec-
tor of assets’ returns R ∈ ℝ

n , the halfspace H(R∗) ∶= {x ∈ ℝ
n | RTx ≤ R∗} and the 

(12)�(x) =

M1∑
i=1

M2∑
j=1

wije
−aij�i(x), where �i = xTΣx − qi�

Tx, x ∈ P,

Fig. 6   Left: illustration of PDFs �q ∝ e−��q(x) , where � = 1 and from left to right 
q1 = 0.3, q2 = 1, q3 = 1.5 . Right: 3 illustrations of the mixture density of Eq.  (12), where 
M1 = 3, M2 = 2 . In both plots, each black small star corresponds to a formal allocation proposal of an 
allocation strategy. From yellow to blue: high to low density regions
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indicator function g(x) =
{

1. if x ∈ H(R∗),

0, otherwise.
 . Then the score in Eq.  (8) can be 

written,

where S ∶= P ∩ H(R∗).
It is clear that the computation of the score s is reduced to integrate M log-con-

cave functions over a convex set S, i.e. to compute each ∫
S
�i(x)dx, i ∈ [M] . For each 

one of these M integrals, we use the algorithm presented in Lovasz and Vempala 
(2006) to approximate it within an arbitrarily small error after a number of opera-
tions that grows polynomially with the dimension (number of assets) n. First, we use 
an alternative representation of the volume of S, employing a log-concave function 
�(x),

where the sequence �j, j ∈ [k] are factors applied on the variance of �(x).
Since S is the intersection of a halfspace with the convex polytope P we use the 

algorithm in Cousins and Vempala (2015) to approximate vol(S) within error � after 
O∗(n3) , where O∗(⋅) suppresses polylogarithmic factors and dependence on � . In the 
special case of P = �n−1 , we can compute the exact value of vol(S) using Varsi’s 
algorithm Varsi (1973) after n2 operations at most. Consequently, the computation 
of ∫

S
�(x)dx is reduced to compute k ratios of integrals. For each ratio we have,

Thus, to estimate rj , we just have to sample N points from the distribution propor-
tional to �(x)�j and restricted to S. Then,

as N grows. The key for an efficient approximation of rj using Monte Carlo inte-
gration is to set �j, �j+1 such that the variance of rj is as small as possible 

(13)

s = ∫P

g(x)

M∑
i=1

wi�i(x)dx =

M∑
i=1

wi ∫P

g(x)�i(x)dx

=

M∑
i=1

wi ∫P∩H(R∗)

�i(x)dx =

M∑
i=1

wi ∫S

�i(x)dx,

(14)

vol(S) = �S

�(x)dx
∫
K
��1(x)dx

∫
S
�(x)dx

∫
S
��2(x)dx

∫
S
�(x)�1dx

⋯

∫
S
1dx

∫
S
�(x)�kdx

⇒ �S

�(x)dx = vol(S)
∫
S
�(x)�kdx

∫
S
1dx

⋯

∫
S
�(x)dx

∫
S
�(x)�1dx

,

(15)

rj =
∫
S
�(x)�j−1dx

∫
S
�(x)�jdx

=
1

∫
S
�(x)�jdx �S

�(x)�j−1

�(x)�j (x)
�(x)�j (x)dx

= �S

�(x)�j−1

�(x)�j

�(x)�j

∫
S
�(x)�jdx

dx.

(16)rj ≈
1

N

N∑
i=1

�(xi)
�j−1

�(xi)
�j
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(ideally a constant) for N as small as possible. Lovasz and Vempala (2006) prove 
that the sequence of �1,… , �k can be fixed such that the variance of each rj, j ∈ [k] 
is bounded by a constant. Moreover, N = O∗(

√
n) points per integral ratio rj and 

k = O∗(
√
n) ratios in total suffices to approximate each ∫

S
�i(x)dx, i ∈ [M] within 

error � . Thus, O∗(n) points suffices to estimate each ∫
S
�i(x)dx.

Lemma 1  Let the PDF �(x) in the Definition 4 be a mixture of M log-concave densi-
ties. The integral ratio in Eq. (16) can be estimated with O∗(n) samples from �(x)�j 
within error � . Thus, the portfolio score in Eq. (8) can be estimated using O∗(Mn) 
samples.

To sample from each target distribution proportional to �(x)�j and restricted to S, 
in Lovasz and Vempala (2006), they use Hit-and-Run random walk (Vempala 2005). 
This implies a total number of O∗(n4) arithmetic operations per generated point. 
Thus the total number of arithmetic operations to estimate the score s is O∗(Mn5) . In 
our implementation, to sample from a log-concave distribution supported on P, we 
use the reflective Hamiltonian Monte Carlo in Afshar and Domke (2015) which is 
more efficient in practice than Hit-and-Run. For an extended introduction to geomet-
ric random walks, we suggest (Vempala 2005).

5 � Mixed strategies

An important question is how one could set the risk and dispersion parameters qi, �ij 
and the weight wij of each allocation strategy F�qi ,�ij

 in a certain stock market. The 
issue is that our knowledge about the stock market and the behavior of the investors 
in it might be weak or vary from a time period to another. In this section, we provide 
practical methods to set the parameters of a sequence of log-concave distributions. 
We also present different versions of the score than those given in Definition 4. For 
more details about the computational methods, we use in this section are given in 
“Appendix A”.

5.1 � Set the levels of dispersion

Let the concave function h(x) ∶ P → ℝ , where P ⊂ ℝ
n the set of portfolios. Also, let 

the log-concave probability density function,

supported also on P and x̃ ∈ P the mode of �� . Recall that small/large values of � 
correspond to large/small values of variance of �� . Thus, first we compute a value �L 
such that F��L

 is a e-dispersed allocation strategy; that is the distribution ��L is 
e-close to the uniform distribution according to the L2 norm. Second, we compute a 
value �U such that the mass of the distribution ��U is almost entirely concentrated in 

(17)𝜋𝛼(x) ∝ e𝛼h(x), 𝛼 > 0,
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a ball B(x̃, 𝛿) , that is a ball centered at the mode x̃ and with a small radius 𝛿 > 0 . 
Then, our aim is to compute a sequence 𝛼L = 𝛼1 < ⋯ < 𝛼k = aU such that,

To compute �L we start with �0 = 1 and we use the annealing schedule in Cousins 
and Vempala (2015). In particular, we generate the sequence,

This schedule guarantees that a sample from ��i is a warm start to sample from ��i+1 
for several random walks (Lovasz and Vempala 2006; Cousins and Vempala 2015) 
and moreover, the variance of the distribution which is proportional to e(�i+1−�i)h(x) is 
O(1); that is, each jump to the next distribution in the sequence is “small”. Next, for 
each �i we estimate the L2 norm of ��i w.r.t. the uniform distribution, by sampling 
from ��i . We stop when the norm is smaller than a given threshold.

