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Background: Fatty acid metabolism (FAM)-related genes play a key role in the

development of stomach adenocarcinoma (STAD). Although immunotherapy

has led to a paradigm shift in STAD treatment, the overall response rate of

immunotherapy for STAD is low due to heterogeneity of the tumor immune

microenvironment (TIME). How FAM-related genes affect TIME in STAD remains

unclear.

Methods: The univariate Cox regression analysis was performed to screen

prognostic FAM-related genes using transcriptomic profiles of the Cancer

Genome Atlas (TCGA)-STAD cohort. Next, the consensus clustering analysis

was performed to divide the STAD cohort into two groups based on the

13 identified prognostic genes. Then, gene set enrichment analysis (GSEA)

was carried out to identify enriched pathways in the two groups.

Furthermore, we developed a prognostic signature model based on

7 selected prognostic genes, which was validated to be capable in predicting

the overall survival (OS) of STAD patients using the univariate Cox regression,

least absolute shrinkage and selection operator (LASSO) regression, and

multivariate Cox regression analyses. Finally, the “Estimation of STromal and

Immune cells in MAlignant Tumours using Expression data” (ESTIMATE)

algorithm was used to evaluate the stromal, immune, and ESTIMATE scores,

and tumor purity of each STAD sample.

Results: A total of 13 FAM-related genes were identified to be significantly

associated with OS in STAD patients. Two molecular subtypes, which we

named Group 1 and Group 2, were identified based on these FAM-related

prognostic genes using the consensus clustering analysis. We showed that
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Group 2 was significantly correlated with poor prognosis and displayed higher

programmed cell death ligand 1 (PD-L1) expressions and distinct immune cell

infiltration patterns. Furthermore, using GSEA, we showed that apoptosis and HCM

signaling pathways were significantly enriched in Group 2. We constructed a

prognostic signature model using 7 selected FAM-related prognostic genes,

which was proven to be effective for prediction of STAD (HR = 1.717, 95% CI =

1.105–1.240, p < 0.001). After classifying the patients into the high- and low-risk

groups based on our model, we found that patients in the high-risk group tend to

have more advanced T stages and higher tumor grades, as well as higher immune

scores. We also found that the risk scores were positively correlated with the

infiltration of certain immune cells, including resting dendritic cells (DCs), and

M2 macrophages. We also demonstrated that elevated expression of gamma-

glutamyltransferase 5 (GGT5) is significantly associatedwithworseOS and disease-

free survival (DFS), more advanced T stage and higher tumor grade, and increased

immune cell infiltration, suggesting that STAD patients with high GGT5 expression

in the tumor tissues might have a better response to immunotherapy.

Conclusion: FAM-related genes play critical roles in STAD prognosis by shaping

the TIME. These genes can regulate the infiltration of various immune cells and

thus are potential therapeutic targets worthy of further investigation.

Furthermore, GGT5 was a promising marker for predicting

immunotherapeutic response in STAD patients.

KEYWORDS

fatty acid metabolism, stomach adenocarcinoma, tumor immune microenvironment,
immune checkpoint inhibitors therapy, prognosis

Introduction

Stomach adenocarcinoma (STAD) is the fifth most common

and third most deadly cancer worldwide (Siegel et al., 2014; Siegel

et al., 2019; Smyth et al., 2020). Given the complex pathogenesis and

heterogeneity of STAD, early diagnosis and prognostic assessment

are extremely difficult, leading to significantly reduced survival in

STAD patients (Van Cutsem et al., 2016; Zong et al., 2016; Li et al.,

2017). Immunotherapy and targeted therapies, such as anti-

programmed cell death ligand 1 (PD-L1) therapy, have shown

modest success in improving the outcomes in patients with

microsatellite unstable carcinomas (Fuchs et al., 2018). However,

the overall therapeutic effect for STAD patients is still unsatisfactory

(Shitara et al., 2018). Recent studies have partially elucidated the

molecular mechanisms underlying STAD occurrence and

development, and identified potential biomarkers, such as

circulating CA199, CA724, CEA and CA125, for early screening

and prognostic evaluation of STAD. However, these biomarkers

have poor sensitivity and specificity and thus are not suitable for

individualized treatment and prognosis assessment in clinical

practice (Marrelli et al., 1999; Ciliberto et al., 2015; Chau, 2017).

Therefore, there is an urgent need to identify effective diagnostic and

prognostic biomarkers as well as novel therapeutic targets for STAD

diagnosis and treatment.

