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A B S T R A C T   

A nudge changes people’s actions without removing their options or altering their incentives. During the COVID- 
19 vaccine rollout, the Swedish Region of Uppsala sent letters with pre-booked appointments to inhabitants aged 
16–17 instead of opening up manual appointment booking. Using regional and municipal vaccination data, we 
document a higher vaccine uptake among 16- to 17-year-olds in Uppsala compared to untreated control regions 
(constructed using the synthetic control method as well as neighboring municipalities). The results highlight pre- 
booked appointments as a strategy for increasing vaccination rates in populations with low perceived risk.   

1. Introduction 

COVID-19 vaccines are offered free of charge in all rich countries, but 
vaccination uptake mostly falls below 80 percent (Ritchie et al., 2020). 
Different measures can potentially increase vaccine uptake among hes-
itant individuals, such as cash incentives (direct payments and lotteries) 
and mandatory COVID-19 certificates (Campos-Mercade et al., 2021; 
Mills and Rüttenauer, 2022; Barber and West, 2022). These in-
terventions can be expensive or intrusive, and the use of interventions 
that alter people’s behavior without changing economic incentives or 
regulating behavior has thus received significant interest. A common 
approach is the use of nudges, which change the choice architecture to 
steer people’s choices without limiting their options (Thaler and Sun-
stein, 2008). Two randomized controlled trials have studied the effects 
of nudges on COVID-19 vaccination uptake. Dai et al. (2021) found that 
text-based reminders effectively increased vaccination uptake from low 
vaccination levels early in the vaccination rollout. In contrast, Cam-
pos-Mercade et al. (2021) found no effect of three different types of 
nudges in a study population with high baseline vaccination uptake (70 
percent). Further, Sasaki et al. (2022) conducted an online experiment 
testing the effect of different messages on COVID-19 vaccination in-
tentions, finding great importance in subtle word choices. Similar results 
are found in Tanaka et al. (2021). In sum, there is limited empirical 
evidence on the effect of nudges on COVID-19 vaccination and the 
conditions under which a nudge will be successful. 

On July 15th, 2021, Region Uppsala, one of Sweden’s 21 regional 

governments and home to approximately 375,000 people, sent letters 
with pre-booked COVID-19 vaccination appointments to all residents 
aged 16 and 17. Other Swedish regions simply opened up bookings for 
this cohort. Similarly, other age groups could make their own appoint-
ments in Region Uppsala as well as in the rest of Sweden. The alterna-
tives were to get vaccinated or not, and the decision by the regional 
authorities merely changed the default from the possibility of choosing 
an array of times or no time to the choice of a particular time. It 
remained possible not to show up (which one was not charged for) or 
cancel the appointment. Thus, these letters in Region Uppsala provide a 
real-world example of an extensive vaccination nudge. 

Our aim is to study whether these pre-booked appointments 
increased vaccine uptake. We use two empirical strategies to identify the 
effect. First, we use the synthetic control method to estimate the impact 
in Region Uppsala compared to other (untreated) Swedish regions. 
Second, we estimate the impact in municipalities in Region Uppsala 
compared to bordering (untreated) municipalities in other regions. We 
find a large and statistically significant effect of Region Uppsala’s nudge 
on vaccine uptake, regardless of which of these two methods we use. 

Important features of a nudge are that it neither removes nor adds 
alternatives and that it does not change the utilities associated with any 
of the available alternatives, other than through the presentation of the 
options (Thaler and Sunstein, 2008). The type of nudge we study in this 
paper involves changing the default. Such nudges have been found to 
influence people’s actions in a number of domains. Madrian and Shea 
(2001) find that the decision to participate in a pension-savings program 
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in which the employer matches one’s own contribution is made far more 
often when it is made the default option. Similarly, Pichert and Katis-
kopoulos (2008) find green energy to be a more frequently chosen op-
tion when it is the default and Li et al. (2013) report that deceased-donor 
organ donations increase with opt-out defaults in comparison to opt-in 
ones. In a recent systematic review of the literature on nudging for 
vaccinations, Reñosa et al. (2021) find that nudges that change defaults, 
giving incentives, and providing reminders have been effective in 
increasing flu vaccinations in some settings. In a large US field experi-
ment Milkman et al. (2021) show that text messages on the phone in-
crease flu vaccinations. Yokum et al. (2018) also find that mailed 
information letters increase flu vaccinations in the US. 

Pre-booked vaccination appointments could also potentially influ-
ence uptake through social effects. For instance, when teenagers know 
their peers have received the same letter with a pre-booked appoint-
ment, they could assume their peers are more likely to get vaccinated 
and therefore choose to do the same. A well-known feature of peer ef-
fects is that small changes in price (or the mental cost of making an 
appointment) can cause large equilibrium changes when peer con-
sumption complements own consumption. This is because the small 
change will induce some portion of the peer group to get vaccinated, 
which, through the complement, causes some other portion to get 
vaccinated, etc. (Becker and Murphy, 2000; see Sasaki et al., 2022, for 
other ways in which social effects can effectuate nudges). 