To compute �U , we use the same annealing schedule, but now we generate an 
increasing sequence,

We stop when we meet the smallest i such that the 100(1 − �)% of the mass of ��i 
is inside the ball B(x̃, 𝛿) with high probability.We probabilistically guarantee this 
by sampling a sufficiently large number of points from ��i and by splitting the sam-
ple to � sub-samples. For each sub-sample we compute the ratio of points that lie in 
B(x̃, 𝛿) ; that is we obtain � ratios. Then, we perform a t-test using those ratios while 
the null hypothesis states that the overall ratio is larger than (1 − �) . We stop for an 
�i that results in rejecting the null hypothesis.

Finally, to compute a sequence of equidistant distributions as in Eq. (18), we esti-
mate d = maxi∈[k−1]{‖��i+1∕��i‖} . Then, we start from �1 = �L . Given �i , to compute 
the next value of parameter in the sequence, namely �i+1 , we perform bisection method 
in the interval [�i, �U] to compute a value such that the L2 norm of ��i+1 w.r.t. ��i is d ± � 
with a high probability and a small 𝜖 > 0 . We stop when we compute an 𝛼i > 𝛼U and 
we set �k = �i . To select M values of � we pick �1 and �k and then, we equidistantly 
pick M − 2 values in between them.

5.2 � Set the levels of risk

Our practical method computes a sequence q1 < ⋯ < qM . The values qi are equidis-
tant concerning the portfolio volatility that each qi corresponds to. First, we compute 
the minimum and the maximum value of portfolio volatility. The first one is also called 
Global Minimum Variance portfolio (Zhao et al. 2020). In particular, we solve the fol-
lowing optimization problems,

(18)‖��i+1∕��i‖ = ‖��i∕��i−1‖, i ∈ {2,… , k − 1}.

(19)�i = �0

(
1 −

1

n

)i

, i ∈ ℕ+.

(20)�i = �0

(
1 +

1

n

)i

, i ∈ ℕ+.
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where P is the set of portfolios and Σ̃ is an estimation of the covariance using the 
shrinkage estimate in (Ledoit and Wolf 2004). Let the values of the minimum 
and the maximum portfolio volatility vmin and vmax respectively. To compute M 
values of the parameter q, we equidistantly select M values of portfolio volatility 
vmin < v1 < ⋯ < vM < vmax . Then, for each vi we perform a bisection method in a 
proper interval [qmin, qmax] to compute a qi such that,

for a sufficiently small value of 𝜖 > 0 , while �q(x) is the expected quadratic utility 
function in Eq. (10). In particular, for each qi , we search in [qi−1, qM], i ∈ {2,… ,M − 1} ; 
for q1 , we search in [0, qM] . To compute qM , we search for the smallest non-negative 
integer j such that min

x∈P
𝜙2j (x) > vM . Then, we perform a bisection method in [0, 2j] to 

compute qM.

5.3 � Set the composition of the investors

The computation of both sequences of q and � allow to specify the sequence of log-
concave distributions,

where we assume that for each level of risk qi we have M2 levels of dispersion. How-
ever, to determine a mixed strategy one has to determine the weights wij in the cor-
responding mixture distribution. We recall that each wij implies the proportion of 
investors that build their portfolios according to the allocation strategy induced by 
�ij . Setting wij forms the mixed strategy F� while the score in Definition 4 becomes,

First, we allow setting additional bounds on wij . For example, one would provide an 
upper/lower bound on the proportion of the investors who chose a specific allocation 
strategy. In particular, let us assume that we estimate the M = M1M2 integrals of Eq. 
(24) as described in Sect. 4.2. M is the number of allocation strategies in a certain 
stock market. Then, let the M values to form a vector c ∈ ℝ

M . Also let the corre-
sponding weights wij in Eq. (24) to form a vector w ∈ ℝ

M such that the score,

(21)min ∕max xT Σ̃xT , x ∈ P, Σ̃ ∈ ℝ
n×n pos. def.

(22)|min
x∈P

�qi
(x) − vi| ≤ �, i ∈ [M],

(23)�ij = e
−�ij�qi

(x), i ∈ [M1], j ∈ [M2],

(24)s =

M1∑
i=1

M2∑
j−1

wij ∫S

�ij(x)dx, S ∶= P ∩ H(R∗).

(25)s = ⟨c,w⟩,
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where ⟨⋅, ⋅⟩ denotes the inner product between two vectors. Given a matrix A ∈ ℝ
N×M 

and a vector b ∈ ℝ
N , let the following feasible region of weights,

The matrix A and the vector b used to express N further constraints on the weights 
(e.g. lower, upper bounds or any linear constraint on wij ). Notice that if no further 
constraints are given on the weights, then the feasible region Q is the canonical sim-
plex �M−1.

Now, let us define three new versions of the score s in Eq. (24). 

For the scores smin and smax , one has to solve a linear program for each one of 
them. The score s̄ requires the computation of an integral which can be computed 
with MCMC integration employing uniform sampling from Q; otherwise, it can be 
reduced to the computation of the volume of a convex polytope since ⟨c,w⟩ is a lin-
ear function of w with the domain being the set Q.