Metabolic reprogramming is a major feature of malignant

transformation (DeBerardinis et al., 2008; Kroemer and Pouyssegur,

2008), enabling the survival, proliferation, and metastasis of cancer

cells, even under stressful conditions such as nutrient restriction

(Hanahan and Weinberg, 2011; Lunt and Vander Heiden, 2011).

The fatty acid metabolism (FAM) pathway is crucial for cancer

development and is frequently dysregulated in many types of

cancer (Nomura et al., 2010). For instance, the rapidly proliferating

tumor cells can utilize these metabolic lipids as an energy source for

invasion, metastasis, and neovascularization (Amiri et al., 2018).

Menendez et al. showed that lipid synthesis was more active in

tumor cells compared to healthy cells, promoting tumor growth

(Menendez and Lupu, 2007; Guo et al., 2013). Consistent with this,

fatty acid-binding proteins were highly expressed in many types of

cancer, such as prostate cancer, breast cancer, and liver cancer, and are

associated with cancer metastasis and invasion (Dong et al., 2007).

Furthermore, previous studies demonstrated that there is extensive

crosstalk between dysregulated metabolic networks and cancer cell

signaling, posing a potential new avenue for developing targets and

drugs related to cancer metabolism (Vander Heiden et al., 2009; Lunt

and Vander Heiden, 2011). Actually, recent studies have shown that

FAM-related genes can be used as prognostic markers for some

malignant tumors such as breast cancer and lung adenocarcinoma

(Balakrishnan et al., 2020; Bogie et al., 2020; Chang and Xing, 2022;

Garcia et al., 2022). However, the role of FAM-related genes in STAD

progression and prognosis remains unclear.

Changes in specific metabolic pathways also affect immune cell

function. For example, the metabolic switching to glycolysis and
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fatty acid synthesis in macrophages in the tumor

microenvironment (TME) can polarize macrophages to the pro-

inflammatory phenotype. In addition, glycolysis can activate the

interleukin 17 (IL-17)-producing inflammatory T helper cells

(Th17) while suppressing the anti-inflammatory regulatory

T cells (Tregs) (Buck et al., 2015; Jha et al., 2015). In turn, the

accumulation of fatty acids and lipids in the TME can trigger

metabolic changes in the tumor-infiltrating immune cells (Jiang

et al., 2018). Immune risk score models are useful prognostic tools

that can be used to quantify immune cell infiltration in the TME

(Duan et al., 2019). These immune scoring systems can improve the

predictive accuracy of TNM staging in STAD patients, and thus

identify patients with potential better prognoses, which be

beneficial in increasing the immunotherapeutic efficacy in these

patients (Wang et al., 2020a). It would be promising to explore how

FAM-related genes might affect the tumor immune

microenvironment (TIME), which might provide novel

prognostic biomarkers and therapeutic targets for STAD treatment.

The aim of this studywas to assess the prognostic value of FAM-

related genes in STAD. Based on the expression levels of FAM-

related genes, we identified a total of 13 genes that were significantly

associated with overall survival (OS), immunotherapy response and

prognosis. We further selected 7 genes to construct a prognostic

signature model and a predictive nomogram using the gene risk

scores and ages of the patients, which could predict the OS and

disease-free survival (DFS) of STAD patients with reasonable

accuracy. Furthermore, we showed that GGT5 is overexpressed

in STAD tissues, which is associated with worse prognosis,

higher levels of PD-L1 and higher immune cell infiltration. Our

findings suggest that expressions of FAM-related genes were

prognostically relevant to STAD and can be used to predict

patient prognosis and immunotherapeutic response, and guide

individual treatment strategies in STAD patients.

Materials and methods

Datasets

Based on a previous study (Lee et al., 2020), a list of 309 human

FAM-related genes was curated. The most updated (March 2022)

transcriptomic profiles and clinical data of the Cancer Genome Atlas

(TCGA)-stomach adenocarcinoma (STAD) were downloaded from

the Genomic Data Commons Data Portal (https://portal.gdc.cancer.

gov/). The expression profiles of 375 STAD tissues and 32 adjacent

normal tissues were processed using the PERL software (https://www.

perl.org/) and an mRNA expression matrix was generated. The

clinical data were similarly processed using the same software and

a matrix containing clinical information was generated. Finally, the

expression profiles of the 309 FAM-related genes were extracted. The

differentially expressed FAM-related genes between the tumor and

normal tissues were identified using the “limma” R package, with |

log2Fold Change| > 1 and p < 0.05 set as the cutoffs. According to the

guidelines released by theNational Cancer Institute inDecember 2015

(https://cancergenome.nih.gov/publications/publication guidelines),

this study does not require ethical approval from the ethics committee.