Our results are consistent with those of Lofgren and Nordblom 
(2020), who construct a theoretical model that predicts the circum-
stances in which a nudge is likely to be effective. Their model shows that 
the likelihood of a nudge having an effect is higher for choices that the 
individual believes are unimportant. For choices that the individual 
considers important, nudges are less likely to have an effect. Since 
16–17-year-olds are unlikely to suffer or die from either a COVID-19 
infection (Kolk et al., 2021) or the side-effects of a vaccine (Patone 
et al., 2021), we should expect a larger effect from a nudge in this age 
group than among older individuals. Indeed, the effect that we find is 
greater than those based on modest monetary payments or conditional 
cash lotteries in previous research. We note, however, that the young 
age of the individuals in our study also makes it unclear how general-
izable our findings are to older individuals, for whom the incentive to 
get vaccinated is greater. 

Apart from adding to the health-economics literature on incentives 
and vaccination uptake (Campos-Mercade et al., 2021; Dai et al., 2021; 
Mills and Rüttenauer, 2022; Barber and West, 2022), we also contribute 
to the burgeoning literature on nudging (Madrian and Shea, 2001; 
Pichert and Katiskopoulos, 2008; Li et al., 2013; Lofgren and Nordblom, 
2020). 

2. Methods and data 

2.1. Empirical framework 

Since we have access to both regional and municipal vaccination 
data, we conduct analyses on both levels to assess the effect of the 
nudging intervention in region Uppsala. In the regional analyses, we 
measure the impact through a comparative case-study approach that 
compares the trend in vaccination uptake between Region Uppsala and a 
set of untreated but similar regions. Specifically, we implement the 
synthetic control method to construct a synthetic Uppsala, which closely 
resembles the real Uppsala in terms of pre-intervention characteristics, 
from a combination of all other Swedish regions (Abadie et al., 2010; 
Abadie, 2021). The synthetic control method is designed to estimate the 
impact of policy interventions affecting one unit (e.g., country, region, 
or municipality) when only a small number of control units are avail-
able. It is a data-driven approach for estimating counterfactuals—i.e., 
what would have happened without the nudge—which automatically 
determines the weighted combination of untreated regions that provides 
the best match to the treated region with regard to pre-intervention 

outcomes and covariates. The weighted average vaccination uptake 
from the synthetic control group then provides the counterfactual trend 
of the vaccination share for Region Uppsala; i.e., it predicts how the 
vaccination rates would have turned out in the absence of the nudging 
intervention. For a detailed presentation of the method, see Abadie 
(2021). For recent implementations of the synthetic control method 
related to the COVID-19 pandemic, see, for example, Cho (2020), Mitze 
(2020), and Alfano et al. (2021). 

Abadie and Gardeazabal (2003) propose a nested optimization 
routine to simultaneously determine (i) a set of unit weights (one for 
each control) that determine each untreated unit’s contribution to the 
synthetic control and (ii) variable importance weights (one for each 
covariate) to prioritize a good match on strong predictor outcomes. The 
latter aspect is useful in small datasets where a perfect match cannot be 
expected for all included variables. We also consider equal importance 
weights in sensitivity analyses. Following Abadie et al. (2010), we make 
inference using in-place placebo studies, where we estimate “effects” in 
each control region to assess uncertainty. Thus, we can assess if the ef-
fect in the treated region is large relative to the estimated effects in the 
non-treated regions. 

In the municipal analysis, we compare the eight municipalities in 
Region Uppsala to all eight municipalities that share a border with a 
treated municipality. The geographic proximity between municipalities 
just within and just outside Region Uppsala makes comparisons between 
municipalities fruitful for detecting differences in vaccination uptake 
due to the intervention by Region Uppsala. Four of the eight munici-
palities of Region Uppsala (Uppsala, Tierp, Östhammar, and Älvkarleby) 
border only one municipality outside of the region, while the others 
border two or, in one case (Heby), four. The idea is that the geographical 
proximity should make the untreated neighbors a reasonable control 
group, as individuals on different sides of the border share similar social 
environments. Variants of this kind of identification strategy have been 
used extensively in studying effects of local policy variations (e.g. Card 
and Krueger, 1994; Boone et al., 2021). 

We conduct a descriptive comparison of the vaccination develop-
ment in the treated and neighboring municipalities and compare the 
final vaccination share in the treated municipalities to those of their 
neighbors. We also run ordinary least squares regressions with the share 
of vaccinated individuals as the outcome variable, with neighbor fixed 
effects and covariates (see next section for details). Finally, we perform 
difference-in-differences and event-study difference-in-differences esti-
mation (Schmidheiny and Siegloch, 2019), in which we contrast the 
increase in vaccinations in the treated municipalities with the increase 
in the neighboring municipalities. 