Let w1 ∈ Q such that the min score smin = ⟨c,w1⟩ . The weights denoted by the 
vector w1 imply the proportions of the investors that select each allocation strategy 
such that the portfolio score s takes its possibly minimum value. Similarly, the vec-
tor of weights w2 ∈ Q such that the max score smax = ⟨c,w2⟩ , implies the propor-
tions of the investors that select each allocation strategy such that the portfolio score 
s takes its possibly maximum value. Moreover, it is easy to notice  that the mean 
score s̄ = ⟨c, w̄⟩ , where the vector of weights w̄ is the center of mass of Q. For exam-
ple, if Q = �M−1 (i.e. the case where no further constraints are given on the weights) 
the vector w̄ is the equally weighted vector.

However, one may have additional knowledge on how the investors tend to 
behave in a certain stock market, i.e. which allocation strategies they tend to select. 
We also allow for these degrees of freedom by providing the notion of behavioral 
functions in our context.

(26)Q =

{
w ∈ ℝ

M
|||| Aw ≤ b, wi ≥ 0,

M∑
i

wi = 1

}
⊂ ℝ

M
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5.3.1 � Behavioral functions

In this section, we assume that we are given a set of functions that represents the 
knowledge, that one may have, related to which allocation strategies the investors 
tend to select in a certain stock market and time period. We assume that we are 
given M1 + 1 functions fq, f�,i, i ∈ [M1] with the domain being [0, 1] for all of them. 
We call these functions behavioral functions and we use them to create a vector of 
weights w ∈ ℝ

M , that emphasizes specific strategies, where M = M1M2 is the total 
number of allocation strategies that take place in the stock market. More specifically, 
fq declares the level of risks that the investors tend to select, while f�,i declares the 
level of dispersion that the investors’ portfolios—who select risk qi—tend to have 
around the formal allocation proposal.

The plots in Fig.  7 demonstrate four possible choices of such functions. For 
example, if plot C is fq then the investors tend to select low-risk investments; the 
value of fq is high for small values of q (low risk) and low for high values of q (high 
risk). In addition, if the plot D is f�,i then, the portfolios of the investors who select 
risk qi tend to be highly stuck around the formal allocation proposal that corresponds 
to qi ; the value of f�,i is large for large values of � (low dispersion) and small for 
small values of � (high dispersion).

To compute a weight vector w, we map the intervals [ai1, �iM2] and [vmin, vmax] 
onto [0, 1] by using the following transformation,

Throughout this paper, when we write z(⋅) we assume that the interval [c,  d] is 
defined properly according to the input.

The following pseudo-code describes how we compute such a weight vector 
when M1 + 1 behavioral functions are given. 

(27)z(t) =
1

d − c
(t − c), t ∈ [c, d].

Fig. 7   Examples of behavioral 
functions
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Given the behavioral functions, one could use the vector of weights—determined 
as in the above pseudo-code— and then, the portfolio score is s = ⟨c,w⟩ , while 
c ∈ ℝ

M is the vector that contains the values of the integrals in Eq. (24).

5.3.2 � Parametric score

In this section, we assume weaker knowledge of how the investors tend to behave 
than that in Sect. 5.3.1. Thus, we do not explicitly determine the vector of weights 
w ∈ ℝ

M—M is the number of allocation strategies in a certain stock market. In par-
ticular, let the coordinates of the vector r ∈ ℝ

M as in Sect. 5.3.1,

where fq, f�,i the M1 + 1 behavioral functions. Then, we use the vector r to denote a 
bias in the investors’ behavior. First, we again allow further bounds and linear con-
straints on the weights. That is we let the feasible region of the weights to be the set 
Q of Eq. (26). To denote the bias in the investors’ behavior, we employ the exponen-
tial distribution

with the support of pT (w) being the set Q ⊂ ℝ
M.

The distribution pT (w) ∝ e⟨r,w⟩∕T is usually called Boltzmann distribution and the 
vector r bias vector. In general, the Boltzmann distribution gives the probability that 
a system will be in a certain state as a function of that state’s energy and the temper-
ature T of the system. The bias vector r determines how the mass tends to distribute 
in Q and the temperature parameter T how strong the bias denoted by r is.

For example, when Q is the canonical simplex �M−1 , the mass of pT tends to con-
centrate around the vertices which correspond to the coordinates of r with larger 
values than the other coordinates. Moreover, as the temperature T → 0 this tendency 
becomes stronger until almost all the mass concentrates around the vertex which 
corresponds to the coordinate of the largest value of r. As T → ∞ , pT converges to 
the uniform distribution and the bias denoted by r disappears.

(28)r(i−1)M1+j
← fq(z(vi))f�,i(z(�ij)), i ∈ [M1], j ∈ [M2]

(29)pT (w) ∝ e⟨r,w⟩∕T , T > 0,
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We intend to use the temperature T to parameterize how strong the tendency on 
the investors’ behavior, that the bias vector r implies, is. Then the parametric score 
is given as,

Let the center of mass w̄T in Q when the mass is distributed according to pT (w) . 
Notice that w̄T can be seen as a parametric curve on T. Furthermore, it is easy to 
notice that, for fixed T, the parametric score s(T) = ⟨c, w̄T⟩ . Thus, the score s(T) is 
evaluated on that parametric curve. Following these observations, we are ready to 
state the following Lemma.

Lemma 2  Let a stock market with M allocation strategies. Assume that we are 
given the parameters qi, �ij of Sect.  5.1 and  5.2 and any behavioral functions 
fq, f�i , i ∈ [M1], j ∈ [M2] and M = M1M2 the number of allocation strategies that 
take place in the stock market. Let the feasible set Q ⊂ ℝ

M of the weights as in 
Eq. (26), the min score smin , the max score smax and the mean score s̄ in Sect. 5.3 and 
the parametric score in Eq. (30). Then, the followings hold,

Notice that the Eq.  (31) holds for any set of behavioral functions as the scores 
smin, smax always bound the parametric score. Furthermore, when T → ∞ the dis-
tribution pT (w) converges to the uniform distribution over the feasible region of the 
weights Q and thus the parametric score is equal to the mean score s̄.

To obtain the parametric score, we compute a sequence of temperatures Ti that 
correspond to a sequence of exponential distributions pTi . Similar to Sect. 5.1, we 
compute two temperatures Tmax and Tmin . The L2 norm of pTmax

 w.r.t. the uniform dis-
tribution over Q is smaller than a given threshold and the 100(1 − �)% of the mass of 
pTmin

 is inside a ball of a small radius 𝛿 > 0 , centered at the mode of pTmin
 . Then, we 

use the sequence, Ti = Tmax(1 −
1

M
)i , i ∈ ℕ+ , Ti ≥ Tmin and the method in Sect. 5.1 

to compute an equidistant—with respect to L2 norm—sequence of exponential 
distributions.

