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Abstract: Spectralis optical coherence tomography (OCT) provided more detailed parameters in
the peripapillary and macular areas among the OCT machines, but it is not easy to understand
the enormous information (114 features) generated from Spectralis OCT in glaucoma assessment.
Machine learning methodology has been well-applied in glaucoma detection in recent years and has
the ability to process a large amount of information at once. Here we aimed to analyze the diagnostic
capability of Spectralis OCT parameters on glaucoma detection using Support Vector Machine (SVM)
classification method in our population. Our results showed that applying all OCT features with
the SVM method had good capability in the detection of glaucomatous eyes (area under curve
(AUC) = 0.82), as well as discriminating normal eyes from early, moderate, or severe glaucomatous
eyes (AUC = 0.78, 0.89, and 0.93, respectively). Apart from using all OCT features, the minimum rim
width (MRW) may be good feature groups to discriminate early glaucomatous from normal eyes
(AUC = 0.78). The combination of peripapillary and macular parameters, including MRW_temporal
inferior (TI), MRW_global (G), ganglion cell layer (GCL)_outer temporal (T2), GCL_inner inferior (I1),
peripapillary nerve fiber layer thickness (ppNFLT)_temporal superior (TS), and GCL_inner temporal
(T1), provided better results (AUC = 0.84). This study showed promise in glaucoma management in
the Taiwanese population. However, further validation study is needed to test the performance of
our proposed model in the real world.

Keywords: optical coherence tomography (OCT); supported vector machine (SVM); glaucoma

1. Introduction

Glaucoma is a progressive optic neuropathy, characterized by loss of retinal ganglion
cells (RGCs) and their axons (the retinal nerve fiber layer [RNFL]), as well as the associ-
ated visual field (VF) defects [1–3]. Early glaucoma detection is crucial and important in
managing this irreversible blinding disease [3,4]. It has been demonstrated that structural
damage to the optic nerve head (ONH) and peripapillary RNFL (ppRNFL) can occur well
before any detectable functional visual loss [5,6]. Spectral domain optical coherence tomog-
raphy (SD OCT), which could measure the ONH and the ppRNFL, has been an important
imaging modality in glaucoma practice [7–9]. One of the SD OCT instruments, the latest
version of Spectralis OCT (Heidelberg Engineering, Inc., Heidelberg, Germany), Glaucoma
Module Premium Edition (GMPE), could accurately determine the neuroretinal rim tissue
by measuring the minimum distance between the Bruch membrane opening (BMO) and
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internal limiting membrane (ILM) [10,11]. A new parameter, the Bruch membrane opening–
minimum rim width (BMO-MRW), has been shown to provide the most geometrically
accurate measurement of the neuroretinal rim [10,11].

An emerging area of the diagnosis of diseases involves the use of automated interpre-
tation of clinical data and digital images, with the help of artificial intelligence (AI) [12,13].
AI application in glaucoma detection and management has been well-discussed [13–15].
AI, coupled with OCT imaging, creates an algorithm that can be effectively used to make a
model of complex data for detection, as well as diagnosis of glaucoma [12,16,17]. Machine
learning methodology has been well-applied in glaucoma detection in recent years [16–20].
In our previous report, we developed automated classifiers to improve the discriminat-
ing power between glaucomatous and normal eyes with input parameters from Stratus
OCT [18]. With the advancement of SD OCT technology, more detailed parameters derived
from peripapillary and retinal areas could be provided. Here, we aim to analyze the diag-
nostic capability of Spectralis OCT on glaucoma detection using support vector machine
(SVM) classification method in our population.

2. Materials and Methods
2.1. Participants

We enrolled healthy subjects, and primary glaucoma patients, meeting the eligibility
criteria to this cross-sectional study. This research adhered to the tenets of the Declaration
of Helsinki. Informed consent was obtained from all participants, and the study was
approved by the Institutional Review Board of the Fu-Jen Catholic University Hospital
(FJUH109021). Subjects with a best corrected visual acuity of less than 20/40, spherical
equivalent outside −5.0 D, and cylinder correction of more than 3.0 D were excluded.
To increase imaging quality and accuracy, patients with marked peripapillary atrophy
were also excluded, in order to avoid instrumentation problems in the algorithms used
to find the layers. All subjects underwent a complete ophthalmic examination, including
slit lamp biomicroscopy, measurement of intraocular pressure (IOP), stereoscopic fundus
examination, and standard full-threshold automated perimetry (30-2 mode, Humphrey
Field Analyzer [HFA], model 750; Carl Zeiss Meditec, Inc., Dublin, CA, USA).

The patients with primary glaucoma, regardless open-angle or angle closure glaucoma,
were recruited from a group of patients that had received at least 6 months of regular
follow-up at the glaucoma service at the Fu-Jen Catholic University Hospital, between
April 2019 and December 2020. Subjects with normal eyes were recruited from volunteers
from the out-patient clinic and staff at the Fu-Jen Catholic University Hospital during the
study period.

Eyes were defined as glaucomatous if there was both glaucomatous optic neuropathy
(GON) and a reproducible glaucomatous visual field defect, in the absence of any other
abnormalities to explain the defect. GON was defined as either inter-eye cup-disc ratio
asymmetry >0.2, rim thinning or notching, peripapillary hemorrhages, or cup-disc ratio ≥0.6.
Healthy eyes were defined as history of eye disease, no family history of glaucoma, IOP
lower than 21 mm Hg, and normal optic disc appearance, based on clinical stereoscopic
examination (no diffuse or focal rim thinning, optic disc hemorrhage, or RNFL defects) by
the same experienced doctor (H.Y.C, glaucoma specialist). A normal result on the Glau-
coma Hemifield Test and corrected pattern SD (HFA, program 30-2), within normal limits,
were required.