2.2. Data 

The outcome data in the present study are the share of vaccinated 
individuals, obtained from the Public Health Agency of Sweden and 
structured as regional-level weekly panel data covering all 21 Swedish 
regions (defined in Eurostat’s Nomenclature of Territorial Units for 
Statistics [NUTS3]). Our data contain the share of vaccinated in-
dividuals in the 16–17-year age group and the 18–19-year age group 
from week 1–46 in 2021 for all 21 Swedish regions. 

We include several covariates that may be important confounders 
following recent empirical findings on relevant predictors of adoles-
cents’ attitudes towards COVID-19 vaccination (Fazel et al., 2021; 
Nivette et al., 2021; ONS, 2021): the share of COVID-19 deaths in 2020 
(from the Public Health Agency of Sweden); the share of the population 
with at least three years of higher education in 2020 (Statistics Sweden); 
the share of foreign-born individuals living in the region in 2020 (Sta-
tistics Sweden); the share of population that has received financial aid at 
any point during the past year in 2020 (Kolada, www.kolada.se); 
number of adolescents 10–24 per 100,000 inhabitants who have 
received care due to alcohol addiction in 2019 (Kolada); the share of the 
population that has access to a fast broadband connection (100 Mbit/s) 
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in 2020 (Kolada); the share of the population with high trust in how the 
Swedish health care system handled the COVID-19 pandemic in 2020 
(Kolada); and NEETs (the share of 17–24 year olds that neither study nor 
work) in 2020 (Kolada). We also include the pre-intervention share of 
vaccinated 18–29-year-olds as a proxy for the general willingness to get 
vaccinated in each region. All variables refer to the entire population 
unless otherwise noted. 

For the vaccination data, cells with three or fewer observations were 
set to zero by the Public Health Agency of Sweden due to integrity 
reasons, so we have some missing data in weeks when very few in-
dividuals got vaccinated. This was more of a problem in the early stage 
of the pandemic, when mainly individuals with medical risks (e.g., 
chronic lung disease, cancer, and diabetes) in the 16–17 year age group 
were vaccinated. 

For the municipal comparison of neighboring municipalities, we use 
data on the vaccination share in two-week intervals and the total 
vaccination share in week 49. We received two-week (instead of one- 
week) data to reduce the number of cells with three or fewer observa-
tions. We also use the cumulative share of vaccinated individuals in 
week 49; with this outcome, we lose no data but do not have the time 
series. Municipal-level data were available for the following control 
variables: the share of foreign-born, the share with at least three years in 
higher education (both from Statistics Sweden), and the share of COVID- 
19 deaths in 2020 reported by the Public Health Agency of Sweden. 

3. Results 

3.1. Regional analyses 

Fig. 1 plots the trends in the share of first-dose vaccinations among 
16–17-year-olds in Uppsala and the rest of Sweden. The vertical line 
indicates when Region Uppsala sent out letters with pre-booked vacci-
nation times to all 16–17-year-olds (week 28). In the final week that we 
observe (week 46), we can see that vaccinations reached 85 percent of 
the age group in Uppsala and 75 percent in the other regions (un-
weighted average). In Table 1, we can see that Uppsala clearly differs 
from the average of the 20 control regions in terms of pre-intervention 
characteristics. It has a larger foreign-born population, higher educa-
tion level, fewer NEETs, and less trouble with adolescent alcohol 
addiction. Synthetic Uppsala more closely matches real Uppsala on 
predictors with high variable importance weights. Table 2 displays the 
region weights for synthetic Uppsala, which are a weighted combination 
of four regions: Östergötland, Kronoberg, Stockholm, and Västerbotten. 

The left panel in Fig. 2 shows the difference in the share of first-dose 
vaccinations between Uppsala and synthetic Uppsala for the treated age 

group (16–17 years old). There is a clear difference in the share vacci-
nated between Uppsala and synthetic Uppsala in the post-treatment 
period, which peaks in week 32 at 34.3 percentage points. In week 46, 
the final week of measurements, the difference is 11.7 percentage points 
(72.8 in synthetic Uppsala and 84.5 in actual Uppsala). In the middle 
panel in Fig. 2, we compare the effect estimated for Uppsala with the 
effect of placebo interventions implemented in the other 20 regions. 
Reassuringly, we can see that no other region has an effect estimate close 
to the one in Uppsala. The right panel in Fig. 2 ranks the post- 
intervention effect sizes across all regions, showing that Uppsala has 
by far the largest estimated effect (with a placebo-based p-value of 1/21 
= 0.048). Abadie et al. (2010) suggest using the ratio between the 
post-to-pre-intervention root mean squared error (RMSE) in the 
outcome variable (vaccination uptake) to handle differences in 
pre-intervention fit across the placebo analyses when assessing signifi-
cance, which is neither feasible nor necessary with our data given that 
the RMSE in the pre-intervention period is zero in almost all analyses. 
Overall, the analysis implies a large and persistent effect of the 
intervention. 