6 � Simulations on allocation strategies

In this section, we take the set of portfolios P ⊂ ℝ
n to be the canonical simplex, �n−1 , 

which means that we consider long-only portfolios. We illustrate the usefulness of 
the new score in analyzing the performance of a portfolio allocation given the asset 
returns. We also compare it to several well-known portfolio scores. Moreover, we 

(30)

s(T) ∶= ∫S

⟨c,w⟩ pT (w)dw, where pT (w) ∝ e⟨r,w⟩∕T , T > 0

and each coordinate r(i−1)M1+j
= fq(z(vi))f𝛼,i(z(𝛼ij)),

and vi = min
x∈P

𝜙qi
(x), i ∈ [M1], j ∈ [M2]

(31)
smin ≤ s(T) ≤ smax, ∀T > 0,

s̄ = lim
T→∞

s(T)
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consider the score of a given portfolio as a random variable in a stock market, where 
the asset returns follow a multivariate distribution. We also illustrate how our mod-
eling of allocation strategies could be used to study the state of a stock market, com-
puting the copula between portfolios’ return and volatility while the portfolios have 
been build according to a mixed strategy.

6.1 � Portfolio score

In our simulation, we consider the daily returns of the 12 cryptocurrencies with 
the longest history, reported in Table  6. To illustrate our new score, we consider 
a pseudo-real time example, where we take 100 consecutive asset returns from 
22/10/2016 until 29/01/2017. We compute the optimal mean-variance (MV) portfo-
lio using the shrinkage estimate of the covariance matrix of Ledoit and Wolf (2004), 
while we fix its volatility equal to the average in-sample volatility of the long-only 
portfolios. We also compute the equally weighted risk contributions (ERC) portfolio 
by Maillard et  al. (2010) which also uses the shrinkage estimator and the Bitcoin 
(BTC) portfolio. For the sake of completeness, we report the estimated covariance 
matrix and the average assets’ return for the period of 100 days, that we used to 
compute the MV portfolio, in “Appendix B”. We also report the three portfolios in 
Table 1.

To evaluate those portfolios, we take the average of the ten vectors of assets’ 
returns after the 100 daily asset returns. We report this vector of assets’ returns 
in “Appendix B”. Together with our score, we report Jensen’s alpha, Sharpe ratio, 
Sortino ratio, and the cross-sectional score in Guegan et  al. (2011). The latter is 
equal to the proportion of all possible allocations that our portfolio outperforms. 
To compute the Jensen’s alpha and the Sortino ratio, we consider the return of the 
Global Minimum Variance portfolio as the risk-free rate and for the market portfo-
lio, we set the equally weighted portfolio. To compute the Sharpe ratio, we also set 
the equally weighted portfolio as the benchmark portfolio.

Regarding our new score, we study two scenarios that differ based on the strate-
gies that take place in the stock market. First, we take three levels of risk with four 
levels of dispersion for each risk, that is M = 12 strategies in total. Second, we take 

Table 1   The mean-variance (MV) optimal portfolio, the equally-weighted risk contributions (ERC) port-
folio and the Bitcoin portfolio (BTC)

Portfolios BTC (%) LTC (%) ETH (%) XRP (%) XMR (%) USDT (%)

MV 0 58.5 0 0 0 0
ERC 8.94 5.81 6.81 16.18 7.02 7.70
BTC 100 0 0 0 0 0

 Portfolios DASH (%) XLM (%) DOGE (%) DGB (%) XEM (%) SC (%)

MV 0 9.98 0 1.15 30.39 0
ERC 6.38 5.80 8.82 3.88 5.89 16.77
BTC 0 0 0 0 0 0



356	 Digital Finance (2021) 3:333–371

1 3

six levels of risk with ten level of dispersion for each risk. In addition, we select ten 
levels of dispersion around the Bitcoin portfolio. More precisely, consider the family 
of distributions,

where x̄ ∈ ℝ
n is the Bitcoin portfolio. Then, we compute the sequence of dispersion 

as in Sect. 5.1. That is M = 70 strategies in total. In both cases, we do not impose 
any additional constraint for the proportion of the investors that select a specific 
strategy. This means that the set of weights Q ⊂ ℝ

M , which determines the composi-
tion of the investors in the stock market, is the canonical simplex �M−1 . Consider-
ing the behavioral functions, for the risk we consider three cases: (i) plot B with 
x0 = 1∕2 , (ii) plot C and (iii) plot D in Fig. 7. The function in case (i) favors strate-
gies with medium level of risk, the function in case (ii) favors strategies with low 
level of risk, and (iii) favors strategies with high level of risk. Throughout this sec-
tion for the dispersion of each risk, we consider only the case of plot D, which favors 
strategies of low dispersion around the formal allocation proposal. For all the behav-
ioral functions, we set the ratio between its maximum over its minimum value equal 
to 10.

In Table 2, we report the values of the existing portfolio scores. All scores agree 
that the performance of the MV portfolio is better than both ERC’s and BTC’s. They 
all also agree that ERC’s performance is better than BTC’s. Moreover, MV is the 
only portfolio that outperforms the equally weighted portfolio. The cross-sectional 
score in Guegan et  al. (2011) informs us that MV outperforms the 70.2% of all 

(32)𝜋(x) ∝ e−𝛼(x−x̄)
TΣ(x−x̄), x ∈ ℝ

n,

Table 2   Four well-known scores 
of the mean-variance (MV) 
optimal portfolio, the equally 
weighted risk contributions 
(ERC) portfolio and the Bitcoin 
portfolio (BTC)

From left to right: Jensen’s alpha, Sharpe ratio, Sortino ratio, the 
cross sectional score in Guegan et al. (2011)

Portfolios Jen. alpha Sharpe r. Sortino r. UnBiasedSc (%)