Identification of prognostic fatty acid
metabolism-related genes

We performed the univariate Cox regression analysis and

identified 108 FAM-related genes that were significantly

correlated to prognosis in STAD patients. Then, these prognostic

FAM-related genes were hierarchically clustered using the

“ConsensusClusterPlus” package with K = 2. The “limma”

package was used to identify the differentially expressed genes

(DEGs) between two groups, and PD-L1 was one of these DEGs.

The relationship between the expressions of these DEGs and the

clinicopathological parameters was assessed and visualized using the

“pheatmap” package. Finally, gene correlation analysis was

conducted using the “corrplot” package to clarify the correlation

between expressions of PD-L1 and prognostic FAM-related genes in

STAD. p < 0.05 is regarded as statistically significant.

Tumor immune microenvironment and
gene set enrichment analysis

Tumor purity is inversely proportional to the ratio of

infiltrating immune cells (Yin et al., 2022). The relative

ratios of infiltrating immune cells in each tumor sample

were analyzed using the “preprocessCore”, “limma”, and

“e1071” packages. Then we compared the immune cell

infiltration between the two groups, and the results were

visualized using the violin plots. Gene set enrichment

analysis (GSEA) was performed to identify enriched

pathways using relative gene sets (c2.

Cp.kegg.v.7.2.symbols.gmt, group.cls#G2 versus G1). For

GSEA, the number and type of permutations were set at

“1,000” and “no Collapse”/“phenotype”, respectively; the

gene list ordering mode was set as “descending”; the gene

list sorting mode was set as “real”; the metric for ranking genes

was set as “Signal2Noise”. p < 0.05 is regarded as statistical

significant.

Construction of a prognostic model based
on fatty acid metabolism-related genes

The STAD cohort was randomly divided into the training and

testing datasets at a 1:1 ratio using the “caret” package. Using the

univariate Cox regression, LASSO regression, and multivariate

Cox regression analyses, a prognostic risk score model was

constructed based on the 7 selected FAM-related genes

(Table 1) using the training dataset. The risk score was
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calculated as following: risk score � CoefMAOA×ExpressionMAOA+
CoefPON1×ExpressionPON1 + CoefOLAH×ExpressionOLAH +
CoefABCD1 × ExpressionABCD1 + CoefTHEM5 × ExpressionTHEM5 +
CoefGGT5×ExpressionGGT5 + CoefACLY×ExpressionACLY, where

Coef represents the coefficient with the lowest Akaike’s

information criterion (AIC) values. Coef >0 and

Coef <0 indicate risk and protective factors, respectively.

Based on the median risk score, all the STAD samples were

assigned to the high- and low-risk groups. The predictive

accuracy of the prognostic model for OS was calculated using

the “time-ROC” package. The ROC curves are shown in

Figure 4F,I. The risk curves were plotted based on the risk

scores and survival status. The independent prognostic factors

were further identified by the univariate and multivariate Cox

regression analyses. The hazard ratios for these factors were

calculated as well. The correlation between the clinical features

and risk scores was evaluated. Heatmaps were generated using

the “pheatmap” package. Boxplots were used to show the

relationship between risk scores and clinical data. The

expression levels of PD-L1 in the two groups were also

compared. The correlation relationship between expression

levels of the 7 FAM-related genes and OS or DFS in STAD

patients was analyzed using the Gene Expression Profiling

Interactive Analysis (GEPIA) database. The ratios of

22 immune cell types in the high-risk and low-risk groups

were determined using the Cell-type Identification by

Estimating Relative Subsets of RNA Transcripts

(CIBERSORT) algorithm (Newman et al., 2015). The

correlations between the risk scores and immune cell scores

were analyzed, and scatterplots were generated to show the

correlations.

Construction and validation of a predictive
nomogram

A prognostic nomogram consisting of the FAM-related

gene risk score and clinical indicators was constructed to

predict the OS in STAD patients. The constructed

nomogram was used to predict the 1-, 3- and 5-year OS,

which was compared with the actual OS. Nomogram-

predicted survival and the observed outcome were plotted

using the “survminer” package. The prediction accuracy was

calculated using the “time-ROC” packages. The 45° line was

representative of the best prediction.

Gene ontology and Kyoto Encyclopedia of
Genes and Genomes analyses of
differentially-expressed fatty acid
metabolism-related genes

The differentially expressed FAM-related genes between

the high-risk and low-risk groups were identified using the

“limma” package, with |log2FC|>1 and p < 0.05 set as the

cutoffs. The potential functions of these DEGs were analyzed

by GSEA. Gene ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses were performed using

the DAVID (https://david.ncifcrf.gov/) online tool, with p < 0.