To further scrutinize the findings, we assess the vaccination share for 
the age group 18–29 years in the Uppsala region. Since they were not 
treated with pre-booked appointments, we do not expect them to have a 
higher vaccination rate than the same age group in synthetic Uppsala. 
However, there may be spillovers in the treatment; increased vaccina-
tions in the treated age group may increase vaccinations among friends 
and relatives in the older age group. Appendix Fig. A1 shows the results 
for the age group 18–29 years (predictor means and weights in Appendix 
Tables A1 and A2). In the final week, the difference is 4.6 percentage 
points (80.3 in synthetic Uppsala and 84.9 in actual Uppsala). With a 
placebo-based p-value of 0.524, we interpret this difference as a chance 
finding. In Appendix Fig. A2 (predictor means and weights in Appendix 
Tables A3 and A4), we estimate the effect on second-dose vaccinations 
for 16–17-year-olds, which yields similar results as in our main analysis 
(placebo-based p-value: 0.048). 

A potential concern with our application of the synthetic control 
Fig. 1. First-dose vaccinations in Uppsala (treated) and average of all other 20 
Swedish regions. 

Table 1 
Vaccination share predictor means.   

Uppsala Synthetic 
Uppsala 

Average of 20 
Control regions 

V 

Share foreign-born .189 .182 .160 .361 
Share high education .180 .157 .138 .033 
Share of COVID-19 deaths .001 .001 .001 .010 
Share with financial aid .041 .042 .040 .090 
Alcohol addiction per 100k 54.0 69.6 89.1 .044 
Share with fast internet .862 .868 .836 .265 
Share with high trust .752 .750 .737 .076 
Share NEETs .062 .070 .078 .085 
Share vaccinated (18–29 y) .077 .075 .074 .035 

Notes: The period for each predictor is 2020, except for Share vaccinated (18–29 
y), which refers to the mean share for all pre-intervention weeks. Variable 
importance weights (V) were determined via the standard synthetic control 
procedure. 

Table 2 
Region weights in synthetic Uppsala.  

Region Weight Region Weight 

Stockholm .133 Västra Götaland 0 
Södermanland 0 Värmland 0 
Östergötland .539 Örebro 0 
Jönköping 0 Västmanland 0 
Kronoberg .224 Dalarna 0 
Kalmar 0 Gävleborg 0 
Gotland 0 Västernorrland 0 
Blekinge 0 Jämtland 0 
Skåne 0 Västerbotten .104 
Halland 0 Norrbotten 0  
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Fig. 2. Effect (left), placebo (middle), and post-intervention effect size (right) plots. The left panel shows the share of first-dose vaccination by week in Uppsala 
(black) and synthetic Uppsala (dashed) among 16–17-year-olds. The middle panel shows effects estimated by assessing the vaccination share gaps between Uppsala 
and its synthetic counterpart (black) and equivalently-defined placebo gaps in all 20 control regions (gray). The right panel shows the post-intervention root mean 
squared error (RMSE) in vaccination uptake from the synthetic control analysis in Uppsala and all other regions. 

Fig. 3. Share of vaccinated 16-17-year-olds in the treated and neighboring municipalities.  
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method is that there is limited variation in the pre-intervention out-
comes. Since the variable importance algorithm proposed by Abadie and 
Gardeazabal (2003) uses pre-intervention outcomes to estimate variable 
importance weights, the variable weights in the main model may be 
inconsistent. As a sensitivity analysis, we therefore re-run the optimi-
zation while assigning equal importance to all predictors. The results, 
which are presented in Appendix Fig. A3 and Appendix Tables A5 and 
A6, are reassuringly very similar to the main specification. Another 
concern is that the results may be sensitive to our choice of included 
covariates. Appendix Fig. A4 shows results from analyses where we 
successively excluded the confounder with the highest variable weight 
in Table 1, resulting in nine specifications including one to nine con-
founding variables. All estimates (gray lines) closely track each other, 
and the main finding therefore seems robust to the choice of included 
covariates. Synthetic control analyses may also be sensitive to how one 
chooses to input the pre-intervention outcomes in the optimization (e.g., 
a raw mean, every time point, every other time point, etc). Following 
Ferman et al. (2020), we estimate 14 different specifications where we 
vary how we input the pre-intervention outcomes in the synthetic con-
trol optimization and find that the effect size is largest in Uppsala in all 
14 specifications (Appendix Table A7). In Fig. A5, we report the results 
of a leave-one-region-out robustness analysis, as suggested by Abadie 
(2021). One at a time, we take out each of the four regions that 
contribute to the synthetic control in Table 2 to ensure that the results 
are not entirely driven by the inclusion of a specific control region. All 
leave-one-out estimates (gray lines) closely track the findings from the 
main analysis. Thus, the main finding appears robust. 