In total, 498 glaucomatous eyes (mean deviation: −6.09 ± 7.16 dB) and 254 normal
eyes (mean deviation: −0.80 ± 1.31 dB) were studied.

2.2. Visual Field Testing

Achromatic automated perimetry was performed with an HFA, with the central
full-threshold visual field-testing program 30-2. Visual field reliability criteria included
fixation losses and false-positive and -negative rates of less than 20%. The evaluation of
glaucomatous visual field defects was made based on the following liberal criteria: two or
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more contiguous points with a pattern deviation sensitivity loss of p < 0.01; three or more
contiguous points with sensitivity loss of p < 0.05, in the superior or inferior arcuate areas;
a 10-dB difference across the nasal horizontal midline at two or more adjacent locations;
and an abnormal result on the glaucoma hemifield test [21]. Glaucoma severity was staged
by Hodapp, Parish and Anderson criteria [22]. The visual filed index including mean
deviation (MD) and pattern standard deviation (PSD) were used for analysis.

2.3. Spectralis OCT (Heidelberg Engineering GmbH) Imaging

All participants were examined using the optic nerve head radial and circular (ONH-
RC) and posterior pole horizontal (PPoleH) scan protocols, implemented in the new Glau-
coma Premium Module Edition (GPME) by the Spectralis OCT device.

The ONH-RC scan protocol comprised of 24 equally spaced radial B-scans, each with
768 A-scans, covering a 15◦ region, centered on the optic disc, for measurement of BMO-
MRW, as well as a 3.5 mm diameter circle scan for measurement of peripapillary retinal
nerve fiber layer (ppRNFL) thickness. Twenty-five B-scans were captured and automati-
cally averaged for each B-scan location. The ppRNFL and BMO-MRW measurements are
displayed in seven parts, the temporal (T), temporal inferior (TI), nasal inferior (NI), nasal
(N), nasal superior (NS), temporal superior (TS), and global (G) areas.

The PPoleH scan protocol consists of 61 horizontal B-scans, centered on the fovea,
oriented to the fovea-disc axis, and symmetrically distributed in the upper and lower
hemispheres. It provided full-layer retinal thickness maps and automatic segmented
thickness maps for each retinal layer, which are displayed in two modes, the: 1, 3, 6 mm
early treatment diabetic retinopathy study (ETDRS) grid and 8 × 8 grid.

In the 1, 3, 6 mm ETDRS grid mode, the full-layer retinal average thickness and
average thickness of each retinal layer are provided in nine subfields, defined by ETDRS.
The diameters of the inner, intermediate, and outer rings are 1, 3, and 6 mm, respectively.
The average of all points within the inner ring area is defined as the central thickness (C).
The intermediate ring is divided into four sectors, the inner temporal (T1), inner inferior
(I1), inner nasal (N1), and inner superior (S1) sectors. The outer ring was divided in the
same fashion, named the outer temporal (T2), outer inferior (I2), outer nasal (N2), and outer
superior (S2) sectors. Only the full-layer retinal average thickness and average thickness
of nerve fiber layer, ganglion cell layer, and inner plexiform layer in the 9 subfields were
included in this study.

In the 8 × 8 grid mode, the thickness of the entire retina of the central 24◦ area of
posterior pole is measured, averaged, and displayed in an 8 × 8 grid. We labeled the 64
measurements of the full-layer retinal thickness, with the first number representing the
order from top to bottom and second number representing the order from temporal to
nasal site.

The labels of the location of each parameter group were shown in Figure 1. All scans
were acquired, with reference to the subject’s specific fovea-BMO (FoBMO) axis. Images
had to have a quality index of at least 20 to be included in the study. Images with artifacts
were excluded.

2.4. Performance of the Overall Feature Groups

We divided the parameters into nine feature groups (Table 1): AGR (age, gender,
refraction; 3 features), minimum rim width (MRW: T, TI, NI, N, NS, TS, G; 7 features),
peripapillary nerve fiber layer thickness (ppNFLT: T, TI, NI, N, NS, TS, G; 7 features),
retinal average thickness (RAT: T1, T2, I1, I2, N1, N2, S1, S2, C in 1, 3, 6 mm ETDRS
grid; 9 features), nerve fiber layer (NFL: T1, T2, I1, I2, N1, N2, S1, S2, C in 1, 3, 6 mm
ETDRS grid; 9 features), ganglion cell layer (GCL: T1, T2, I1, I2, N1, N2, S1, S2, C in
1, 3, 6 mm ETDRS grid; 9 features), inner plexiform layer (IPL: T1, T2, I1, I2, N1, N2, S1,
S2, C in 1, 3, 6 mm ETDRS grid; 9 features), retinal average thickness in 8 × 8 grid (RAT
8 × 8; 64 features), and OCT (all OCT features; 114 features). The demographic and OCT
features of the normal and glaucoma groups were compared using two-sided t-test in the
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statistical package of SciPy [23]. We experimented with fitting each of the nine feature
groups, in order to discriminate glaucomatous eyes from the normal eyes and further
recognize the glaucomatous eyes in different stages. All classifiers was trained using
the SVM method [24], as implemented in libsvm [25], with 10-fold cross-validation; the
kernel function is the radial basis function. The performance was evaluated by sensitivity,
specificity, accuracy, and area under curve (AUC). All the data processing and model
training algorithms were developed with Pandas [26] and Scikit-learn [27].