05 as the cutoff. The “clusterProfiler”, “enrichplot”, “org.Hs.

eg.db”, “ggplot2” and “GO plot” packages were used for

visualization of the results.

Statistical analysis

R 4.0.4 and Perl 10.0 were used for all statistical analyses.

The OS and DFS curves based on the Kaplan-Meier method

were plotted using the ggplot2 package. The difference

between the two groups was calculated using the log-rank

test. DEGs were identified using the “limma” package, and

hierarchical clustering analysis was performed using the

“ConsensusClusterPlus” package. Univariate Cox

regression, LASSO regression and multivariate Cox

regression analyses were performed to identify the

independent prognostic risk factors, which were used for

the construction of a FAM-related prognostic signature.

Results

Identification of fatty acid metabolism-
related genes related to stomach
adenocarcinoma prognosis

The workflow of the study is shown in Figure 1. In

summary, we identified 115 differentially expressed FAM-

related genes between the tumor and adjacent normal tissues,

with |log2FC| > 1 and p < 0.05 set as the cutoffs. Among these

115 DEGs, 64 were up-regulated and 51 were down-

regulated.

TABLE 1 Prognostic signature genes identified from the multivariate
Cox regression analysis.

FAM-related genes HR (95% CI) p-value Coef

MAOA 1.275 (1.020–1.594) 0.033 0.243

PON1 1.903 (1.055–3.431) 0.032 0.643

OLAH 3.355 (0.934–12.054) 0.064 1.210

ABCD1 0.672 (0.487–0.928) 0.016 −0.398

THEM5 0.623 (0.402–0.965) 0.034 −0.473

GGT5 1.481 (1.093–2.006) 0.011 0.393

ACLY 1.480 (1.135–1.930) 0.004 0.392

FAM, fatty acid metabolism; HR, hazard ratio; CI, confidence interval; Coef, regression

coefficient.
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The biological roles of fatty acid
metabolism-related genes in stomach
adenocarcinoma

We identified 108 FAM-related prognostic genes using

the univariate Cox regression analysis. The STAD cohort was

divided into two distinct groups, which we named as Group

1 and Group2, based on these prognostic genes using the

“ConsensusClusterPlus” package with K = 2 (Figures 2A,B).

As shown in Figure 2C, patients in Group 2 were significantly

associated with a better prognosis (p < 0.001). The

expressions of the prognostic FAM-related genes were

shown using the Heatmap, and the relationship between

the expressions of these genes and clinicopathological

parameters was plotted as well as shown in Figure 2J.

Some of these FAM-related genes were highly expressed in

Group 1, whereas others were highly expressed in Group 2.

Of note, PD-L1 was highly expressed in Group 2 compared

with Group 1, and was highly expressed in tumors compared

with adjacent normal tissues, suggesting the two groups

might respond differently to immune response (Figures

2D,E). Gene correlation analysis was conducted to

ascertain the correlation between PD-L1 and the

prognostic fatty acid metabolism-related genes in STAD

FIGURE 1
Overview of they study flow chart.
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(Figure 2I). The results showed that PD-L1 is positively

correlated to UBE2L6 and IL4I1, which are 2 of these

prognostic fatty acid metabolism-related genes (p < 0.05).

There were 13 differentially expressed genes related to FAM

associated with prognosis. We found no significant

difference regarding clinical characteristics between the

two groups except for tumor stage and N stage.

Immune cell infiltration in the two groups was analyzed. As

shown in Figures 2F–H, naïve B cells and resting memory CD4+

T cells were predominant in Group 2, while CD8+ T cells were

predominant in Group 1 (p < 0.05). Multiple pathways,

including the hypertrophic cardiomyopathy (HCM) pathway,

were identified as the most enriched pathway in Group 2 (p <
0.05; Figures 3A–I).

FIGURE 2
Hierarchical grouping identifies two STAD subtypes based on expression profiling of fatty acid metabolism-related genes. (A,B): grouping
analysis. (C): Kaplan-Meier survival analysis illustrated that Group 1 (Immune Response Low) was significantly associated with a better prognosis. (D,
E): PD-L1 was highly expressed Group 2 compared to Group 1; PD-L1 was highly expressed in STAD tumor tissues compared to adjacent normal
tissues (F,G,H): Difference analysis of immune cell infiltration in different groups (Immune cells like B cell naïve, restingmemory CD4 T cell were
highly clustered in group 2). (I): Correlation analysis of PD-L1 and fatty acid metabolism-genes. (J): Heatmap of differentially expressed prognostic-
related genes and relationship with clinicopathological parameters in different clusters. *: p < 0.05. Red represents high expression, while blue
represents low expression. The abscissa represents the sample, while the ordinate represents prognostic related fatty acid metabolism-related
genes.
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Fatty acid metabolism-related prognostic
gene signature