MV −0.0026 0.070 1.38 70.2
ERC −0.0014 −0.16 0.86 34.8
BTC −0.014 −0.41 0.015 1.8

Table 3   The scores of the mean-variance (MV) optimal portfolio, the equally weighted risk contribu-
tions (ERC) portfolio, and the Bitcoin portfolio (BTC) when 12 and 70 strategies take place in the stock 
market

s̄ stands for the mean score; s (HR) stands for the score when the behavioral function of the risk is given 
by plot D in Fig. 7 (favors high risk strategies); s (MR) stands for the score when the behavioral function 
of the risk is given by plot B in Fig. 7 (favors medium risk strategies); s (LR) stands for the score when 
the behavioral function of the risk is given by plot C in Fig. 7 (favors low risk strategies)

12 Allocation Strategies 70 Allocation Strategies

Portfolios s̄ (%) s (HR) (%) s (MR) (%) s (LR) (%) s̄ (%) s (HR) (%) s (MR) (%) s (LR) (%)

MV 67.6 57.4 72.9 82.1 71.2 53.7 71.6 81.0
ERC 22.1 13.7 19.8 29.9 33.7 22.7 32.2 41.8
BTC 0.20 0.07 0.06 0.08 0.42 0.14 0.21 0.25
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possible portfolios, ERC the 34.8% and BTC outperforms only the 1.8% of all pos-
sible portfolios. In Table 3, we report the new score when M = 12 or M = 70 alloca-
tion strategies take place in the stock market. We report the mean score s̄ , which is 
the score when the investors are equally divided among the allocation strategies and 
the scores for the three different choices of the risk’s behavioral function, using the 
weight vector w of Sect. 5.3.1.

For all portfolios, the score increases while the investors tend to select allocation 
strategies with s lower level of risk. The performance of the MV portfolio is very 
similar in both cases of M = 12 and M = 70 . ERC portfolio performs better when 
M = 70 as each score is about 10% larger than the case of M = 12 . BTC also per-
forms better when M = 70 . However, the score is quite small in both cases. Compar-
ing to the unbiased case of the score in Guegan et al. (2011), it is clear that the value 
of our score is affected by the investors’ composition and can be higher or smaller 
than the score in Guegan et al. (2011).

Table 4   The scores of the mean-variance (MV) optimal portfolio, the equally-weighted risk contribu-
tions (ERC) portfolio, and the Bitcoin portfolio (BTC) for various weight vectors wi when 12 strategies 
take place in the stock market

Each subset of rows corresponds to a set of allocation strategies with a certain risk level and each row to 
an allocation strategy with a certain dispersion level. Each weight in the vector wi gives the percentage 
of the investors who select the corresponding allocation strategy. Each column block correspond to a dif-
ferent risk’s behavioral function and a bias vector r according to Eq. 28, each plot refers to Fig. 7; each 
weight vector in a column block corresponds to the center of mass of the distribution pT (w) ∝ e⟨r,w⟩∕T 
supported on Q for different values of temperature T. For each weight vector, we report the score of the 
portfolios

Risk’s behavioral function

Strategy risk 
(proposal vol.)

High risk (Plot D) Medium risk (Plot B) Low risk (Plot C)

w1 w2 w3 w1 w2 w3 w1 w2 w3

1.1% �
max

8.41% 6.14% 1.56% 10.17% 11.47% 3.07% 12.27% 45.94% 85.47%
… 7.66% 4.66% 1.14% 7.93% 4.36% 1.11% 8.60% 6.08% 1.64%
… 7.45% 4.09% 1.05% 7.33% 3.48% 0.84% 7.80% 4.35% 1.16%
�
min

7.46% 4.11% 1.02% 7.14% 3.31% 0.81% 7.60% 3.94% 1.08%
1.9% �

max
9.78% 10.33% 2.65% 12.29% 42.03% 85.31% 9.86% 9.47% 2.68%

… 8.48% 5.57% 1.43% 8.85% 6.20% 1.46% 8.54% 5.31% 1.42%
… 7.87% 4.42% 1.15% 7.62% 3.93% 0.95% 7.66% 4.11% 1.13%
�
min

7.54% 4.18% 1.03% 7.09% 3.41% 0.85% 7.40% 3.73% 0.99%
2.7% �

max
12.34% 43.33% 85.63% 10.26% 11.70% 3.11% 8.47% 5.75% 1.51%

… 7.70% 4.45% 1.14% 7.18% 3.46% 0.85% 7.28% 3.84% 0.98%
… 7.69% 4.40% 1.12% 7.07% 3.34% 0.84% 7.29% 3.77% 0.98%
�
min

7.64% 4.33% 1.09% 7.08% 3.30% 0.80% 7.23% 3.72% 0.96%
MV score 65.4% 43.9% 11.1% 68.8% 78.0% 94.4% 70.5% 86.2% 96.6%
ERC score 20.9% 12.8% 3.2% 21.5% 15.1% 3.8% 23.8% 40.6% 61.7%
BTC score 0.18% 0.13% 0.02% 0.19% 0.01% 0.02% 0.18% 0.11% 0.02%
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In Table 4, we further illustrate how the performance of each portfolio is related 
to the investors’ composition in the stock market. We consider the case of M = 12 
and for each risk’s behavioral function, we compute the bias vector r of Sect. 5.3.2. 
For each bias vector, we report three different weight vectors and the correspond-
ing scores. Recall that a weight vector represents the investor’s composition in a 
stock market. In particular, we set three different temperatures T in the distribution 
pT (w) ∝ e⟨r,w⟩∕T . Then, for each temperature, we estimate the center of mass of pT . 
In each column block and from left to right, we decrease the temperature, and thus, 
we strengthen the tendency implied by the bias vector r. For all portfolios, as the 
percentage of investors who select strategies with a high level of risk increases, their 
score drastically decreases. When the percentage of the investors who select strate-
gies with a medium level of risk increases, the performance of the MV portfolio 
improves while both ERC’s and BTC’s decrease. When the percentage of investors 
who select strategies with a low level of risk increases both the MV’s and ERC’s 
scores increase while BTC’s score decreases. Moreover, BTC’s score is always 
smaller than 0.2% which implies a quite poor performance.