Figure 1. The labels of the location of (a) peripapillary retinal nerve fiber layer (ppRNFL) and Bruch
membrane opening–minimum rim width (BMO-MRW) parameters, (b) retinal average thickness and
thickness of each retinal layer in ETDRS grid, and (c) retinal average thickness in 8 × 8 grid. temporal
(T), temporal inferior (TI), nasal inferior (NI), nasal (N), nasal superior (NS), temporal superior (TS),
global (G), Superior (S), Inferior (I), Central (C).

Table 1. Feature groups.

Groups Amounts of Features Features

AGR 3 Age, gender, refraction
MRW 7 Minimum rim width: T, TI, NI, N, NS, TS, G

ppNFLT 7 Retinal nerve fiber layer thickness: T, TI, NI, N, NS, TS, G
RAT 9 Retina average thickness in 1, 3, 6 mm ETDRS grid: T1, T2, I1, I2, N1, N2, S1, S2, C
NFL 9 Nerve fiber layer in 1, 3, 6 mm ETDRS grid: T1, T2, I1, I2, N1, N2, S1, S2, C
GCL 9 Ganglion cell layer in 1, 3, 6 mm ETDRS grid: T1, T2, I1, I2, N1, N2, S1, S2, C
IPL 9 Inner plexiform layer in 1, 3, 6 mm ETDRS grid: T1, T2, I1, I2, N1, N2, S1, S2, C

RAT 8 × 8 64 Retina average thickness in an 8 × 8 grid
OCT 114 All of the above features except age, gender and refraction

T: temporal; TI: temporal inferior; TS: temporal superior; N: nasal; NI: nasal inferior; NS: nasal superior; G: global;
T1: inner temporal; T2: outer temporal; I1: inner inferior; I2: outer inferior; N1: inner nasal; N2: outer nasal; S1:
inner superior; S2: outer superior; C: central.

2.5. Feature Selection with Mutual Information

The mutual information (MI) between random variables X and Y is defined as follows:

MI(X; Y) = DKL(p(X, Y) ‖ p(X)p(Y)) = ∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where DKL is the Kullback–Leibler divergence, p(X, Y) is the joint probability mass func-
tion of X and Y, and p(X) and p(Y) are the marginal probability mass function of X
and Y, respectively.

The MI(X; Y) measures the dependence of two random variables, in terms of the
similarity of their distributions. By the non-negative property of Kullback–Leibler diver-
gence, MI(X; Y) is also non-negative with the lower bound MI(X; Y) = 0, if and only if
p(x, y) = p(x)p(y); that is, X and Y are independent random variables [28]. A larger than
zero MI means that knowing X give a certain extent of deterministic value of Y. The higher
the MI is, more information is shared between the two random variables.
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We calculated MI using each of the 114 OCT features and 3 clinical features (age,
gender, and refraction), as X and glaucomatous were positive or not as Y. Features were
iteratively selected from the top 20 pool, ranked by MI and trained with SVM to obtain
the average performance of 10-fold cross-validation. Only the best feature was kept in
the final subset for each iteration. The procedure repeated by adding new features and
comparing the performance until the subset contained 10 selected features, which is the
amount generally easier to interpret by human. Only those subsets that had test results
which improved from the previous iteration were kept for further discussion.

3. Results
3.1. Demographic and Clinical Data

The demographic and clinical characteristics of the study groups are presented in
Table 2. The mean age was 52.50 ± 16.19 years in the normal group and 59.20 ±13.03 years
in the glaucoma group. There was significant difference in age between the two groups
(p < 0.001). Visual field parameters, including MD and PSD, showed significant differences
(p < 0.001). No significant difference was observed in the refraction (p = 0.104). Regarding
the OCT parameters, all parameters were significantly different between the two groups,
except NFL_N1.

Table 2. The demographic and clinical characteristics of the study groups.

Normal (n = 254 Eyes) Glaucoma (n = 498 Eyes) p-Value *

Gender
Male, persons (%) 47 (36.4%) 125 (49.2%)

Female, persons (%) 82 (63.6%) 129 (50.8%)
Total 129 254

Age, year (persons) 52.50 ± 16.19 (129) 59.20 ± 13.03 (254) <0.001
Mean Deviation (dB) −0.80 ± 1.31 −6.09 ± 7.16 <0.001

Pattern Standard Deviation (dB) 2.11 ± 1.37 5.53 ± 4.22 <0.001
Refraction (Diopter) −2.00 ± 3.08 −2.47 ± 4.09 0.104

Minimum Rim Width (µm)
T 226.26 ± 53.96 167.25 ± 56.97 <0.001
TI 329.76 ± 72.39 210.02 ± 98.30 <0.001
NI 395.67 ± 345.50 248.98 ± 96.56 <0.001
N 324.39 ± 73.35 233.70 ± 89.18 <0.001

NS 348.46 ± 78.25 251.48 ± 97.92 <0.001
TS 308.93 ± 75.29 204.86 ± 87.65 <0.001
G 305.15 ± 59.72 213.81 ± 69.19 <0.001

Peripapillary Nerve Fiber Layer Thickness (µm)
T 87.09 ± 21.07 69.21 ± 37.36 <0.001
TI 160.41 ± 23.36 110.52 ± 47.52 <0.001
NI 111.57 ± 25.90 87.07 ± 32.58 <0.001
N 72.98 ± 21.65 62.22 ± 23.08 <0.001