To construct a prognostic FAM-related gene signature for

the prediction of OS in STAD patients, we randomly divided

the STAD cohort into the training (Supplementary Table S1)

and testing (Supplementary Table S2) datasets in a 1:1 ratio. A

7-gene FAM-related signature was identified in the training

dataset, and risk scores of all the samples were calculated

(Figures 4A,B). Based on the median risk score, all the patients

were divided into the high- and low-risk groups. As shown in

Figures 4D,G, the OS for patients in the low-risk group was

significantly better than that of patients in the high-risk group,

in both the training and testing datasets (p < 0.05). To evaluate

the predictive accuracy of our model, we plotted the ROC

curves for both the training and testing datasets (Figures 4F,I).

The AUC values for OS in both datasets were >0.5, indicating
that the prognostic model could predict the survival of STAD

FIGURE 3
Gene Set Enrichment Analysis. Gene set enrichment analysis (GSEA) showed that tumor hall markers were enriched in the high-risk group. All of
them are positively related to G2. Nominal p-Value < 0.05.
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patients with considerable accuracy. A risk curve was

generated, and the survival status and risk of FAM-related

genes were assessed (Figures 4E–H).

Additional prognostic clinical factors for STAD were

screened using the univariate Cox regression analysis

(Table 2). Furthermore, age, stage and risk score were

FIGURE 4
Construction and validation of a prognostic risk signature in TCGA-STAD based on 7 fatty acid metabolism-related genes. (A,B): LASSO
regression was performed to identify genes for prognostic model (C): Multivariate analysis of independent prognostic analysis. (Age, Stage and risk
score were risk factors for the prognosis of STAD). (D): Kaplan-Meier survival analysis showed that the high-risk group had a poor prognosis and
shorter OS in the training dataset. (E): The scatter plot of risk scores in the training dataset. (F): ROC curve to evaluate the accuracy of our model
to predict the OS in the training dataset. (G–I): The survival plot, scatter plot of risk scores, and roc curve in the testing dataset. (J)Nomogram based
on the age, clinical feature, and fatty acidmetabolism-related signature. (K): Calibration plots of the nomogram for the prediction of overall survival at
1, 3, and 5 years in the TCGA-STAD cohort.
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identified as the independent risk factors using the multivariate

Cox regression analysis (Figure 4C, p < 0.05). We further

constructed a nomogram based on the FAM-related gene

signature and age for predicting the prognosis of STAD

patients. Predicted OS at 1, 3, and 5 years in STAD patients is

shown in Figure 4J. As shown in Figure 4K, the OS predicted

from the nomogram is very similar to the actual OS, indicating

the nomogram is suitable for clinical application. Furthermore,

the signature could be applied to subgroups generated based on

age, sex, lymph node metastasis, M stage and T stage (p < 0.05;

Figure 5).

To further identify the protective and risk genes in the

FAM-related prognostic signature, we analyzed the

correlation between the clinical features and expressions

of these genes. MAOA, ACLY, GGT5, OLAH and PON1

were highly expressed, while ABCD1 and THEM5 were

lowly expressed in the high-risk group (Figure 6A,

Supplementary Figures S1, S2). Furthermore, tumor grade,

N stage, T stage, M stage and gender were significantly

correlated to the risk score (Figures 6B–G). We next

analyzed the correlations between the expression levels of

the FAM-related risk genes OS or DFS. As shown in

Figure 7A, compared to adjacent normal tissues,

expression of GGT5 was significantly elevated in STAD

tumor tissues. In addition, high expression of GGT5 was

associated with shorter OS and DFS (Figures 7B,C). To assess

the correlation between GGT5 and clinical characteristics,

the STAD patients were divided into the GGT5high and

GGT5low groups based on the median expression level of

GGT5 (Figures 7D–J). GGT5 was highly expressed in grade 3

(Figure 7I) and stages II, III and IV tumors (Figure 7H).

Furthermore, GGT5 was highly expressed in patients over

65 years of age with stages T2, T3 and T4 tumors (Figures

7D,G). In contrast, gender, N stage and metastasis were not

correlated with the expression of GGT5. These findings

suggest that GGT5 is an independent prognostic

biomarker for STAD.