Fig. 8   The parametric scores of the mean-variance (MV) optimal portfolio, the equally weighted risk 
contributions (ERC) portfolio, and the Bitcoin portfolio (BTC) for different risk’s behavioral functions 
(high, medium, low risk) and M = 12 strategies in the stock market. We report the score for the i-th 
temperature in the sequence we compute according to Sect. 5.3.2. With different colors, we mark differ-
ent portfolios. Plot B, C, D refer to Fig. 7



359

1 3

Digital Finance (2021) 3:333–371	

The plots in Figs.  8 and  9 illustrate a comparison between the three portfolios 
using their parametric scores. For both sets of allocation strategies, the score of MV 
is always higher than the scores of ERC and BTC. When the percentage of investors 
who select strategies with a high level of risk increases the three parametric scores 
converge as they all go to zero. When the investors tend to select strategies with a 
medium or a low level of risk we have a major change in the performance of ERC 
when M = 70 . For example, for medium risk and M = 12 the parametric score of 
ERC converges to 0, while for M = 70 it converges to 1. This is an example of how 
the (parametric) score can change as the number of allocation strategies in the stock 
market also changes.

6.2 � The score as a random variable

Once a portfolio is chosen and assuming a distribution for the asset returns, one 
can estimate the distribution of the scores of this portfolio. This distribution 
allows us to understand the risk for this portfolio to perform worse, or better, than 
a mixed strategy. This estimation is obtained as follows. First, we draw randomly 

Fig. 9   The parametric scores of the mean-variance (MV) optimal portfolio, the equally weighted risk 
contributions (ERC) portfolio, and the Bitcoin portfolio (BTC) for different risk’s behavioral functions 
(high, medium, low risk) and M = 70 strategies in the stock market. We report the score for the i-th 
temperature in the sequence we compute according to Sect. 5.3.2. With different colors, we mark differ-
ent portfolios. Plot B, C, D refer to Fig. 7



360	 Digital Finance (2021) 3:333–371

1 3

104 vectors of asset returns. Then we compute the corresponding scores using our 
implementation. Finally, we estimate the distributions of the score by a normal 
kernel function bounded in [0, 1]. Moreover, considering the parametric score we 
compute a sequence of distributions of scores. That is one distribution for each 
temperature in Eq. (30).

We show how the mixed strategy in the stock market affects the distribution 
of the score of a given portfolio. We work under the assumption that the asset 
returns follow a multivariate Gaussian distribution N(�,Σ) . We use the same 
covariance matrix and mean vector as in Sect. 6.1.

In our example, we focus on the MV portfolio in Table 1 considering the case 
of the M = 70 allocation strategies of Sect. 6.1. For each risk’s behavioral func-
tion, we use the same temperatures as in Fig. 9, where we compute the parametric 
scores. Thus, the plots in Fig.  10 illustrate how the distribution of score of the 
MV portfolio changes as the tendency of the investors’ behavior—induced by the 
behavioral functions—increases.

Fig. 10   The distributions of scores of the Mean-variance (MV) optimal portfolio for different risk’s 
behavioral functions (high, medium, low risk) and a sequence of temperatures Ti such that the distribu-
tions in the sequence pTiw ∝ e⟨r,w⟩∕Ti are equidistant w.r.t. L2 norm. Plot B, C, D refer to Fig. 7
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When the investors are equally divided among allocation strategies, the distribu-
tion of score is bimodal with the modes being around 0.2 and 0.8. The latter implies 
that—for this investors’ composition—the score of MV has a high probability to 
be around 0.8 or 0.2. As the percentage of investors who select strategies with a 
medium level of risk increases the modes are shifting to the extreme values, e.g. 
around 0 and 1. Moreover, the total mass over the modes increases. Also, the mass 
over the mode of the largest value gets larger than the mass over the mode of the 
smallest value. Thus, the probability of MV to achieve a good score increases as 
the temperature T decreases. On the other side, the MV has a high probability to be 
either among the best or worst performers, which implies that it is also quite risky 
w.r.t. to that score. The same occurs as the percentage of investors who select strate-
gies with a low level of risk increases.

However, as the percentage of investors who select strategies with a high level 
of risk increases, the modes are shifting towards the opposite directions than in the 
previous cases. Moreover, for the median temperature, the distribution of the score 
becomes unimodal and it is centered at 0.5. As the temperature further increases the 
modes are shifting towards the extreme scores, e.g. 0 and 1. In this case, the mass 
over the mode of the largest value gets smaller than the mass over the mode of the 
smallest value. Thus, as the percentage of investors who select high-risk strategies 
increases the probability of MV achieving a bad score increases. However, when the 
investors’ composition is implied by the median temperature, MV has a very small 
probability to be among the best or worst performers, as the mass is concentrated 
around the score of 0.5. The latter make the MV portfolio a safe (stable) choice w.r.t. 
that score.

6.3 � Alternative copulae

Notice that the analysis in Sect.  3 is agnostic on allocation strategies by working 
directly with the set of portfolios. Thus, it uses uniform sampling from the set of 
portfolios to estimate the copula between portfolios’ return and volatility. In this sec-
tion, we compute copulae when the portfolios have been build according to a mixed 
strategy. To be more precise, we consider the case of M = 70 allocation strategies 
as in Sect. 6.1, which are computed using the covariance matrix and the mean asset 
returns estimated on the period of 100 days of Sect. 6.1. Then, we consider the next 
60 days after the set of 100 days, and—in that time period—we compute one copula 
per mixed allocation strategy. To compute each copula we use sampling from the 
corresponding mixture distributions—for more details see “Appendix A”.