3.2. Municipal analyses 

Fig. 3 shows vaccination shares for 16–17-year-olds in the treated 
municipalities (Enköping, Heby, Håbo, Knivsta, Tierp, Uppsala, 
Älvkarleby, and Östhammar) and untreated neighboring municipalities 
(Avesta, Gävle, Norrtälje, Sala, Sandviken, Sigtuna, Upplands-Bro, and 
Västerås) for the final available week of data (week 49). The share of 
vaccinated 16-17-year-olds was 85.1 (95% confidence interval [CI]: 
83.2, 87.0) percent in the treated municipalities compared with 72.2 
(95% CI: 68.3, 76.1) percent in the neighboring untreated municipal-
ities, a difference of 12.9 percentage points (95% CI: 9.0, 16.8). 

Fig. 4 plots the trends in the share of first-dose vaccinations among 
16–17-year-olds in the treated municipalities and the neighboring mu-
nicipalities. The vertical line indicates when Region Uppsala sent out 
letters with pre-booked vaccination times to all 16–17-year-olds (week 
28). As in the regional analysis, the share of vaccinated individuals is 
considerably higher in the treated municipalities compared to their 

untreated neighbors. 
Appendix Table A8 compares summary statistics for the observed 

covariates between each treated municipality and their neighbors. We 
find meaningful differences in some neighbor groups, indicating that it is 
important to adjust the municipal comparisons for observables even 
within neighbor groups. In Table 3, we present the results from ordinary 
least squares (OLS) regressions, with the cumulative vaccination share 
in week 49 among 16–17-year-olds as the dependent variable. Because 
our data are spatially structured the table also includes a check for 
spatial autocorrelation (Moran’s I) and contains both OLS and Conley 
corrected standard errors (Colella et al., 2019; Conley, 1999; Moran, 
1950). In column 1, we include only a treatment dummy; in column 2, 
we include three control variables (share foreign-born, share high edu-
cation, and COVID-19 deaths); in column 3, we include neighbor in-
dicators (a dummy variable for each treated municipality, indicating 
which municipalities from neighboring regions it shares a border with); 
and in column 4, we include all of the above. The treatment estimate is 
not statistically different from zero in column 4 (p = 0.11), but the point 
estimate is still considerable, and we must consider the limited degrees 
of freedom in a model with 16 observations and 12 control variables. 
The estimated treatment effect varies from 7.3 to 12.9 percentage 
points. As in the regional analysis, we find no evidence of an effect on 
vaccine uptake among 18-29-year-olds after adjusting for observable 
confounders (Appendix Table A9). This result suggests that the residual 
confounding within neighbor groups is small after adjusting for ob-
servables, assuming the same sources of bias are present in both age 
groups (see e.g. Lipsitch et al., 2010). 

A difference-in-differences estimation (without control variables) 
suggests an average effect in the post-treatment period of 15.6 per-
centage points (95% CI: 11.6, 20.0; CI computed using wild cluster 
bootstrap (Cameron et al., 2008)). Fig. 5 contains time-specific effect 
estimates and 95 percent CIs (i.e., an event study 
difference-in-differences estimation), showing how the effect changes 
over time according to the municipality-level data. Like the regional 
analysis, we can see that the treatment effect is massive early on, and 

Fig. 4. First-dose vaccinations in treated municipalities (located in Uppsala) 
and in their neighboring municipalities (outside Uppsala). 

Table 3 
Determinants of share of vaccinated 16-17-year-olds in treated and neighboring 
municipalities.   

(1) (2) (3) (4) 

Treatment 0.129*** 
(0.018) 

0.094*** 
(0.014) 

0.109*** 
(0.026) 

0.073 
(0.028) 

Neighbor 
indicators 

No No Yes Yes 

Share foreign- 
born 

No − 0.531*** 
(0.114) 

No − 0.418 
(0.273) 

Share high 
education 

No 0.215** 
(0.084) 

No 0.150 
(0.181) 

COVID-19 
deaths 

No 6.375 (5.195) No − 4.999 
(17.053) 

Constant 0.722*** 
(0.013) 

0.774*** 
(0.027) 

0.761*** 
(0.034) 

0.843*** 
(0.087) 

R2 0.782 0.900 0.934 0.976 
Moran’s I 

(residuals) 
0.093 − 0.191 − 0.198 − 0.409** 

Conley SE 
(treatment) 