Association between risk score and
immune infiltration

TIME is a major determinant of tumorigenesis and

cancer progression, and its heterogeneity can affect cancer

prognosis and treatment (Li et al., 2021). To this end, we

analyzed the expression levels of the immune checkpoint

PD-L1 in the high- and low-risk STAD patients and found

that PD-L1 was up-regulated in the high-risk group (p =

0.049, Figure 8K). Furthermore, the TIMER database (http://

timer.cistrome.org/) showed that PD-L1 expression was

positively correlated to GGT5 expression and negatively

correlated to tumor purity (Figure 8B). By analyzing the

correlation between immune cells and GGT5 expression

level, the relationship between GGT5 expression level and

immune infiltration was obtained. As shown in Figures 8E–J,

the infiltration ratios of M2 macrophages and resting

dendritic cells were positively correlated to the expression

level of GGT5 and the risk score (R > 0 and p < 0.05), while

the infiltration ratio of follicular T helper cells was negatively

correlated with both parameters (R < 0 and p < 0.05). Thus, a

higher expression of GGT5 was associated with a higher

degree of immune cell infiltration in STAD, and GGT5high

patients might be more sensitive to immune checkpoint

therapy. Consistent with this hypothesis, most immune

checkpoints were significantly up-regulated in the GGT5high

group (Figure 8L, p < 0.05), with the exception of the human

endogenous retrovirus-H long terminal repeat-associating protein

2 (HHLA2). Furthermore, the stromal score, immune score and

ESTIMATE score were higher, and the tumor purity was lower in

the GGT5high group compared to the GGT5low group (Figures

9E–H). Analysis of the TME in the different risk groups

revealed that the stromal score, immune score and estimate

score were also higher, while tumor purity was lower, in the

high-risk group compared to the low-risk group. Taken

together, the results suggest that the GGT5high STAD patients

might benefit more from immunotherapy.

TABLE 2 Univariate and multivariate Cox regression analyses of OS in TCGA-STAD.

Clinicopathologic parameters Univariate analysis Multivariate analysis

HR (95%CI) p HR (95%CI) p

Age 1.026 (1.008–1.044) 0.004* 1.035 (1.016–1.054) <0.001*
Gender 1.249 (0.866–1.802) 0.235 1.175 (0.811–1.701) 0.393

Tumor grade 1.361 (0.969–1.911) 0.075 1.444 (1.019–2.045) 0.039*

Pathologic Stage 1.534 (1.241–1.896) <0.001* 1.716 (1.364–2.159) <0.001*
Risk score 1.137 (1.076–1.202) <0.001* 1.171 (1.105–1.240) <0.001*

*p < 0.05 was considered statistically significant.

CI, confidence interval; HR, hazard ratio.
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FIGURE 5
Survival curves for model validation. Our model could be applied to different clinical groups: age, gender, lymph node metastasis, stage and T
stage, p < 0.05.
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Gene ontology and Kyoto Encyclopedia of
Genes and Genomes pathway analyses

The genes that were differentially expressed between the

high- and low-risk groups were functionally annotated by the

GO and KEGG analyses using the DAVID (https://david.ncifcrf.

gov/) online tool. According to GO analysis, the significantly

enriched pathways relating to molecular functions (MF) were

fatty acid metabolism, carboxylic acid biosynthesis, and organic

acid biosynthesis pathways; the significantly enriched pathways

relating to cellular component (CC) were peroxisome,

microbody and mitochondrial matrix pathways; the

significantly enriched pathways relating to biological processes

(BP) were Oxidoreductase activity of acting on CH-OH group,

the group of donors of NAD or NADP as acceptor and

acyltransferase activity pathways. (Figure 10A). KEGG analysis

showed that the vascular smooth muscle contraction, dilated

cardiomyopathy, focal adhesion (FA), hypertrophic

cardiomyopathy and cAMP signaling pathways were

significantly enriched (Figure 10B).

FIGURE 6
Risk and clinical correlation analysis. (A): Heatmap of risk and clinical correlation analysis; (B–G): Boxplot of risk and clinical correlation analysis.
(Grade, gender, T stage, M stage, and immune score were closely related to the risk score, p < 0.05).
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Discussion