The upper left plot in Fig. 11 illustrates the copula computed with uniform sam-
pling from the set of long-only portfolios as in Sect. 3. The indicator of this cop-
ula is equal to 0.32, which implies a normal relation between portfolios’ return and 
volatility. We also obtain similar copulae when the portfolios are built according to 
three different mixed strategies which differ based on the risk’s behavioral function 
(high-medium-low level of risk), as in the two previous sections and the weight vec-
tors w have been computed as in Sect. 5.3.1. The indicators for high, medium, and 
low risk are 0.002, 0.004, 0.01, respectively.
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On the other hand, in Fig. 12, we compute the bias vector for the risk’s behavioral 
function given by plot B in Fig. 7, which favors allocation strategies with medium risk. 
The temperature T1 corresponds to the mixed strategy with equally divided investors 
over the M = 70 allocation strategies. We notice that as the temperature decreases, i.e. 
the percentage of the investors who select allocation strategies with a medium level 
of risk increases, a large percentage of the mass of the copula is shifting towards the 
corners on the down diagonal. More precisely, the indicators for T1 > ⋯ > T4 are 
0.03, 0.03, 0.04, 2.19, respectively. The latter implies that the percentage of portfolios 
with either low return and high volatility or high return and low volatility increases as 
the tendency of the investors to select medium-risk allocation strategies increases in the 
stock market.

Fig. 11   The copulae of portfolios’ return and volatility. The copula in the upper left plot (unbiased case) 
is computed according to Sect. 3. We compute each one of the three copulae when the portfolios have 
been built according to three different mixed allocation strategies, while M = 70 strategies take place in 
the stock market. The mixed strategies differ based on the risk’s behavioral function (high, medium, and 
low risk). Plot B, C, D refer to Fig. 7
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7 � Conclusions and future work

We briefly survey existing work on crises detection and we strengthen its results 
employing clustering algorithms for bivariate distributions. We also use it to 
detect all the past crash events in the cryptocurrency markets. This problem moti-
vates us to develop a new computational framework to model asset allocation 
strategies in a stock market and to define a new portfolio score based on that 
framework. Our simulations show that the informativeness of our new score can 
be higher than that of existing portfolio performance scores. To provide efficient 
computations we develop high dimensional MCMC samplers for log-concave dis-
tributions supported on a convex polytope. Our sampler scales up to a few hun-
dred dimensions/assets. We simulate mixed strategies to estimate the distribution 

Fig. 12   The copulae of portfolios’ return and volatility. We compute each copula for a certain mixed 
allocation strategy, while M = 70 strategies take place in the stock market. We compute the bias vector 
using the risk’s behavioral function given by Plot B in Fig. 7, which favors allocation strategies with a 
medium level of risk. We compute a copula per temperature, where T1 > ⋯ > T4 correspond to equidis-
tant exponential distributions pTi w.r.t. L2 norm and the temperature T1 correspond to a mixed strategy 
with equally divided investors over the allocation strategies
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of the portfolio’s score—assuming a distribution for the asset returns—and to 
compute alternative copulae of portfolios’ return and volatility.

A possible future work is to use nonlinear shrinkage, e.g. that in Ledoit and Wolf 
(2020). An additional direction would be to further study the state of a stock mar-
ket using the alternative copula computations in Sect. 6.3. Furthermore, we believe 
that it would be of special interest to use the distribution of the new score to define 
new performance measures and thus, compute the optimal portfolios with respect 
to those measures. In particular, the problem reduces to compute a portfolio with a 
“good” distribution of score. Considering the copula computation in Sect. 3, when 
the set of portfolios is the fully-invested portfolios we can not use the exact sam-
pler in Rubinstein and Melamed (1998), because the portfolio domain P ⊂∈ ℝ

n is 
a generic convex polytope. Thus, MCMC sampling methods is the sole option. The 
latter is computationally more expensive than the method in Rubinstein and Mela-
med (1998). An interesting piece of future work is to develop specialized MCMC 
uniform samplers for the set of fully-invested portfolios. Last but not least, one could 
use the clustering methods, we introduce in Sect. 3 to detect intermediate states of a 
market.
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Appendix: Computational methods

L
2
 norm estimation

To estimate the L2 norm of ��i+1 ∝ e�i+1h(x) w.r.t. the distribution ��i ∝ e�ih(x) , with 
�1 ≠ �2 and h(x) being a convex function over the set of portfolios P, we have,

While,

(33)

‖��i+1∕��i‖ = �P

e�i+1h(x)

∫
P
e�i+1h(x)dx

∫
P
e�ih(x)dx

e�ih(x)
e�i+1h(x)

∫
P
e�i+1h(x)dx

dx

=
∫
P
e�ih(x)dx

∫
P
e�i+1h(x)dx �P

e(�i+1−�i)h(x)
e�i+1h(x)

∫
P
e�i+1h(x)dx

dx

(34)

∫
P
e�ih(x)dx

∫
P
e�i+1h(x)dx

= �P

e�ih(x)

e�i+1h(x)
e�i+1h(x)

∫
P
e�i+1h(x)dx

dx

= �P

e(�i−�i+1)h(x)
e�i+1h(x)

∫
P
e�i+1h(x)dx

dx
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Thus, to estimate ‖��i+1∕��i‖ we sample x1,… , xk points from the distribution which 
is proportional to e�i+1h(x) and then, for sufficiently large k,

Integral estimation

We implement the method implied by Eq. (14). When, �i(x) ∝ e�hi(x) , where hi(x) a 
concave function supported on P ⊂ ℝ

n , we re-write the Eq. (13) as follows,

Thus, we estimate both integrals using the same method and we exactly compute 
vol(S)

vol(P)
 with Varsi’s algorithm (Varsi 1973).

Sampling from the set of portfolios

Let a low-dimensional convex polytope,

To compute a full dimensional polytope, we compute the matrix N ∈ ℝ
n×d of the 

right null space of Aeq . Then, we obtain the full dimensional polytope,

while B = AN and z = b − Ax∗ and x∗ is a solution of the linear system Aeqx = beq . 
Moreover, the matrix N defines an isometric linear transformation,

Thus, to sample from a log-concave distribution � restricted to LP we transform � 
according to N to obtain �′ . Next, we sample from �′ restricted to FP and map the 
generated points back to LP using the inverse linear transformation.

To sample from a log-concave distribution truncated to a polytope we use the 
reflective Hamiltonian Monte Carlo given by Afshar and Domke (2015). To sample 
from a mixture of log-concave distribution

we implement the following method, 

(35)‖��i+1∕��i‖ ≈

∑k

i=1
e(�i−�i+1)h(xi)

k

∑k

i=1
e(�i+1−�i)h(xi)

k

(36)s =

M∑
i=1

wi

∫
S
e�hi(x)dx

∫
P
e�hi(x)dx

.