NS 120.17 ± 26.12 93.80 ± 33.94 <0.001
TS 146.29 ± 24.47 105.43 ± 41.71 <0.001
G 103.67 ± 11.85 79.96 ± 22.01 <0.001

Retina Average Thickness, ETDRS grid (µm)
T1 324.78 ± 14.04 310.74 ± 20.48 <0.001
T2 277.56 ± 13.41 267.13 ± 18.39 <0.001
I1 334.38 ± 15.44 317.69 ± 26.93 <0.001
I2 281.76 ± 15.94 265.88 ± 22.83 <0.001
N1 339.52 ± 16.34 326.72 ± 22.37 <0.001
N2 313.23 ± 18.58 297.97 ± 24.66 <0.001
S1 338.07 ± 15.20 324.60 ± 21.97 <0.001
S2 296.18 ± 14.58 282.64 ± 20.56 <0.001
C 268.37 ± 23.14 263.10 ± 28.03 0.010

Nerve Fiber Layer, ETDRS grid (µm)
T1 17.43 ± 1.55 18.27 ± 3.93 0.001
T2 20.05 ± 4.11 19.25 ± 4.59 0.020
I1 26.17 ± 3.22 23.46 ± 5.36 <0.001
I2 41.10 ± 6.59 31.15 ± 10.26 <0.001
N1 21.07 ± 2.61 20.76 ± 4.41 0.294
N2 49.09 ± 8.64 41.11 ± 10.89 <0.001
S1 24.37 ± 2.91 22.88 ± 5.45 <0.001
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Table 2. Cont.

Normal (n = 254 Eyes) Glaucoma (n = 498 Eyes) p-Value *

S2 39.40 ± 5.43 32.70 ± 9.43 <0.001
C 11.54 ± 2.38 10.87 ± 4.74 0.037

Ganglion Cell Layer, ETDRS grid (µm)
T1 47.62 ± 5.28 36.76 ± 10.79 <0.001
T2 34.97 ± 4.06 27.56 ± 7.39 <0.001
I1 51.97 ± 4.22 41.85 ± 11.24 <0.001
I2 32.06 ± 3.38 27.30 ± 5.90 <0.001
N1 50.44 ± 5.03 42.16 ± 10.72 <0.001
N2 39.11 ± 3.80 34.35 ± 6.27 <0.001
S1 52.06 ± 5.29 43.71 ± 10.52 <0.001
S2 35.31 ± 3.56 30.39 ± 5.96 <0.001
C 14.39 ± 5.16 12.96 ± 5.39 <0.001

Inner Plexiform Layer, ETDRS grid (µm)
T1 41.13 ± 4.04 35.54 ± 6.55 <0.001
T2 32.19 ± 2.45 28.48 ± 4.35 <0.001
I1 40.78 ± 2.88 35.27 ± 6.74 <0.001
I2 26.43 ± 2.68 24.11 ± 3.98 <0.001
N1 42.02 ± 3.12 38.07 ± 18.14 <0.001
N2 30.57 ± 2.81 27.84 ± 4.34 <0.001
S1 40.86 ± 3.63 36.54 ± 6.32 <0.001
S2 28.74 ± 2.90 26.15 ± 4.04 <0.001
C 19.47 ± 3.97 18.33 ± 4.53 <0.001

Retina Average Thickness, 8 × 8 grid (µm)
1.1 0.23 ± 0.02, 0.22 ± 0.03 0.002
1.2 0.24 ± 0.01 0.23 ± 0.03 <0.001
1.3 0.25 ± 0.02 0.23 ± 0.02 <0.001
1.4 0.26 ± 0.02 0.24 ± 0.02 <0.001
1.5 0.27 ± 0.02 0.25 ± 0.03 <0.001
1.6 0.29 ± 0.02 0.26 ± 0.03 <0.001
1.7 0.30 ± 0.02 0.26 ± 0.04 <0.001
1.8 0.28 ± 0.03 0.25 ± 0.07 <0.001
2.1 0.23 ± 0.01 0.22 ± 0.02 <0.001
2.2 0.24 ± 0.01 0.23 ± 0.02 <0.001
2.3 0.26 ± 0.01 0.25 ± 0.02 <0.001
2.4 0.28 ± 0.02 0.26 ± 0.02 <0.001
2.5 0.29 ± 0.02 0.27 ± 0.02 <0.001
2.6 0.29 ± 0.02 0.27 ± 0.02 <0.001
2.7 0.30 ± 0.02 0.27 ± 0.03 <0.001
2.8 0.32 ± 0.02 0.28 ± 0.05 <0.001
3.1 0.24 ± 0.01 0.23 ± 0.02 <0.001
3.2 0.27 ± 0.01 0.25 ± 0.02 <0.001
3.3 0.30 ± 0.02 0.28 ± 0.03 <0.001
3.4 0.33 ± 0.02 0.31 ± 0.03 <0.001
3.5 0.33 ± 0.02 0.32 ± 0.03 <0.001
3.6 0.32 ± 0.02 0.30 ± 0.02 <0.001
3.7 0.31 ± 0.02 0.29 ± 0.03 <0.001
3.8 0.32 ± 0.03 0.28 ± 0.04 <0.001
4.1 0.25 ± 0.01 0.24 ± 0.03 <0.001
4.2 0.28 ± 0.01 0.27 ± 0.03 <0.001
4.3 0.32 ± 0.02 0.31 ± 0.03 <0.001
4.4 0.31 ± 0.02 0.30 ± 0.03 <0.001
4.5 0.31 ± 0.02 0.30 ± 0.03 <0.001
4.6 0.34 ± 0.02 0.33 ± 0.02 <0.001
4.7 0.33 ± 0.02 0.30 ± 0.02 <0.001
4.8 0.30 ± 0.02 0.28 ± 0.04 <0.001
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Table 2. Cont.