STAD is one of the most frequently diagnosed malignancies

and is associated with high mortality worldwide (Torre et al.,

2015). Given the complex pathogenesis of STAD, surgery is

considered to be the only radical cure; however, it can easily

lead to serious complications such as anastomotic leakage,

intestinal obstruction, and early recurrence, which can worsen

the prognosis and reduce the OS of the patients (Van Cutsem

et al., 2016; Zong et al., 2016; Li et al., 2017). In recent years,

several immunotherapy or targeted therapy have been developed

for STAD (Tarnawski et al., 2005;Wang et al., 2020b;Wang et al.,

2021); however, patients could rarely benefit from these

therapies, primarily due to the development of drug

resistance. Multiple mechanisms drive therapeutic resistance

in tumor patients, such as epigenetic and genetic

dysregulation, altered signaling pathway and metabolic

reprogramming (Cheetham et al., 2013). Of these

mechanisms, metabolic reprogramming, in particular, is a

hallmark of cancer; it can promote cancer cell proliferation

and metastasis, thus contributing to malignant progression

(Kroemer and Pouyssegur, 2008; Jiang et al., 2019). In

addition, metabolic reprogramming in the TME can affect

immune cell infiltration and function, eventually

compromising immunotherapeutic efficacy (Pavlova and

Thompson, 2016). Studies show that solid tumors can secrete

large amounts of fatty acids, resulting in a fatty acid-rich TME.

Furthermore, genes involved in lipogenesis are frequently up-

FIGURE 7
GGT5 expression and clinical correlation analysis. (A): Evaluating GGT5 in the GEPIA database. (B,C): OS plot and DFS plots from the GEPIA
database; (D–J): Association between GGT5 expression and other clinicopathological features (GGT5 was highly expressed in grade 3, stages II, III,
and IV, p < 0.05).
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FIGURE 8
Scatter plots of correlation analysis of risk score and GGT5 expression with immune cells. (A–G): scatter plots of correlation analysis of
GGT5 expression with PD-L1 and immune infiltration level; (H–J): scatter plots of correlation analysis of risk score and immune cells. Both
Macrophages M2 and Dendritic cells resting are positively related with the risk score, R > 0 and p < 0.05.T cells follicular helper is negatively related
with a risk score, R < 0 and p < 0.05. (K–L): expression of immune checkpoint genes in high-risk and low-risk groups and their correlation with
GGT5 expression levels.

Frontiers in Molecular Biosciences frontiersin.org13

Liu et al. 10.3389/fmolb.2022.962435

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.962435


regulated in prostate, colonic, ovarian, liver, lung, and other

cancers (Swinnen et al., 2006; Wei et al., 2020). Therefore, drugs

targeting fatty acid and other metabolic pathways might be

effective in the treatment of some cancers (Piccinin et al., 2019).

In this study, we identified the FAM-related genes closely

related to the prognosis of STAD, of which 4 were differentially

expressed between the STAD tumor and adjacent normal tissues

and may function as oncogenes or tumor suppressors. The genes

up-regulated in the tumor tissues included ATP citrate lyase

(ACLY) and monoamine oxidase A (MAOA). While ACLY

expression is associated with advanced stage and prognosis in

gastric adenocarcinoma (Qian et al., 2015), MAOA expression

can promote the proliferation and metastasis of human gastric

tumor cells by inducing mitochondrial dysfunction and aerobic

glycolysis (Chen et al., 2020). Furthermore, reprogramming of

FAM pathways plays an important role in the TME and

influences cancer progression and therapeutic efficacy

(Siddiqui and Glauben, 2022).

We constructed a prognostic model based on the FAM-

related genes, and the patients were stratified into the low- and

high-risk groups based on the risk score of these genes. The low-

risk group had higher survival rates compared to the high-risk

group in both the test and training datasets. A nomogram was

then developed using the FAM-related prognostic signature and

FIGURE 9
Difference analysis of tumor microenvironment in a different risk group and GGT5 expression group. (A–D): difference analysis of tumor
microenvironment in different risk groups; (E–H): difference analysis of tumor microenvironment in different GGT5 expression groups. All of the
scores are higher in the high-risk group and high GGT5 expression group, which indicates lower purity of tumors. (p < 0.05).
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age to provide a quantitative means for prognosis prediction of

STAD. The nomogram predicted the OS of patients with

reasonable accuracy. The nomogram was independent of

other clinical factors and could be applied to different clinical

groups.