0.019*** 0.010*** 0.013*** 0.013*** 

Notes: The dependent variable is the share of 16–17-year-olds vaccinated in 
week 49 in the 16 included municipalities. Ordinary least squares regressions 
controlling for Treatment (pre-booked appointments), Neighbor indicators (one 
dummy variable for each treated municipality, indicating its neighbors), as well 
as the control variables Share foreign-born, Share high education, and COVID-19 
deaths. Moran’s I for spatial residual autocorrelation and Conley standard errors 
accounting for spatial autocorrelation were computed assuming a maximum 
distance for spatial autocorrelation of 65 km (the minimum distance from which 
all area centroids shared at least one neighbor) and a Bartlett kernel using the 
acreg package for Stata. Other distance choices and a uniform kernel led to 
similar results, but standard errors could not be computed in Model 4 using a 
uniform kernel. *p < 0.1, **p < 0.05, ***p < 0.01. 
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although it decreases over time, the vaccination share in the treated 
municipalities is considerably higher in the final time period. 

4. Discussion and conclusion 

Our regional analysis suggests that pre-booked vaccination ap-
pointments increased vaccination uptake among 16–17-year-olds in the 
Uppsala region by about 11.7 percentage points, compared to a coun-
terfactual uptake of 72.8 percent (in week 46). The municipal analyses 
also suggest an effect of 7.3–12.9 percentage points (in week 49). 
Although our estimates may be biased due to unobserved confounding, 
they are substantial, robust, and specific to the treated age range over 
two identification methods and datasets. They are also theoretically 
plausible. Our effect estimate is considerably larger than the effects 
found for modest monetary payments or conditional cash lotteries to 
increase COVID-19 vaccinations. Campos-Mercade et al. (2021) find 
that a monetary payment of 200 Swedish kronor (about $24) increased 
vaccinations by 4.2 percentage points (from a baseline of 71.6 percent) 
in a random sample of Swedes aged 18–49 years. Barber and West 
(2022) report that a conditional cash lottery in Ohio increased the 
vaccination share in the state population by 0.7 percentage points. In a 
study on nudges to increase COVID-19 vaccination uptake, Dai et al. 
(2021) find that text-based reminders can effectively increase vaccina-
tion uptake from low initial vaccination levels in the overall population, 
at least in the early stages of the vaccination rollout. Conversely, Cam-
pos-Mercade et al. (2021) find no effects of three different nudges on 
COVID-19 vaccination uptake when vaccination uptake is already above 
70 percent. 

It may be that the effect is more pronounced in younger age groups. 
Lofgren and Nordblom (2020) argue that nudges should be more 
effective for choices that are considered unimportant by the individuals 
making them. Since 16–17-year-olds are unlikely to suffer from severe 
illness or death in case of a COVID-19 infection, whereas the risk is 
considerably higher for older individuals (Kolk et al., 2021), we should 
not expect the effect of the pre-booked vaccination appointments to be 
as large in the general population. Additionally, while previous studies 
consider lighter nudges, we study the impact of a nudge that changes the 
default alternative, something that has been shown to be impactful 
when considering choices in other domains (e.g., Madrian and Shea, 
2001; Pichert and Katiskopoulos, 2008; Li et al., 2013). However, one 
should remember that this is a case study and the findings for Uppsala 
may not be generalizable to other Swedish regions or to regions in other 
countries. 

In summary, pre-booked appointments seem to provide a simple and 
effective nudge that could be used more broadly to increase vaccine 
uptake in the future (e.g., for COVID-19 booster doses or vaccinations 
for other viruses). 
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Jönköping University, the EuHEA Conference, and Siri Jakobsson Støre 
for providing useful comments and suggestions. Mats Ekman and Niklas 
Jakobsson acknowledges funding from Jan Wallanders and Tom Hede-
lius stiftelse & Tore Browaldhs stiftelse (grant number P22-0018). Carl 
Bonander acknowledges funding from the Swedish Research Council for 
Health, Working-Life, and Welfare (Forte; grant number 2020–00962).  

Appendix 

Fig. 5. Time-specific coefficients and 95% wild cluster bootstrap confidence 
intervals from the difference-in-differences estimation. 
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Fig. A1. Effect (left), placebo (middle) and post-intervention effect size (right) plots for first-dose vaccinations among 18-29-year-olds (the untreated age group). The 
left panel shows the share of first-dose vaccinations by week in Uppsala (black) and synthetic Uppsala (dashed). The middle panel shows effects estimated by 
assessing the vaccination share gaps between Uppsala and its synthetic counterpart (black) and equivalently defined placebo gaps in all 20 control regions (gray). The 
right panel shows the ratio between post-intervention root mean squared error (RMSE) to the pre-intervention RMSE from the synthetic control analysis in Uppsala 
and all other regions. The specification in this analysis differs from our main analysis in that we standardize the effect sizes in the right panel by the pre-intervention 
RMSE to account for the fact that the pre-intervention fit can vary across regions, as suggested by Abadie et al. (2010). This was not possible nor necessary in our 
main analysis due to the limited variation in the outcome before vaccinations were introduced among 16-17-year-olds. 