Normal (n = 254 Eyes) Glaucoma (n = 498 Eyes) p-Value *

5.1 0.25 ± 0.01 0.24 ± 0.02 <0.001
5.2 0.28 ± 0.01 0.27 ± 0.02 <0.001
5.3 0.32 ± 0.02 0.30 ± 0.03 <0.001
5.4 0.31 ± 0.02 0.30 ± 0.02 <0.001
5.5 0.31 ± 0.02 0.30 ± 0.03 <0.001
5.6 0.34 ± 0.02 0.33 ± 0.02 <0.001
5.7 0.32 ± 0.02 0.31 ± 0.02 <0.001
5.8 0.30 ± 0.02 0.28 ± 0.04 <0.001
6.1 0.24 ± 0.01 0.24 ± 0.02 <0.001
6.2 0.27 ± 0.01 0.26 ± 0.02 <0.001
6.3 0.30 ± 0.02 0.29 ± 0.02 <0.001
6.4 0.33 ± 0.02 0.32 ± 0.02 <0.001
6.5 0.34 ± 0.02 0.32 ± 0.02 <0.001
6.6 0.33 ± 0.02 0.31 ± 0.02 <0.001
6.7 0.31 ± 0.02 0.30 ± 0.02 <0.001
6.8 0.31 ± 0.03 0.29 ± 0.03 <0.001
7.1 0.23 ± 0.01 0.23 ± 0.02 0.001
7.2 0.25 ± 0.01 0.24 ± 0.02 <0.001
7.3 0.27 ± 0.01 0.26 ± 0.02 <0.001
7.4 0.29 ± 0.02 0.28 ± 0.02 <0.001
7.5 0.30 ± 0.02 0.29 ± 0.02 <0.001
7.6 0.30 ± 0.02 0.28 ± 0.02 <0.001
7.7 0.30 ± 0.02 0.28 ± 0.02 <0.001
7.8 0.31 ± 0.02 0.28 ± 0.03 <0.001
8.1 0.23 ± 0.01 0.22 ± 0.03 <0.001
8.2 0.24 ± 0.01 0.23 ± 0.02 <0.001
8.3 0.25 ± 0.01 0.24 ± 0.02 <0.001
8.4 0.26 ± 0.01 0.25 ± 0.02 <0.001
8.5 0.27 ± 0.02 0.26 ± 0.02 <0.001
8.6 0.28 ± 0.02 0.26 ± 0.02 <0.001
8.7 0.29 ± 0.02 0.27 ± 0.03 <0.001
8.8 0.31 ± 0.02 0.28 ± 0.03 <0.001

T: temporal; TI: temporal inferior; TS: temporal superior; N: nasal; NI: nasal inferior; NS: nasal superior; G: global;
T1: inner temporal; T2: outer temporal; I1: inner inferior; I2: outer inferior; N1: inner nasal; N2: outer nasal;
S1: inner superior; S2: outer superior; C: central. * Two-sided independent t-test.

Table 3 shows the amounts of features in each feature group and SVM classification
results in differentiating normal from all glaucomatous eyes, based on each feature group.
The OCT feature group yielded the best AUC value (AUC = 0.82), followed by MRW
(AUC = 0.81) and ppNFLT (AUC = 0.81). Figure 2 showed the ROC curves of all the feature
groups in differentiating normal from all glaucomatous eyes.

Table 3. Optical coherence tomography (OCT)-related feature groups, as well as the support vector
machine (SVM) classification results.

10-Fold Cross-Validation

Normal 254 eyes
Glaucoma 498 eyes

Feature Group Amounts of Features Sensitivity Specificity Accuracy AUC

OCT 114 0.85 0.70 0.80 0.82
MRW 7 0.81 0.70 0.77 0.81

ppNFLT 7 0.81 0.71 0.77 0.81
RAT 9 0.82 0.46 0.70 0.72
NFL 9 0.80 0.62 0.74 0.79
GCL 9 0.78 0.68 0.75 0.80
IPL 9 0.76 0.68 0.74 0.78

RAT 8 × 8 64 0.84 0.59 0.76 0.80
OCT: all optical coherence tomography parameters; MRW: minimal rim width; ppNFLT: peripapillary nerve fiber
layer thickness; RAT: retinal average thickness in 1, 3, 6 mm ETDRS grid; NFL: nerve fiber layer in 1, 3, 6 mm
ETDRS grid; GCL: ganglion cell layer in 1, 3, 6 mm ETDRS grid; IPL: inner plexiform layer in 1, 3, 6 mm ETDRS
grid; RAT: retinal average thickness in 8 × 8 grid; AUC: area under the receiver operating characteristic curve.
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Figure 2. Receiver operating characteristic (ROC) curve of optical coherence tomography (OCT)-
related features groups in differentiating normal from glaucomatous eyes.

Table 4 reveals the SVM classification results, using AGR feature group solely, and the
above OCT-related feature groups (plus AGR) to differentiate normal from all glaucomatous
eyes. The AUC value of using AGR feature group solely for classification is 0.55. The
OCT + AGR and ppNFLT + AGR feature group had the highest AUC value (AUC = 0.82).
The ROC curves of all the OCT-related feature groups (plus age, gender, and refraction), in
differentiating normal from all glaucomatous eyes, was shown in Figure S1.

Table 4. OCT-related feature groups (plus age, gender, and refraction) and the SVM classification results.