To assess the impact of the FAM-related genes on immune

infiltration, we analyzed the immune cell scores in the two groups

which were classified based on hierarchical clustering. The naïve

B cells and resting memory CD4+ T cells were predominant in

Group 2, and the CD8+ T cells were predominant inGroup 1. Given

that Group 2 corresponded to a high-risk score and poor prognosis,

this finding indicates that the infiltration of naïve B cells and resting

CD4+ memory T cells in the TME of STAD may portend a worse

prognosis. This is consistent with the study by Zhao et al., who

showed that naïve B cell infiltration in STAD tumors correlates with

tumor metastases and fully functional regulatory activity against

human stomach adenocarcinoma immunity (Zhao et al., 2021).Wu

et al. suggested that resting CD4+ memory T cells cannot mount a

sufficient immune response against STAD, and increased

infiltration of these immune cells is detrimental to patient

prognosis (Wu et al., 2021a). We also found that the immune

scores were higher in the high-risk group, indicating lower tumor

cell purity and more immune cell infiltration. Studies have shown

that the TIME of metastatic tumors is less immunocompetent

compared to that of primary STAD, which may help establish

reliable prognostic signatures on the basis of stromal and immune

components (Wang et al., 2019). The results of this study supported

our hypothesis that immune cell infiltration in the TME affected the

prognosis of patients with STAD.

Through GEPIA database analysis, we found that GGT5 was

an independent prognostic factor for STAD. GGT5 was highly

expressed in the STAD tumor tissues compared to adjacent

normal tissues, and correlated with worse DFS and OS, in line

with previous studies (Ye et al., 2021; Huang et al., 2022).

Furthermore, GGT5 overexpression in the tumor tissues was

positively correlated with PD-L1 expression and CD8+ T cell

infiltration. PD-L1, encoded by the CD274 gene, is a major co-

inhibitory checkpoint that represses T cells (Ai et al., 2020).

Multiple tumors overexpress PD-L1 and use the PD-L1/PD-

1 signaling to evade T cell-mediated immune killing.

Immunotherapies that target the PD-1/PD-L1 axis are effective

against various cancers and have shown encouraging results in

patients with advanced cancers. It is recognized as the gold standard

for developing new immune checkpoint blockade (ICB) and

combination therapies (Cha et al., 2019). In this study, we found

that most immune checkpoints were up-regulated in the STAD

tissues with high GGT5 expression. One study showed that GGT5 is

highly expressed in cancer-associated fibroblasts (CAFs) derived

from lung adenocarcinoma tissues, and contributes to cancer cell

survival and drug resistance (Wei et al., 2020). According to the

American Joint Committee on Cancer (AJCC) staging manual for

STAD, advanced tumor stage is associated with a worse prognosis

(In et al., 2017). GGT5 was highly expressed in stages 3, T2, T3 and

T4, as well as in stages II, III and IV tumors. These findings suggest

FIGURE 10
GO and KEGG enrichment of differential risk genes associated with fatty acid metabolism. (A): GO analysis. (B): KEGG analysis.
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that GGT5 plays an active role in STAD progression, although its

function and mechanism are not completely clear.

To further explore the potential FAM-related mechanisms

in the occurrence and development of STAD, we functionally

annotated the FAM-related prognostic genes by GO and KEGG

analyses. GO analysis revealed that the fatty acid metabolism,

carboxylic acid biosynthesis, organic acid biosynthesis,

peroxisome, microbody and mitochondrial matrix,

oxidoreductase activity and acyltransferase activity pathways

were enriched, all of which have been correlated with cancer

development (Dahabieh et al., 2018; Islinger et al., 2018; Bian

et al., 2019). KEGG analysis further showed that the vascular

smooth muscle contraction, dilated cardiomyopathy, focal

adhesion (FA), hypertrophic cardiomyopathy and cAMP

signaling pathways were enriched. FA is a membrane-related

macromolecule assembly that links actin cytoskeleton to the

extracellular matrix through integrin. It plays an important role

in maintaining cellular tension and signal transduction for cell

survival. Recent studies have shown that FA-related structural

molecules also regulate the epithelial-mesenchymal transition

(EMT) of tumor cells, and promote tumor invasion and

metastasis (Wu et al., 2021b; Lin et al., 2022). One study

showed that the activation of FA by cAMP-FAK signaling

can promote prostate cancer invasion (Cheng et al., 2018).

Furthermore, there is considerable evidence linking the cAMP

signaling pathway and cancer progression (Ma et al., 2019;

Schernthaner-Reiter et al., 2020). GSEA further identified the

hypertrophic cardiomyopathy pathway, which was also

revealed by the GO and KEGG analyses. Given the paucity

of research on the signaling pathways involved in STAD

progression, our findings provided valuable insights for

exploring new directions in developing novel diagnostic and

therapeutic methods.

Conclusion

We established a prognostic FAM-related gene signature

model for STAD, along with a predictive nomogram based on

the 7-gene risk score and age of the patient. The overexpression

of GGT5, in particular, was associated with worse prognosis,

higher PD-L1 levels, and increased immune cell infiltration.

Thus, STAD patients with high levels of GGT5 in the tumors

might be more responsive to immune checkpoint blockade and

other immunotherapies.
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