Fig. A2. Effect (left), placebo (middle) and post-intervention effect size (right) plots for second-dose vaccinations among 16-17-year-olds. The left panel shows the 
share of second-dose vaccinations by week in Uppsala (black) and synthetic Uppsala (dashed). The middle panel shows effects estimated by assessing the vaccination 
share gaps between Uppsala and its synthetic counterpart (black) and equivalently defined placebo gaps in all 20 control regions (gray). The right panel shows the 
post-intervention root mean squared error (RMSE) from the synthetic control analysis in Uppsala and all other regions. 

Fig. A3. Effect (left), placebo (middle) and post-intervention effect size (right) plots, using equal weights for the included covariates. The left panel shows the share 
of first-dose vaccination by week in Uppsala (black) and synthetic Uppsala (dashed) among 16-17-year-olds. The middle panel shows effects estimated by assessing 
the vaccination share gaps between Uppsala and its synthetic counterpart (black) and equivalently defined placebo gaps in all 20 control regions (gray). The right 
panel shows the post-intervention root mean squared error (RMSE) from the synthetic control analysis in Uppsala and all other regions.  
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Fig. A4. Leave-k-confounders-out estimates of first-dose vaccination.  

Fig. A5. Leave-one-region-out estimates of first-dose vaccination.   

Table A1 
Vaccination share predictor means   

Uppsala Synthetic 
Uppsala 

Average of 20 
Control regions 

V 

Share foreign-born .189 .170 .160 .028 
Share high education .180 .162 .138 .031 
Share of COVID-19 deaths .001 .001 .001 .037 
Share with financial aid .041 .040 .040 .097 
Alcohol addiction per 100k 54.0 65.1 89.1 .077 
Share with fast internet .862 .883 .836 .024 
Share with high trust .752 .765 .737 .076 
Share NEETs .062 .069 .078 .137 
Share vaccinated (18–29 y) .077 .077 .074 .514 

Notes: The period for each predictor is 2020, except for Share vaccinated (18–29 y), which refers to the mean share for all pre-intervention 
weeks. Variable importance weights (V) were determined via the standard synthetic control procedure.  

Table A2 
Region weights in synthetic Uppsala  

Region Weight Region Weight 

Stockholm .136 Västra Götaland 0 
Södermanland 0 Värmland 0 
Östergötland .697 Örebro 0 
Jönköping 0 Västmanland 0 
Kronoberg .224 Dalarna 0 
Kalmar 0 Gävleborg 0 
Gotland 0 Västernorrland 0 

(continued on next page) 
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Table A2 (continued ) 

Region Weight Region Weight 

Blekinge 0 Jämtland 0 
Skåne 0 Västerbotten .167 
Halland 0 Norrbotten 0   

Table A3 
Vaccination share predictor means   

Uppsala Synthetic 
Uppsala 

Average of 20 
Control regions 

V 

Share foreign-born .189 .177 .160 .339 
Share high education .180 .162 .138 .065 
Share of COVID-19 deaths .001 .001 .001 .013 
Share with financial aid .041 .037 .040 .097 
Alcohol addiction per 100k 54.0 86.4 89.1 .031 
Share with fast internet .862 .873 .836 .024 
Share with high trust .752 .756 .737 .001 
Share NEETs .062 .069 .078 .237 
Share vaccinated (18–29 y), dose two .029 .030 .030 .026 

Notes: The period for each predictor is 2020, except for Share vaccinated (18–29 y), which refers to the mean share for all pre-intervention weeks. 
Variable importance weights (V) were determined via the standard synthetic control procedure.  

Table A4 
Region weights in synthetic Uppsala  

Region Weight Region Weight 

Stockholm .179 Västra Götaland 0 
Södermanland 0 Värmland 0 
Östergötland .374 Örebro 0 
Jönköping 0 Västmanland 0 
Kronoberg .193 Dalarna 0 
Kalmar 0 Gävleborg 0 
Gotland 0 Västernorrland 0 
Blekinge 0 Jämtland 0 
Skåne 0 Västerbotten .254 
Halland 0 Norrbotten 0   

Table A5 
Vaccination share predictor means   

Uppsala Synthetic 
Uppsala 

Average of 20 
Control regions 

V 

Share foreign-born .189 .179 .160 .111 
Share high education .180 .164 .138 .111 
Share of COVID-19 deaths .001 .001 .001 .111 
Share with financial aid .041 .040 .040 .111 
Alcohol addiction per 100k 54.0 62.7 89.1 .111 
Share with fast internet .862 .887 .836 .111 
Share with high trust .752 .757 .737 .111 
Share NEETs .062 .070 .078 .111 
Share vaccinated (18–29 y) .077 .075 .074 .111 

Notes: The period for each predictor is 2020, except for Share vaccinated (18–29 y), which refers to the mean share for all pre-intervention 
weeks. Variable importance weights (V) were determined via the standard synthetic control procedure.  