10-Fold Cross-Validation

Normal 254 eyes
Glaucoma 498 eyes

Feature Group Amounts of Features Sensitivity Specificity Accuracy AUC

AGR 3 0.97 0.12 0.69 0.55
OCT + AGR 117 0.85 0.67 0.79 0.82
MRW + AGR 10 0.82 0.67 0.75 0.81

ppNFLT + AGR 10 0.84 0.65 0.78 0.82
RAT + AGR 12 0.87 0.40 0.71 0.71
NFL + AGR 12 0.87 0.56 0.76 0.78
GCL + AGR 12 0.84 0.63 0.77 0.79
IPL + AGR 12 0.82 0.58 0.74 0.76

RAT 8 × 8 + AGR 67 0.85 0.55 0.75 0.58
AGR: age, gender, refraction; OCT: all optical coherence tomography parameters; MRW: minimal rim width;
ppNFLT: peripapillary nerve fiber layer thickness; RAT: retinal average thickness in 1, 3, 6 mm ETDRS grid;
NFL: nerve fiber layer in 1, 3, 6 mm ETDRS grid; GCL: ganglion cell layer in 1, 3, 6 mm ETDRS grid; IPL: inner
plexiform layer in 1, 3, 6 mm ETDRS grid; RAT: retinal average thickness in 8 × 8 grid; AUC: area under the
receiver operating characteristic curve.

Table 5 shows the SVM classification results, between normal and different stages
of glaucomatous eyes, using Spectralis OCT feature groups. The OCT feature group had
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the best performance in discriminating between normal and early, moderate, or severe
glaucomatous eyes, with AUC values of 0.78, 0.89, and 0.93, respectively. The MRW feature
group also had good results in distinguishing normal from early glaucomatous eyes, with
an AUC value of 0.89, and the RAT 8 × 8 feature group also had good performance in
discriminating normal from severe glaucomatous eyes, with an AUC value of 0.93. The
ROC curves of all OCT-related features groups, in differentiating normal from varying
stages of glaucomatous eyes, were shown in Figure 3.

Figure 3. ROC curve of OCT-related features groups in differentiating normal from (a) early,
(b) moderate, and (c) severe glaucomatous eyes.

Table 6 demonstrates that the SVM classification result between normal and different
stage of glaucomatous eyes using Spectralis OCT feature groups plus age, gender, and
refraction. The OCT + AGR feature group had the highest value of AUC in discriminating
between normal and early, moderate, and severe glaucomatous eyes with values of 0.78,
0.89, and 0.93, respectively. The ppRNFL + AGR feature group also had good result in
distinguishing normal from moderate glaucomatous eyes with an AUC value of 0.89, and
NFL + AGR feature group also had good performance in discriminating normal from severe
glaucomatous eyes with an AUC value of 0.93. Figure S2 showed the ROC curves of all
the OCT-related feature groups, plus age, gender, and refraction, in differentiating normal
from varying stages of glaucomatous eyes.
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Table 5. SVM classification results between normal and different stage of glaucomatous eyes, using
each OCT-related feature groups.

10-Fold Cross-Validation

Normal 254 eyes
Early stage 337 eyes

Feature Group Sensitivity Specificity Accuracy AUC

OCT 0.87 0.72 0.75 0.78
MRW 0.71 0.74 0.73 0.78

ppNFLT 0.70 0.76 0.73 0.77
RAT 0.81 0.69 0.76 0.68
NFL 0.70 0.68 0.73 0.73
GCL 0.74 0.79 0.76 0.77
IPL 0.66 0.77 0.70 0.74

RAT 8 × 8 0.72 0.66 0.72 0.76

Normal 254 eyes
Moderate stage 73 eyes

Feature Group Sensitivity Specificity Accuracy AUC

OCT 0.72 0.96 0.91 0.89
MRW 0.60 0.97 0.89 0.86

ppNFLT 0.74 0.97 0.92 0.87
RAT 0.54 0.98 0.88 0.78
NFL 0.70 0.98 0.89 0.86
GCL 0.72 0.98 0.92 0.85
IPL 0.64 0.97 0.90 0.86

RAT 8 × 8 0.64 0.96 0.89 0.86

Normal 254 eyes
Severe stage 88 eyes

Feature Group Sensitivity Specificity Accuracy AUC

OCT 0.96 0.96 0.96 0.93
MRW 0.94 0.94 0.94 0.91

ppNFLT 0.96 0.96 0.96 0.90
RAT 0.93 0.93 0.93 0.90
NFL 0.95 0.95 0.95 0.92
GCL 0.95 0.95 0.95 0.92
IPL 0.94 0.94 0.94 0.90

RAT 8 × 8 0.95 0.95 0.95 0.93
OCT: all optical coherence tomography parameters; MRW: minimal rim width; ppNFLT: peripapillary nerve fiber
layer thickness; RAT: retinal average thickness in 1, 3, 6 mm ETDRS grid; NFL: nerve fiber layer in 1, 3, 6 mm
ETDRS grid; GCL: ganglion cell layer in 1, 3, 6 mm ETDRS grid; IPL: inner plexiform layer in 1, 3, 6 mm ETDRS
grid; RAT: retinal average thickness in 8 × 8 grid; AUC: area under the receiver operating characteristic curve.
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Table 6. SVM classification results between normal and different stage of glaucomatous eyes using
each OCT-related feature groups (plus age, gender, and refraction).