(37)
LP = {x ∈ ℝ

n | Ax ≤ b,Aeqx = beq}, A ∈ ℝ
m×n, b ∈ ℝ

m,Aeq ∈ ℝ
l×n, beq ∈ ℝ

l.

(38)FP = {y ∈ ℝ
d | By ≤ z}, B ∈ ℝ

m×d, z ∈ ℝ
m,

(39)f (y) = Ny + x∗.

(40)�(x) =
∑
i

wi�i(x),
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1.	 Generate u ∼ U(0, 1).
2.	 If u ∈ [

∑k

i=1
wi,

∑k+1

i=1
wi] , generate a sample from �k.

3.	 Repeat steps 1. and 2. until you have the desired amount of samples from the 
mixture distribution.

Run‑times

In Table 5, we report the run-times of the exact uniform sampler in Rubinstein and 
Melamed (1998) and the Reflective Hamiltonian Monte Carlo we use to sample from 
a log-concave distribution supported on the set of portfolios. All computations were 
performed on a PC with Intel® Pentium(R) CPU G4400 @ 3.30GHz × 2 
CPU and 16GB RAM.

Crypto data

The estimation of the covariance matrix � we use in Sect. 6 is (Tables 7, 8):

 

Σ = 10
−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.4290 0.9808 0.5099 0.3778 0.6328 0.8382 0.5957 0.7565 0.4754 0.9317 1.0839 0.2413

0.9808 3.4804 0.7195 0.4652 1.1354 0.8545 1.1496 1.3633 0.8549 1.6933 1.3762 0.4291

0.5099 0.7195 4.3024 0.3100 0.9297 0.6226 0.9011 1.3825 0.4979 1.0408 0.7013 0.3027

0.3778 0.4652 0.3100 0.5014 0.3156 0.4654 0.3230 0.4687 0.2862 0.4977 0.4366 0.1317

0.6328 1.1354 0.9297 0.3156 2.5198 0.6002 1.1857 0.9297 0.5557 1.9265 0.9451 0.3790

0.8382 0.8545 0.6226 0.4654 0.6002 2.4615 0.5202 0.7768 0.5866 1.0493 1.1255 0.2875

0.5957 1.1496 0.9011 0.3230 1.1857 0.5202 3.7467 1.0624 0.5390 2.0051 1.1436 0.3894

0.7565 1.3633 1.3825 0.4687 0.9297 0.7768 1.0624 4.5856 0.8172 1.0103 1.0801 0.3444

0.4754 0.8549 0.4979 0.2862 0.5557 0.5866 0.5390 0.8172 2.2931 0.9156 0.5850 0.3067

0.9317 1.6933 1.0408 0.4977 1.9265 1.0493 2.0051 1.0103 0.9156 12.7352 1.2763 0.7029

1.0839 1.3762 0.7013 0.4366 0.9451 1.1255 1.1436 1.0801 0.5850 1.2763 4.4734 0.2613

0.2413 0.4291 0.3027 0.1317 0.3790 0.2875 0.3894 0.3444 0.3067 0.7029 0.2613 0.5760

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 5   The average run-times in seconds over 10 runs for the exact uniform sampler in Rubinstein and 
Melamed (1998) and our MCMC method (ReHMC) to sample log-concave distributions supported on 
the set of portfolios P ⊂ ℝ

n

For the ReHMC we sample from the spherical Gaussian centered at a uniformly distributed point in �n−1 . 
We set an upper bound on the run-time; if the run-time exceeds 1 h we stop the execution

Number of assets/dimension

Method 200 400 600 800 1000

Simpex sampler (Rubinstein and Mela-
med 1998)

2.42 5.19 6.93 9.37 11.69

ReHMC (Afshar and Domke 2015) 8.39 64.12 620.2 – –
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Table 6   Cryptocurrencies used 
to detect shock events in market

Coin Symbol Dates

Bitcoin BTC 28/04/2013 to 21/11/2020
Litecoin LTC 28/04/2013 to 21/11/2020
Ethereum ETH 07/08/2015 to 21/11/2020
XRP XRP 04/08/2013 to 21/11/2020
Monero XMR 21/05/2014 to 21/11/2020
Tether USDT 25/02/2015 to 21/11/2020
Dash DASH 14/02/2014 to 21/11/2020
Stellar XLM 05/08/2014 to 21/11/2020
Dogecoin DOGE 15/12/2013 to 21/11/2020
DigiByte DGB 06/02/2014 to 21/11/2020
NEM XEM 01/04/2015 to 21/11/2020
Siacoin SC 26/08/2015 to 21/11/2020

Table 7   The average assets’ returns from 22/10/2016 until 29/01/2017

BTC LTC ETH XRP XMR USDT

0.44% 1.10% 0.45% −0.07% 0.53 0.11

 DASH XLM DOGE DGB XEM SC

0.48% 0.96% 0.64% 0.96% 1.05% −0.07%

Table 8   The average assets’ returns from 30/01/2017 until 08/02/2017

BTC LTC ETH XRP XMR USDT

0.10% 2.93% −0.02% 1.80% 0.83% 4.39%

 DASH XLM DOGE DGB XEM SC

−2.89% 0.05% 1.70% 10.50% 0.41% −0.03%

Fig. 13   Left, spectral clustering ( k = 6 ) on EMD matrix. Right, k-medoids ( k = 6 ) on copulae features. 
Clusters appear to contain similar indicator values
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Fig. 14   Clustering of copulae using spectral clustering on EMD distances with k = 6

Fig. 15   Clustering of copulae using spectral clustering on EMD distances with k = 8
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Clustering of copulae

Also, we apply clustering on features generated form the copulae, based on the indi-
cator. We generate vector representations for each copula using the rates between all 
the possible combinations of the indicators’ corners: for UL , UR being the upper left 
and right corner of a copula respectively, and for LL , LR the lower left and right cor-
ners, the vector representation is [UL

UR

UL

LL

UL

LR

UR

LL

UR

LR

LL

LR
] . These representations allow us 

to use clustering, such as k-medoids. Results of the clustering also follow the values 
of the indicator as expected (Figs.  13, 16) (Figs. 14, 15 and 16).
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