Table A6 
Region weights in synthetic Uppsala  

Region Weight Region Weight 

Stockholm .177 Västra Götaland 0 
Södermanland 0 Värmland 0 
Östergötland .74 Örebro 0 
Jönköping 0 Västmanland 0 
Kronoberg 0 Dalarna 0 
Kalmar 0 Gävleborg 0 
Gotland 0 Västernorrland 0 

(continued on next page) 
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Table A6 (continued ) 

Region Weight Region Weight 

Blekinge 0 Jämtland 0 
Skåne 0 Västerbotten .083 
Halland 0 Norrbotten 0   

Table A7 
Specifications searching  

Specification (1a) (1b) (2a) (2b) (3a) (3b) (4a) 

p-value 0.048 0.048 0.048 0.048 0.048 0.048 0.048 
Specification (4b) (5a) (5b) (6a) (6b) (7a) (7b) 
p-value 0.048 0.048 0.048 0.048 0.048 0.048 0.048 

Notes: Since our data have (almost) no variation in the outcome variable in any region before the vaccination rollout, we use the vaccination share among 18–29 year 
olds as the main variable to match on. Specifications refer to: (1) all pre-treatment vaccination shares among 18–29 year olds, (2) the first three-fourths of the values, 
(3) the first half of the values, (4) odd pre-treatment values, (5) even pre-treatment values, (6) pre-treatment mean, and (7) three values. Specifications ending with b 
includes all additional eight covariates, while specifications ending with a, includes no additional covariates. The post-intervention effect size is largest in Uppsala in 
each specification, p-value = 1/21 = 0.048.  

Table A8 
Control variable comparison between treated municipalities and their neighboring municipalities   

Treated municipality Average of neighboring municipalities  

Enköping Sala, Västerås 

Share foreign-born 0.161 0.189 
Share high education 0.208 0.230 
Share of Covid-19 deaths 0.00256 0.00272  

Håbo Sigtuna, Upplands-Bro 

Share foreign-born 0.157 0.326 
Share high education 0.193 0.218 
Share of Covid-19 deaths 0.00107 0.00270  

Knivsta Norrtälje, Sigtuna 

Share foreign-born 0.144 0.245 
Share high education 0.369 0.178 
Share of Covid-19 deaths 0.00112 0.00263  

Uppsala Norrtälje 

Share foreign-born 0.221 0.135 
Share high education 0.423 0.168 
Share of Covid-19 deaths 0.00187 0.00254  

Östhammar Norrtälje 

Share foreign-born 0.096 0.135 
Share high education 0.149 0.168 
Share of Covid-19 deaths 0.00230 0.00254  

Tierp Gävle 

Share foreign-born 0.131 0.159 
Share high education 0.151 0.216 
Share of Covid-19 deaths 0.00107 0.00217  

Älvkarleby Gävle 

Share foreign-born 0.149 0.159 
Share high education 0.155 0.216 
Share of Covid-19 deaths 0.00630 0.00217  

Heby Avesta, Gävle, Sala, Sandviken 

Share foreign-born 0.126 0.165 
Share high education 0.145 0.178 
Share of Covid-19 deaths 0.00161 0.00227   
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Table A9 
Determinants of share of vaccinated 18-29-year-olds in treated and neighboring municipalities   

(1) (2) (3) (4) 

Treatment 0.063** (0.023) 0.020 (0.012) 0.042 (0.033) 0.007 (0.022) 
Neighbor indicators No No Yes Yes 
Share foreign-born No − 0.552*** (0.100) No − 0.377 (0.210) 
Share high education No 0.485*** (0.074) No 0.320 (0.140) 
COVID-19 deaths No − 2.883 (4.555) No − 14.421 (13.133) 
Constant 0.745*** (0.016) 0.768*** (0.024) 0.781*** (0.050) 0.834*** (0.067) 
R2 0.344 0.897 0.734 0.974 
Moran’s I (residuals) − 0.214 − 0.130 − 0.124 − 0.417** 
Conley SE (treatment) 0.029** 0.009** 0.016*** 0.011 

Notes: The dependent variable is the share of 18–29-year-olds vaccinated in week 49 in the 16 included municipalities. Ordinary least squares regressions con-
trolling for Treatment (pre-booked appointments), Neighbor indicators (one dummy variable for each treated municipality, indicating its neighbors), as well as the 
control variables Share foreign-born, Share high education, and COVID-19 deaths. Moran’s I for spatial residual autocorrelation and Conley standard errors ac-
counting for spatial autocorrelation were computed assuming a maximum distance for spatial autocorrelation of 65 km (the minimum distance from which all area 
centroids shared at least one neighbor) and a Bartlett kernel using the acreg package for Stata. *p < 0.1, **p < 0.05, ***p < 0.01. 
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