10-Fold Cross-Validation

Normal 254 eyes
Early stage 337 eyes

Feature Group Sensitivity Specificity Accuracy AUC

AGR 0.91 0.18 0.60 0.58
OCT + AGR 0.79 0.71 0.75 0.78
MRW + AGR 0.73 0.70 0.72 0.77

ppNFLT + AGR 0.76 0.72 0.74 0.77
RAT + AGR 0.74 0.47 0.72 0.67
NFL + AGR 0.80 0.64 0.73 0.73
GCL + AGR 0.73 0.76 0.70 0.75
IPL + AGR 0.73 0.76 0.70 0.72
RAT 8 × 8 +

AGR 0.76 0.60 0.69 0.58

Normal 254 eyes
Moderate stage 73 eyes

Feature Group Sensitivity Specificity Accuracy AUC

AGR 0.04 1 0.77 0.66
OCT + AGR 0.72 0.96 0.91 0.89
MRW + AGR 0.60 0.97 0.89 0.86

ppNFLT + AGR 0.78 0.97 0.93 0.89
RAT + AGR 0.45 0.97 0.85 0.79
NFL + AGR 0.67 0.97 0.91 0.84
GCL + AGR 0.72 0.97 0.91 0.85
IPL + AGR 0.63 0.97 0.89 0.84
RAT 8 × 8 +

AGR 0.63 0.95 0.88 0.75

Normal 254 eyes
Severe stage 88 eyes

Feature Group Sensitivity Specificity Accuracy AUC

AGR 0.73 0.73 0.73 0.68
OCT + AGR 0.96 0.96 0.96 0.93
MRW + AGR 0.94 0.94 0.94 0.92

ppNFLT + AGR 0.96 0.96 0.96 0.92
RAT + AGR 0.92 0.92 0.92 0.88
NFL + AGR 0.95 0.95 0.95 0.93
GCL + AGR 0.95 0.95 0.95 0.92
IPL + AGR 0.94 0.94 0.94 0.90
RAT 8 × 8 +

AGR 0.68 0.68 0.73 0.70

AGR: age, gender, refraction; OCT: all optical coherence tomography parameters; MRW: minimal rim width;
ppNFLT: peripapillary nerve fiber layer thickness; RAT: retinal average thickness in 1, 3, 6 mm ETDRS grid;
NFL: nerve fiber layer in 1, 3, 6 mm ETDRS grid; GCL: ganglion cell layer in 1, 3, 6 mm ETDRS grid; IPL: inner
plexiform layer in 1, 3, 6 mm ETDRS grid; RAT: retinal average thickness in 8 × 8 grid; AUC: area under the
receiver operating characteristic curve.

3.2. Selected Features and Generalized Detecting Model

Table 7 shows six subsets of features after the selecting procedure described in the
previous section. We named these subsets of mutual information (MI) 1, MI 2, MI 4, MI 6,
MI 8, and MI 10 for the best result in iterations of one, two, four, six, eight, and ten features,
respectively. The top 10 features are MRW_TI, MRW_G, GCL_T2, GCL_I1, ppNFLT_TS,
GCL_T1, ppNFLT_TI, IPL_T2, MRW_TS, and ppNFLT_G.
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Table 7. Selected feature subsets with mutual information method.

Name Number of Features Feature Subset

MI 1 1 MRW_TI
MI 2 2 MRW_TI, MRW_G
MI 4 4 MRW_TI, MRW_G, GCL_T2, GCL_I1
MI 6 6 MRW_TI, MRW_G, GCL_T2, GCL_I1, ppNFLT_TS, GCL_T1
MI 8 8 MRW_TI, MRW_G, GCL_T2, GCL_I1, ppNFLT_TS, GCL_T1, ppNFLT_TI, IPL_T2

MI 10 10 MRW_TI, MRW_G, GCL_T2, GCL_I1, ppNFLT_TS, GCL_T1, ppNFLT_TI, IPL_T2, MRW_TS, ppNFLT_G

MI: mutual information; MRW: minimal rim width; GCL: ganglion cell layer; ppNFLT: peripapillary nerve fiber
layer thickness; TI: temporal inferior; TS: temporal superior; G: global; T1: inner temporal; T2: outer temporal; I1:
inner inferior.

The SVM classification results using above selected featured subsets were listed in
Table 8. The MI 6, a combination of MRW_TI, MRW_G, GCL_T2, GCL_I1, ppNFLT_TS,
and GCL_T1, outperformed the other subsets and obtained an average 0.84 of AUC for
cross-validation. The MI 8 and MI 10 subsets did not have improved performance over the
MI 6 after adding new features. Figure 4 showed the comparison of ROC curves and the
corresponding AUC values of the 6 selected feature subsets in differentiating normal from
all glaucomatous eyes.

Table 8. SVM classification results using selected feature subsets between normal and glaucomatous eyes.

10-Fold Cross-Validation

Name Sensitivity Specificity Accuracy AUC

MI 1 0.84 0.60 0.76 0.80
MI 2 0.83 0.70 0.78 0.81
MI 4 0.83 0.70 0.79 0.82
MI 6 0.86 0.70 0.80 0.84
MI 8 0.85 0.69 0.80 0.84
MI 10 0.85 0.71 0.80 0.83

MI: mutual information; AUC: area under the receiver operating characteristic curve.

Figure 4. ROC curve of six selected feature subsets in differentiating normal from glaucomatous eyes.
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4. Discussion

Spectralis OCT provided more detailed parameters in peripapillary area and macular
areas among the OCT machines [9]. In the real glaucoma practice, however, it is not
easy to integrate the enormous information (114 features), generated from Spectralis OCT,
in glaucoma management. Machine learning classifiers, on the other hand, are proven
analytical methods, especially good at detecting relationships between large numbers of
input parameters, producing reliable classification results [29]. Therefore, if the machine
learning method is combined with the parameters of Spectralis OCT, it may provide an
effective and efficient assessment for the diagnosis of glaucoma.

SVM is a supervised machine learning classifier, which is one of the most powerful and
robust classifications, widely used to deal with binary classification problems in various
fields [24,30–33]. It has also been used for glaucoma detection in previous studies and
provided promising results [19,34–36]. Compared with other machine learning approaches,
SVM maps the nonlinearly separable data into a high-dimensional space through kernel
functions, in order to transfer the corresponding to a linearly separable state. It maintains
high generalization ability of the learning machine simultaneously. Thus, SVM is relatively
effective when solving problems with the number of feature dimensions greater than the
number of samples [31], as in this study, we used abundant OCT parameters for glaucoma
discrimination. In addition, for small data problems like ours, SVM still performs well in
accuracy and is relatively memory efficient [24,33].

Some important and meaningful information were obtained from our results. First, it
showed good capability using all Spectralis OCT parameters with SVM method in detection
of glaucomatous eye (AUC = 0.82). Simply using the values of MRW or ppNFLT with SVM
method may also have good performance (AUC = 0.81) in discrimination normal from
glaucomatous eyes. Furthermore, SVM method based on all Spectralis OCT parameters
not only showed good capability in detection moderate and severe glaucoma (AUC = 0.89
and 0.93, respectively), but also had acceptable performance in distinguishing early glauco-
matous eyes (AUC = 0.78). The performance was similar when using the MRW parameters
to detect early glaucomatous eyes (AUC = 0.78).

Because there were significant differences in some demographic characteristics be-
tween our normal and glaucoma groups, we added age, gender, and refraction information
into training the SVM model to show that the classification performance is mostly di-
rectly due to the OCT features but not due to the demographic differences between the
two groups. The results showed that for discriminating normal from glaucomatous eyes,
adding age, gender and refraction information did not change the value of AUC drastically,
and using all OCT features was still the best one with the same AUC value (AUC = 0.82).
For distinguishing different stages of glaucomatous eyes from the normal eyes, adding age,
gender and refraction information still did not influence the performance of classification
much in most of the feature groups. Lastly, the technique to use MI as the selecting index
could intuitively select a combination of various best features from each group to comple-
ment each other. The best subgroup (MI 6) contains only six features (MRW_TI, MRW_G,
GCL_T2, GCL_I1, ppNFLT_TS, and GCL_T1), generated from 114 OCT features, as well as
three clinical features (age, gender, and refraction), provided a good predicting model, as
our result showed an AUC of 0.84. Further validation studies, with more cases, are needed
to test the performance of our proposed model in the real world.

To our knowledge, our study was the few ones which evaluated the application
of machine learning technique in complicated Spectralis OCT parameters for glaucoma
detection, including ppRNFL, ONH, and macular parameters. Several published literatures
have explored the use of Spectralis OCT parameters to construct machine learning classifiers
for glaucoma diagnosis [16,37–39]. Kim et al. developed several machine learning models,
including SVM for glaucoma diagnosis, using ppRNFL parameters and clinical features
(age, IOP, and corneal thickness) and visual field information, and they found the random
forest model had the best performance, with an AUC value of 0.979 and AUC value of
the SVM model at 0.967 [37]. Oh et al. also constructed several machine learning models,
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including a SVM using three ppRNFL measurements (ppRNFL superior, ppRNFL inferior,
and ppRNFL temporal), as well as IOP and PSD for glaucoma detection, and the extreme
gradient boosting model was shown to be the best model, with an AUC value of 0.945,
the same AUC value as the SVM’s but with higher accuracy, sensitivity, and specificity.
ppRNFL superior, ppRNFL inferior, and PSD were found to have a stronger influence
in their proposed prediction model [16]. Park et al. used a multilayer neural network to
combine BMO-MRW and ppRNFL parameters for glaucoma diagnosis, which showed
better performance than using either BMO-MRW or ppRNFL data alone [38]. A deep
learning classification model was adopted by Seo et al. for discriminating early normal
tension glaucoma from glaucoma, which suspected and showed the best performance,
considering three OCT-based parameters together (BMO-MRW, ppRNFL, and the color
classification of ppRNFL), with an AUC value of 0.966 [39]. Though it is difficult to directly
compare our results with previous research, due to the differences in the subjects included,
as well as the OCT parameters and machine learning methods used. The above papers and
ours had proved that it is feasible to construct reliable machine learning classifiers using
Spectralis OCT parameters for glaucoma diagnosis. Unlike previous studies, our study not
only used the ONH and ppRNFL parameters but also covered macula-related parameters,
in order to have a more comprehensive analysis.

Although our results are interesting and promising, there are some limitations in
our study. First, the substrate for studies is usually a clinic-based population of patients
with glaucoma. These patients have been identified on the basis of particular patterns of
structural and functional abnormality that meet preconceived notions that bias the outcome
of the comparisons [40]. Therefore, this could overestimate the diagnostic accuracy of OCT
instruments, which is a common problem in this type of case–control study. Furthermore,
in our study subjects, there is significant difference in age between the glaucoma group
and normal group. As found in previous studies [41], age may have an effect on the OCT
measurements of the peripapillary retinal nerve fiber layer, macula, and optic head, which
may also be a limitation of this study. Another limitation is the relatively small samples
used to generate this model. Larger sample sizes are recommended to provide more precise
and robust estimations for glaucoma diagnosis using machine learning methods.

5. Conclusions

SVM application to Spectralis OCT shows good diagnostic capability in differentiating
glaucomatous from normal eyes. Our results show promise in glaucoma management in
the Taiwanese population. However, the OCT result should be incorporated with other
clinical information before decision-making. Further validation studies are needed to test
the performance of our proposed model in the real world.
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differentiating normal from (a) early, (b) moder-ate, and (c) severe glaucomatous eyes.
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